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Abstract.— Divergence time estimation from multilocus genetic data has become common
in population genetics and phylogenetics. We present a new Bayes inference method that
treats the divergence time as a random variable. The divergence time is calculated from an
assembly of splitting events on individual lineages in a genealogy. The waiting time for
such a splitting event is drawn from a hazard function of the truncated normal
distribution. This allows easy integration into the standard coalescence framework used in
programs such as MIGRATE. We explore the accuracy of the new inference method with
simulated population splittings over a wide range of divergence time values and with a
dataset of the Zika virus; the geographic analyses of the expansion of the pathogen follows
a trajectory from Africa to Asia to America, corroborating analyses based only on the
dates of incidences. Evaluations of simple divergence models show high accuracy, whereas
the accuracy of the results of isolation with migration (IM) models depend on the
magnitude of the immigration rate and potentially on the number of samples. High
immigration rates lead to a time of the most recent common ancestor of the sample that
predates the divergence time, thus loses any potential signal of the divergence event in the
sample data. This reduced accuracy with high immigration rates is problematic for all IM
methods, including ours.
(Keywords: Coalescence, gene tree, species tree, Bayesian inference, Divergence time, Zika
virus)
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In phylogenetics and population genetics often we need to know the time when
populations split and evolved independently or when populations started to have reduced
gene flow among them; Wakeley and Hey (1997) define an isolation model (I) in which the
divergence marks the time when the ancestral population split into two groups of
individuals that stop exchanging genetic material with each other. Given that most
populations within a species may still exchange migrants after divergence, this definition
seems overly strict. Consequently, Nielsen and Wakeley (2001) developed the isolation with
migration model (IM); in their model, the divergence time marks the change from a
panmictic ancestral population to two populations linked by gene flow. In both models the
divergence times of the populations is always predated by the divergence time of the genes
(cf Edwards and Beerli 2000; Arbogast et al. 2002). Both the isolation model and the
isolation-with-migration model became popular and were implemented in several software
packages, such as BPP (Yang and Rannala 2010), IMa (Hey 2010), Lamarc (Kuhner
2006), and BEAST 2 (Bouckaert et al. 2014).

The isolation with migration model treats the divergence time as a boundary
between two models: a structured coalescent population with migration and a panmictic,
ancestral population. We describe here an approach that combines migration and
divergence within the same structured coalescence framework allowing the boundary to be
more fluid. The extent of the boundary is defined by two parameters, the mean of the
distribution of the boundary, the divergence time, and the standard deviation of the
boundary. We implemented the new method in the program Migrate (Beerli 2006) which
was used for all evaluations in this research. The MIT-licensed, open source software
Migrate is available from the website http://popgen.sc.fsu.edu.

Methods

All current coalescence-based methods for estimating a divergence time τ between two
populations treat the time as a boundary between two different models: the panmictic,
ancestral population modeled using the single population coalescent and a population with
two subpopulations using the structured coalescent with migration. In a Bayesian inference
method, the boundary is adjusted using a prior distribution.

Here we propose a different model. We consider the divergence time as a random
variable with a normal distribution. The mean and standard deviation of this distribution
are unknown and estimated. We use this distribution to draw times for divergence events
for each lineage. We assume that we know the population or species label of the sampled
individuals. Looking backward in time, each sample lineage will be at risk to switch labels
irreversibly from a ’derived’ to an ’ancestral’ state. Therefore, at a given time in the
genealogy, some lineages are in the ancestral population, and some are not. Figure 1 shows
an example with a divergence times τ . If we assume that this time is fixed, then the figure
represents the isolation-with-migration model. If we assume that we have a
normal-distributed divergence time with parameters τ and στ , then individual lineages can
change their state from the ‘descendant’ state to the ‘ancestor’ state by drawing times from
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this distribution and inserting a ‘divergence’ event. This process is similar to how
migration events are drawn.

Population tree

Gene genealogy

BA

C

σ
τ

Figure 1: Visualization of population splitting of 2 populations A and B split at times τ ,
lineages in A and B split from the ancestral population C: the divergence time is based on
individual lineage population label switching events (dark star) drawn from a distribution
with mean (τ) and standard deviation (στ ); migration events (white star) are drawn from
the standard structured coalescent.

Hazard functions and waiting times

Population genetic inferences commonly use a sample of individuals collected
recently, and we are interested in the potential interactions of these individuals in the past.
The coalescent (Kingman 1982), allowing probabilistic reconstruction of potential, past
genealogies of the sample, leads to inferences of population sizes, migration rates, and other
population genetic quantities. For example, in the migration model introduced by Strobeck
(1987); Hudson (1991) and used for population parameter inference by Beerli and
Felsenstein (2001); Beerli (2006) the times of coalescence events and migration events are
drawn from an exponential distribution with a rate that is defined by parameters for
population size, migration rate, and the number of sampled lineages in each population.
Looking backward in time, a sample lineage is at risk of a coalescence event or a migration
event. The risk of coalescence or immigration, switching population labels, in this
framework is constant for a given sample size. We can think of this process as a hazard
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that the lineages will fail to maintain their current status. The hazard function is
commonly used in an engineering or survival context, were the condition of an object can
suddenly change at any given time; the hazard can be constant, increasing, or decreasing
with time. The function is expressed as a ratio of the probability density function f(·) and
the complement of its cumulative density function F (·). For the exponential probability
density function this hazard is a constant, and for the Kingman coalescent this is

λci =
f(t)

1− F (t)
=

λcie
−tλci

1−
∫ t

0
λcie

−tλcidt
=

ki(ki−1)
Θi

e
−t ki(ki−1)

Θi
)

1−
∫ t

0
ki(ki−1)

Θi
e
−t ki(ki−1)

Θi dt
=
ki(ki − 1)

Θi

. (1)

where Θi is the mutation-scaled effective population size and ki is the number of lineages in
population i at time t (Wright 1951; Kingman 1982).

In the structured coalescence, migration is treated similarly. An immigration event
happens at the rate Mji for each lineage, where Mji is the mutation-scaled immigration
rate from population j into i which is equivalent to the immigration rate mji divided by
the mutation rate µ. The total rate of migration is the sum of all possible migration rates
Mji over all the lineages that have not yet coalesced:

λM.i
=

np∑
j=1

kiMji, (2)

where np is the number of populations, and ki is the number of lineages in population i at
time t. Since the rate of immigrations and coalescences λc+m =

∑n
i λci + λM.i

is
independent of the waiting time t, which shows the time before a coalescent or migration
event happens in [t0, t0 + u], has a probability density function of the exponential mixture

f c+m(u|Θ,M) = e−
∫ t0+u
t0

λc+mdtλc+m = e−uλc+mλc+m (3)

Divergence time as events on lineages

In 2000 Nielsen and Slatkin introduced and later (Hey and Nielsen 2007) refined a model
that adds population splitting, thus removing the assumption that populations are present
for a very long time without removing the assumption of migration between the
populations. We have developed an alternative to Nielsen’s and Hey’s approach that allows
distributing the analysis onto cluster computers and using large datasets.

We treat the time of splitting as a random variable with a particular probability
density. We chose to use the zero-truncated normal distribution because it has two
parameters: mean and standard deviation. These parameters are commonly used and
discuss quantities of interest. The mean describes the most likely time of the population
divergence and the standard deviation describes the uncertainty of that divergence time.
We consider the truncated normal distribution a good choice to discuss divergence times,
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but it certainly is not the only possible distribution. We could have used a Weibull
distribution or a Gamma distribution, both have a natural bound at zero, but their
standard parameters are less familiar to biologists.

Looking backward in time, we know the fate of a lineage sampled today; any
individual sampled today must have started in an ancestral population; thus, each lineage
sampled today is at risk to switch from the derived to the ancestral population. We assume
that the risk of failure to stay in the derived population is increasing the further back in
time the process moves. This process can be expressed with a hazard function of the
normal distribution that is not constant, in contrast to the hazard function of the
exponential distribution. The use of this hazard function allows us to integrate our
population splitting distribution into our coalescence with migration framework. To
express the risk of switching the population label (population splitting) we calculate the
rate of splitting (divergence) events λ′d(t) by using the hazard function of a truncated
normal distribution with bounds b0 = 0.0 and b1 as

λ′d(t) = λN (τ,στ )(t) =

√
2
π
e
− (τ−t)2

2σ2
τ

στ

(
erf
(

τ−t√
2στ

)
− erf

(
τ−b1√

2στ

)) , (4)

τ and στ are the parameters of the normal distribution; erf is the error function

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (5)

To calculate the probability that no splitting event happens in the interval [t0, t0 + u] we
integrate and get

fd(u|τ, στ , t0) = e−
∫ t0+u
t0

λ′d(t0+u)dtλ′d(t0 + u) (6)

= e−λd(t0,t0+u)λ′d(t0 + u) (7)

where

λd(t0, t0 + u) = log

 erf
(
τ−t0√

2στ

)
− erf

(
τ−b1√

2στ

)
erf
(
τ−(t0+u)√

2στ

)
− erf

(
τ−b1√

2στ

)
 . (8)

Combining these individual waiting times for coalescence, immigration, and splitting leads
to the overall probability density for the waiting time u to the next event in the interval
[t0, t0 + u]

f(u|Θ,M, τ, στ , t0) = e−uλc+m−λd(t0,t0+u) (λc+m + λ′d(t0 + u)) . (9)
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Genealogy-probability calculations

The posterior density distribution p(ρ|D) for all parameters ρ, such as mutation-scaled
population size Θ, mutation-scaled immigration rates M , divergence time mean τ and
standard deviation στ is

p(ρ|D) =
p(ρ)

∫
G
f(G|ρ)p(D|G)dG

p(D)
. (10)

We approximate the posterior distributions with histograms for each parameter ρ collected
through the Markov chain Monte Carlo run. The Metropolis-Hastings acceptance/rejection
steps will need calculations of the likelihood of the genealogy p(D|G) and the parameters
p(G|ρ) (Beerli and Felsenstein 1999; Beerli 2006). The likelihood of the genealogy is
calculated using the familiar likelihood pruning algorithm used in phylogenetics
(Felsenstein 1981). We discuss the evaluation of p(G|ρ) in the next section.

Probability of events and calculation of the probability density of a genealogy
given all parameters

The coalescence process reduces the number of lineages when looking backward in time;
coalescent, migration, and divergence events are independent from the events before them.
Thus, we can calculate the probability density of a genealogy given all parameters f(G|ρ)
as the product over all time intervals

f(G|ρ) = f(G|θ,M, τ, στ ) =
I∏
i

p(ti − ti−1|G, ti−1, θ,M, τ, στ ) (11)

The calculation of p(ti − ti−1|G, ti−1, θ,M, τ, στ ) is more involved. For each time interval we
calculate the exponential waiting time for any event, calculate the probability that the
particular event type recorded on the genealogy is drawn, and also need to adjust for how
many possible events of the same type can be drawn. If we have a time interval that ends
with a coalescent event, then, in the most general case, we calculate

p(t1 − t0, eventc|G, ti−1, θ,M, τ, στ ) = λ(t0, t1)e
−

∫ t1
t0
λ(t0,t)dtp(tc < tm ∧ tc < td)

1(
k
2

) (12)

where λ(t0, t1) is the sum of all rates for all parameters, for example this includes Eq. (1,2,
4). There are similar formulae for cases when the interval ends with a divergence event or
ends with an immigration event. In a model with only coalescence and migration events
this simplifies greatly because p(tc < tm ∧ tc < td) reduces to p(tc < tm) because divergence
events are not present. Details of this evaluation are described in the supplement.
Including a hazard function that changes with time t, for the divergence parameters leads
to a more complicated situation. The probability that a divergence event comes before a
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coalescent or a migration event is

p(td < tc ∧ td < tm) =

∫ ∞
0

p(tc > t0 + u) p(tm > t0 + u) λ′d(t0 + u)fd(u|τ, στ , t0)du. (13)

The td = t0 + u is the time of a divergence event, tc is the time of a coalescent event, and
tm is the time of a migration event. The λ′d(t0 + u) and fd(u|τ, στ , t0) are defined in
equations 4 and 6. Since p(tc > t0 + u), p(tm > t0 + u) become e−uλc and e−uλm ,
respectively, we can write

p(td < tc ∧ td < tm) =

∫ ∞
0

e−uλc+mλ′d(t0 + u) eλd(t0,t0+u)du. (14)

Unfortunately, the integral in Eq. (14) and its equivalents, p(tc < td ∧ tc < tm) and
p(tm < tc ∧ tm < td), need to be solved numerically. This makes calculations very slow. The
problem stems from the time-dependence of the divergence rate λ′d(t0 + u). Looking for a
faster way to compute these quantities, we use an approximation. Instead of solving the
integral in Eq. (6) numerically, we approximate using the midpoint rule. We replaced the
midpoint t0 + u/2 with a fixed value t0 + ε where epsilon ≤ u:

fd(u|τ, στ , t0) = e−
∫ t0+u
t0

λ′d(t)dtλ′d(t0 + u) ≈ e−uλ
′
d(t0+ε)λ′d(t0 + ε) (15)

This approximation leads to a simpler formulation of Eq. (14) which now becomes:

p(td < tc ∧ td < tm) ≈
∫ ∞

0

e−uλc+mλ′d(t0 + ε) e−uλ
′
d(t0+ε)du (16)

All λi are constant with respect to du and therefore the integral can be solved using the
substitution rule, and we get

p(td < tc ∧ td < tm) ≈ λ′d(t0 + ε)

λc+m + λ′d(t0 + ε)
. (17)

A comparison for different values of θ, M , and divergence times τ shows that the integral
in Eq. 14 and the ratio in Eq. 17 lead to very similar values (Figure 2) This result
simplifies Eq. 12 for the coalescent with divergence and migration. The general equation
for all events becomes

p(u|G, t0, θ,M, τ, στ ) = e−u(
k(k−1)

Θ
+kM+λd(t0,t0+ε))


λ′d(t0+ε)

k
2
Θ

M

(18)

These formulas are used in Eq. 11 to calculate the probability of a genealogy given all the
parameters f(G|ρ). The topology and the all the times of all the events are fixed in this
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Figure 2: Numerical comparison of the full integral solution in Eq. 14 (dashed curves) and
the midpoint approximation in Eq. 17 (black lines) of probabilities of occurrence for (from
left) mutation-scaled population size θ (with fixed parameters M = 100, τ = 0.005, στ =
τ, t0 = 0), mutation-scaled immigration rate M (with θ = 0.01, τ = 0.005, στ = τ, t0 = 0),
and mutation-scaled divergence time τ (with θ = 0.01,M = 100, στ = τ, t0 = 0).

genealogy, so we can use the time interval u between events to replace ε.
The exposition in the section used only one rate for each of the event-types, in

reality there may be many rates for each type, for example a model with two contemporary
populations, one ancestral population, and gene flow among the contemporary populations
will lead to three coalescent rates, 2 immigration rates and 1 rate for the divergence time
and its standard deviation.

Implementation

The approach was implemented into the program Migrate (Beerli 2006). New parameter
values were drawn from prior distributions, for example from an exponential distribution
with fixed mean or a uniform distribution with a lower and upper bound. The
genealogy-change proposal was described by Beerli and Felsenstein (1999), the procedure
remains the same except that for the proposal of a new event and its time. In earlier
versions of Migrate the time was drawn by solving Eq. 3 for the time interval u using a
random number on the interval (0, 1] as the probability, and then the probability of a
particular event at that time t0 + u was calculated. The hazard function for the splitting
rate added considerable complexity. Instead of proposing a time for any event, we chose to
propose a time for each possible event independently. For example, the proposed interval u
of the splitting time using Eq. 8 is

u = τ − t0 −
√

2 στ erf−1

(
erf(

b1 − τ√
2 στ

)(r − 1) + erf(
τ − t0√

2 στ
) r

)
. (19)

Thus, for every change of the genealogy we need to propose times for coalescence,
migration, and divergence events. Among these times we pick the event with the shortest
time. This approach allows us to draw the events at the correct frequency without
calculating the complex ratio described in the earlier section; both, the earlier and this new
calculations take about the same amount of time.
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In contrast to other programs Migrate does not need a specific guide tree to
specify the order of the splitting events. It uses an extension of the adjacency matrix
introduced into Migrate in 2001 (Beerli and Felsenstein 2001). This matrix defines the
connections among the populations by migration events and or divergence events. It can
specify particular divergence models without the need to define the order of the splitting
times; for example, for a model in which two island populations were colonized
independently from a mainland population, Migrate does not force the user to specify an
order of the time of the colonization events. We caution that our approach is not
equivalent to exploring all possible population trees. Comparisons of different population
trees are possible by treating each population tree as a new hypothesis and run each of
these hypotheses independently, followed by Bayesian model comparison. Tutorials, source
code, and executables can be found on the Migrate website (http://popgen.sc.fsu.edu).

Simulation

Simulations were performed over a wide range of (true) divergence times τ from 1/512×Ne

to 8.0×Ne generations. We performed three sets of simulations. The first simulation set
explored the accuracy of a simple divergence model (Figure 3A). For each divergence time,
four replicate datasets were simulated using the program ms (Hudson 2002) to generate the
genealogies. Our own program migdata (available on
www.bitbucket.com/pbeerli/popsimulate) used these genealogies to generate sequence
data. To explore the effects of the number of loci, we generated datasets with 2- and
10-locus datasets for all divergence times. For a subset of divergence times, we also
generated 1000-locus datasets. The second simulation set explored the interaction of
immigration and divergence. We used a scenario with two populations exchanging 1
migrant every 16 generation, 4Nm = 0.25, and 1 migrants every 4 generations, 4Nm = 1.0,
respectively (Fig. 3C). The immigration numbers guarantee the longterm maintenance of
population structure. The third simulation set explored the effect of the estimation of the
standard deviation of the divergence time. We ran simulations using our simulator
speciessim.py (available on www.bitbucket.com/beerli-lab/beerlisim) using the same
setting of the divergence times as before, but changed the standard deviation of the
divergence time to values of στ = τ/104, στ = τ/2, and στ = τ for datasets of 10 loci and
compared these with the simulations of ms which simulates divergence times only with
στ = 0.

We picked an exponential prior for the mean of the divergence time distribution
with an upper bound that was 3x larger then the oldest divergence time simulated; the
same prior was used for all different divergence times; in pre-runs, we established that the
prior choice does not change the general results. Our choice of prior and its width was
made so that we could run all simulations with as little changes of options as possible. For
run with real data we suggest that the range of the priors are evaluated with test runs, the
divergence time τ in Migrate is scaled by mutations; it is on the same scale as the
mutation scaled population size Θ. The choice of the prior for the standard deviation is
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more consequential when immigration is co-estimated, large prior ranges interact with
immigration-rate estimation; consequently, we picked a small prior range for the standard
deviation for the second set of simulations and also for the comparison with other
programs. Simulations were run on a computer cluster with a various number of computer
cores; the 10-locus simulations were run on 21 computer cores. After experimentation with
run-length, we established that runs that took about 10-15 minutes are sufficient for our
simulation data sets. The 1000-locus datasets were run on 40 cores and took about 50
minutes.

1 2

1

1 2

3

1 2

1

1 2

3

A

τ

B DC

Figure 3: Simulation and Analysis Scenarios: (A) Population 2 splits off from population
1; (B) The ancestral population 3 splits into two contemporary populations; (C) and (D)
include immigration. Models (A) and (C) were used to simulate data.

Comparison with other program estimating divergence times among
populations

We compared our approach with IMa2p (Sethuraman and Hey 2016), Lamarc (Kuhner
2006), and BPP (Yang and Rannala 2010) using simulated data from population models
shown in Figures 3A and 3C with immigration rates of
4Nm = 0.0, 4Nm = 0.25, 4Nm = 1.0 and divergence times of
[0.0625, 0.125, 0.5, 1.0, 2.0, 4.06.0, 8.0]×Ne generations. The run conditions for all programs
are available in the electronic supplement and the data-converter from the Migrate
format to the other programs is available from https://github.com/pbeerli/dataconverters.

Model selection

We analyzed the simulated data used for the comparison with other programs using
multiple models. Figure 3 shows the population models that were used to generate the
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simulated data and also models that were used to analyze the simulated data. Datasets
were generated with and without immigration (Fig. 3a and 3c), we analyzed each of these
datasets with all four models (Fig. 3a-d). We generated 24 datasets with no immigration
and 24 datasets with 4Nm = 0.25 for divergence times of
[0.0625, 0.125, 0.5, 1, 2, 4, 6, 8]×Ne generations, this lead to 3 replicates for each divergence
for each scenario. To compare and rank the models we used a Bayesian framework; we
approximated the marginal likelihoods using our implementation of thermodynamic
integration (Beerli and Palczewski 2010; Palczewski and Beerli 2014).

Example using samples of complete genomes of the Zika virus

The Zika virus (ZIKV) is a pathogen distributed by mosquitoes. It was originally described
in Africa. Subsequently, ZIKV was then brought to all continents via infected hosts.
Gatherer and Kohl (2016) discuss the distribution routes of ZIKV based on the dates of
incidences. The expansion followed this pattern: Origin in Africa, outbreaks in Asia, and
then outbreaks in the Americas.

Complete ZIKV genomes from locations in Nigeria (n = 5), China (n = 12), Brazil
(n = 13), Mexico (n = 2), Guatemala (n = 2), Panama (n = 4) and Puerto Rico (n = 2)
were obtained from the NIAID Virus Pathogen Database and Analysis Resource (ViPR)
(Pickett et al. 2012) through the web site at http://www.viprbrc.org/. The sequences
were aligned with MUSCLE (Edgar 2004, aligned dataset in electronic supplement). We
pooled the locations Mexico, Guatemala, Panama, and Puerto Rico for the analysis.

We then explored four different main population models (Fig. 4). The model group
a specified the expansion from Africa to Asia to Brazil to Central America. The model
group b specifies the expansion from Africa to Asia and, independently, from Africa to
Brazil to Central America. The model group c is a hybrid of models a and b where one
population is the admixture of two populations. We considered the Brazilian lineages a
potentially admixed population from African and Asian lineages. Occurrences of ZIKV in
Central Americas and Brazil were reported contemporaneously, suggesting that there may
be not enough mutations to separate Brazilian and Central American lineages; we combined
the samples from Brazil and Central America (model group d); otherwise, d is equivalent to
c. The variants a′, b′, c′, and d′ include recurrent immigration from the source populations.

Results

Simulation

Splitting time estimation.— The inference code was evaluated using simulations over a
wide range of divergence times and two different migration rates after the population split.
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Figure 4: Eight population models used to analyze the ZIKV dataset. Tip labels are
1=Africa, 2=Asia, 3=Brazil, 4=Central America, and 3/4 = Brazil and Central America
combined.The arrows mark migration directions.

Figure 5 compares the estimated population split time τ̂ with the population split time τ
used to simulate the data without migration. The estimates track the simulated split times
well, although the estimates of large divergence times are underestimated. As expected, the
estimates from two-locus data sets show more spread than those from ten-locus or
1000-locus datasets. A comparison of the 95% credibility intervals of runs with 2, 10, and
1000 loci shows this trend: standardizing the credibility interval with the observed mode
(p97.5%−p2.5%

pmode
) leads to averages of 6.88 for two loci (N = 271, στ = 14.01), 2.45 for ten loci

(N = 280, στ = 5.58), and 0.37 for 1000 loci (N = 28, στ = 0.72).

Splitting time estimation under the isolation with migration model.— The simulation
results with migration deliver a more complicated message. Simulations with low recurrent
immigration rates (4Nm = 0.25) during the time interval from today to the population
split track the true population split often quite well but has a considerable fraction of runs
that underestimate the divergence time (Fig. 6). With a higher immigration rate
(4Nm = 1.0) τ̂ underestimates the true divergence time of datasets that were created using
a high divergence time and overestimates the divergence time for very recent divergences.

Effect of simulated uncertainty of splitting time.— Our approach allows the estimation of
the splitting time and the standard deviation of the splitting time. All current simulation
methods, except our own speciessim.py, assume a defined time when the ancestral
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Figure 5: Comparison of estimated divergence time τ̂ with the true divergence time τT that
was used to simulate 2-locus, 10-locus, and 1000-locus data. The data were simulated and
analyzed using the model shown in Fig. 3A. Units of τ̂ and τT are in Ne× generations.
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Figure 6: Comparison of estimated divergence time τ̂ and the true τT . The data were
simulated using the model shown in Figure 3C, and analyzed using models Figure 3C and 3D.
The number of immigrants per generation were 4Nm = 0.25 and 4Nm = 1.0, respectively.
Units of τ̂ and τT are in Ne× generations.
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population splits into offspring populations. Our simulation and estimation model allow
uncertainty about this time, a small standard deviation στ = 1/10000 will result in
simulated data sets that mimic the standard simulation method in ms. Large standard
deviation leads to datasets with skewed distributions of divergence times because the
divergence time cannot be negative (looking backward in time), and such times had to be
redrawn to generate the simulated genealogies. About 15.8% of all random draws from a
Normal distribution will be smaller than τ − στ . This resulted in datasets that come from
older divergence times on average and will result in higher divergence time estimates than
the divergence time τ used to generate the datasets.

Exploration of the splitting time bias in the IM model.— If the immigration rate is high,
population divergences that happened far in the past are problematic to estimate because
in comparisons (Fig. 6) we detect a bias towards more recent split time estimates than
those simulated. To investigate this bias, we have simulated genealogies with sample sizes
of 40 and 100 with the same parameters used to create the data reported in Figure 6 and
recorded the number of lineages present at the time of population split (70 time points
between split times of τ from 1/512×Ne to 8.0×Ne generations. Figure 8 reports the
percentage of datasets that have two or more lineages available at these 70 time-points
(N=1000 for each time point). The graphs for 4Nm = 0.25 (low) and 4Nm = 1.0 (high)
differ starkly in the percentages with high divergence times. With high immigration rates
(4Nm = 1.0) the chance of having the sample coalesced to a single lineage increases
considerably, for example, fewer than 20% of the datasets have information about a
divergence time of 4Ne generations. Once a sample coalesces into a single lineage all
information about the historical processes is lost, and any inferred result will only come
from the prior and is independent of the data. Increasing the number of individuals from
40 to 100 for each dataset does not improve the number of available lineages at the
divergence time. With low immigration rates, the time of the most recent common
ancestor is beyond the divergence time. Thus, the remaining lineages may have information
about the splitting time.

Comparison with other programs.— Three sets of simulated data for immigration

rates of 4Nm = [0.0, 0.25, 1.0] were used to compare the results of four different programs:
Migrate, IMa2p, Lamarc, and BPP. Figure 9 shows the results for these comparisons.
We tried to spend similar efforts for all programs: IMa2p was run on 4 cores for 4 hours,
Lamarc was run for approximately 3 hours, BPP was run for about 1.5 hours, Migrate
was run for 10-15 minutes on 20 compute cores; Lamarc reported the most variable
results, looking at their outputs the runs may have struggled to converge. Divergence times
can be well estimated by all programs when recurrent gene flow is zero and the true
divergence time is smaller than 2Ne generations. All programs show a bias when the true
divergence times become large compared to the population size of the sampled populations,
Migrate shows a smaller bias than the others. Results become more unpredictable when
gene flow is larger than zero. BPP underestimates the divergence time with any
immigration, but it is the only program that does not estimate immigration rates and
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Figure 7: Comparison of estimated divergence time τ̂ and the true τ . The 10-locus data were
simulated without immigration but with four different standard deviations for the splitting
time (στ = τ, στ = τ/2, στ = τ/104, and στ = 0).
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Figure 8: Percentages of simulated datasets with two or more lineages in the sample at
divergence time τ . For each divergence time τ 1000 datasets were simulated.
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therefore all immigration events will contribute to the estimation of divergence time.
Migrate and Lamarc overestimate the divergence time when the true divergence time is
low, but Migrate estimates larger divergence times with immigration well. IMa2p
estimates low divergence times with low immigration rates well, but divergence time
estimates are underestimated with large true divergence times. With immigration rates of
4Nm = 1.0 all programs fail to estimate accurate divergence times. Migrate and IMa2p
deliver very similar results. Both are overestimating divergence times when the true
divergence is small and underestimating when the true divergence times are large.

Model selection.— We compared four models: a two-population and a three-population
isolation-with-migration (IM, Fig. 3C, D) and a two-population and a three-population
isolation-only model (IO, Fig. 3A, B) for these divergence times:
[0.0625, 0.125, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0]×Ne. Datasets simulated with the two-population
IO model preferred the two-population IO model for divergence times larger or equal to
0.125×Ne generations (19 out of 24 tests); two of the three replicates with divergence time
of 0.125×Ne generations and the replicates with divergence of 0.0625×Ne generations
preferred the IM model (5 out of 24 tests). When the data was simulated with the
two-population IM model with 4Nm = 0.25 (Fig. 3C) and tested against the four models,
24 out of 24 comparisons preferred the 3-population IM model. All model comparisons are
reported in the electronic supplement.

Zika virus dispersal

Table 1 shows the model probabilities and the log marginal likelihoods for different models
(see Fig. 4) for the Zika virus (ZIKV). The model in which the expansion followed a route
to the east from Africa is the most likely model. The best model is a simple colonization
model without migration. Figure 10 shows the population tree of the best model with
mutation-scaled population sizes and divergence times. Yokoyama and Starmer (2017) used
an estimate of the mutation rate for various lineages of the Asian ZIKV lineages,
suggesting that the mutation rate per year has accelerated and is τ = 0.004/year, but can
be as low as 0.0005/year. Faria et al. (2016) estimate a phylogenetically derived mutation
rate of τ = 0.00098 to 0.00106 per year. Migrate estimated the mutation-scaled
divergence time τ̂1→2 = 0.05 and τ̂2→3/4 = 0.0025 assuming that the mutation rate is per
generation. We did not find any clear characterization of generation time for ZIKV in the
literature. We equate generation time here as successful transmissions among hosts per
year and not the number of replications of an individual ZIKV within a host. Early records
from Africa date to 1947 and early records from Asia date to 1951. Thus, gene flow of
ZIKV from Africa to Asia was most likely around 1950. The ZIKV outbreak in Brazil
started in 2015 (Faria et al. 2016). Ignoring the precise sampling dates and assuming the
divergences were 67 and 3 years ago then we calculate about 5 generations per year
(67/(0.05/0.004) = 5.2 and 3/(0.0025/0.004 = 4.8) using the high mutation rate. The lower
mutation rate (∼ 0.001) would lead to 1.34 and 1.2 generations per year, respectively.
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Figure 9: Comparison of estimated divergence time τ̂ and the true τT for (A) Migrate,
(B) IMa2p, (C) Lamarc, (D) BPP. The data were simulated using the model shown in
Figure 3C, and analyzed using models Figure 3C and 3D. The number of immigrants per
generation were 4Nm = 0.0, 4Nm = 0.25, and 4Nm = 1.0, respectively.
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Table 1: Log marginal likelihoods and model probabilities of biogeographic models: (a)
eastward, (b) westward, (c) admixture, and (d) three-population models (Fig. 4) and Zika
viruses. The → mark colonizations, the ⇒ mark colonizations with recurrent immigration.
Numbers are population labels: 1=Africa, 2= Asia, 3=Brazil, 4=Central America.

Model Zika

ln(mL) LBF∗ Prob. Rank

a 1→ 2→ 3→ 4 -25762.13 -95.61 0.0 3
a′ 1⇒ 2⇒ 3⇒ 4 -26078.46 -411.94 0.0 6
b 2← 1→ 3→ 4 1 -25824.41 -157.89 0.0 5
b′ 2⇐ 1⇒ 3⇒ 4 -26121.92 -455.40 0.0 8
c 1→ 3← 2← 1, 3→ 4 -25786.83 -120.31 0.0 4
c′ 1⇒ 3⇐ 2⇐ 1, 3⇒ 4 -26099.01 -432.49 0.0 7
d 1→ 2→ 3/4 -25666.52 0.0 1.0 1
d′ 1→ 3/4← 2 -25703.50 -36.98 0.0 2
∗

LBF = ln Bayes factor against the best model d

(0.0 – 0.0025 – 0.0112)

1 2

1

3/4

(0.0237 – 0.0505 – 0.1357)

Θ=0.027 Θ=0.004 Θ=0.013

Figure 10: Mode and 50% credibility intervals of the splitting times and population sizes of
the best model for Zika virus (model d; Fig. 4 )
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Discussion

We have developed a model to incorporate population splitting and population admixture.
Our algorithm differs from other algorithms because we treat the splitting times as random
variables with truncated Normal distributions. This method allows a wide range of
analyses, such as having populations split from an ancestral population or having
population split from a population that is the same today and in the past.

The joint estimation of divergence time and population sizes without immigration
from large genetic datasets seems feasible with little error. Our simulations assumed
informative loci and no complications with the finite mutation model. However, Migrate
can handle site rate variation and more complex mutation models than the F84 model used
in the simulations. We assume that Migrate has similar vulnerabilities as IM when tested
with deviations of the model (cf. Strasburg and Rieseberg 2010).

Migrate runs each locus as an independent unit and thus can efficiently run large
datasets, such as the 1000 loci datasets used in the simulations, in reasonable time on a
cluster computer: the 1000-locus datasets for Figure 5 were run on 40 cores and finished
under an hour. The comparisons of the data with 2, 10, 1000 loci show that with
informative loci, we may not need to have many loci to extract the most likely parameter
value, although the variances of the 1000 locus runs are smaller than the others.

It seems straightforward to use an immigration with divergence model (IM; Nielsen
and Slatkin 2000), but little exploration about the power of the inference has been
conducted. Strasburg and Rieseberg (2010) highlighted that assumption misspecification
can lead the program IM (Hey 2010) to deliver biased answers. Recently, Quinzin et al.
(2015) evaluated the program IM and observed that divergence time estimates are more
accurate if migration is low and if the populations are large compared to the divergence
time. We find similar patterns with Migrate and IMa2p. Additionally, our simulations
of the immigration with migration model show a deeper problem with such inferences, even
when assumptions are met. Looking backward in time, once all samples have coalesced, no
information is left to estimate parameters. In a model with immigration and population
splitting there has to be a balance so that we can see the effects of one or the other: if the
migration rates are small, then all sample lineages, looking backward in time, will have
joined the ancestral population before having experienced a migration event. In contrast,
with high immigration rates, it becomes very likely that all lineages have coalesced into one
lineage before the expected splitting time. Figure 8 shows that many sample data never
experience a population split. It will undoubtedly be difficult to estimate an event that did
not leave a trace in the sample. Hence, the estimated divergence times will not reflect the
true splitting time and will be too close to the sampling date. However, with small
immigration rates, it is possible to recover splitting times that are further in the past (Fig.
6). The same simulations also show that it is unproblematic to estimate splitting times
that are old when there is no immigration. Our results for Migrate, IMa2p, Lamarc,
and BPP suggest that one should use caution when using models with immigration and
population splitting times. This dependency is independent of the estimation method, and
certainly will include other than the tested methods, too. We believe that this dependency
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has and will lead to incorrect reports of divergence times: divergence times are reported to
be more recent than they are.

The direction of the expansion of the pathogens as estimated by Migrate is simply
based on genetic data and coalescence-based population genetic models. The used data are
not very informative because only a few sequences from Africa are present. This does not
allow to pinpoint the expansion from Africa to Asia with good precision. It is also likely
that the expansion from Brazil to Mexico and other countries is not very informative
because only a few sequences from a large area (Mexico, Guatemala, Panama, and Puerto
Rico) were used. Gatherer and Kohl (2016) summarized the literature on the spread of the
Zika virus and shows an expansion from Africa to Asia to Pacific islands and then to South
America. They used incidences of confirmed Zika virus infections and already published
phylogenetic trees to report a map of its spread. It is comforting that our population
genetics approach recovers the same paths as the more detailed historical records of
infections; genetic data will be particularly useful for pathogens for which we may not have
detailed incidence records.

We have presented an alternative to current estimations of divergence time among
populations. Our method not only allows considering the splitting times but even allows to
date admixture of a population from two or more ancestral populations. The simulations
suggest that fairly variable data are needed. Estimation of splitting times alone is robust
over a wide range of simulated splitting times, whereas models that allow migration and
splitting times (IM model) simultaneously suffer considerable difficulties estimating
splitting times that are far in the past when population sizes are small, and immigration
rates are high. These difficulties are caused by the sparsity of lineages far in the past, a
situation that is well known (Heled and Drummond 2008). Improving these estimates will
depend on the number of loci, the number of individuals, and data with different sampling
dates.
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Supplement

Constant λ1 and λ2

In the standard structured coalescence with two forces, genetic drift and recurrent gene flow
between isolated populations we have two different types of rates, one type for coalescences
and another type for immigration events. Both types can be considered exponential rates;
there is a constant risk over time that one or the other event happens, so we can calculate

f1(t) = λ1e
−λ1t f2(t) = λ2e

−λ2t (20)

We consider first the case where the event with λ1 happens first (T1 < T2). We find
P (T1 < T2) assuming that

P (T2 > t) =

∫ ∞
t

−(−λ2)e−λ2udu = −e−λ2u

∣∣∣∣∞
t

= −e−λ2∞ + e−λ2t = e−λ2t (21)

P (T1 < T2) =

∫ ∞
0

f1(u)P (T2 > u)du =

∫ ∞
0

λ1e
−λ1ue−λ2udu (22)

= λ1

∫ ∞
0

e−λ1ue−λ2udu = λ1

∫ ∞
0

e(−λ1−λ2)udu (23)

= λ1

∫ ∞
0

e−λ1ue−λ2udu = λ1

∫ ∞
0

e(−λ1−λ2)udu (24)

= λ1

∫ ∞
0

e−(λ1+λ2)udu = λ1

∫ ∞
0

−(λ1 + λ2)

−(λ1 + λ2)
e−(λ1+λ2)udu (25)

=
λ1

−(λ1 + λ2)

∫ ∞
0

−(λ1 + λ2)e−(λ1+λ2)udu (26)

=
λ1

−(λ1 + λ2)

[
e−(λ1+λ2)u

∣∣∣∣∞
0

]
=

λ1

−(λ1 + λ2)

[
e−(λ1+λ2)∞ − e−(λ1+λ2)0

]
(27)

=
λ1

−(λ1 + λ2)
(0− 1) =

λ1

λ1 + λ2

(28)
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Non-constant and constant rates

In this section, we consider three different cases. Suppose we have three events

• The divergence event → fT1(t) = λ′1(t)e−λ1(t), Time related to it call T1

• The coalescent event → fT2(t) = λ2te
−λ2t, Time related to it call T2

• The Migration event → fT3(t) = λ3te
−λ3t, Time related to it call T3

Divergence has a rate that changes with the time, the risk of switching increases the longer
we wait and is non-constant, This leads to complication in finding a solution to the
integral.

Divergence happen first

We need to find P (T1 < T2&T1 < T3). We know

P (T1 < T2&T1 < T3) =

∫ ∞
0

P (T2 > t)P (T3 > t)fT1(t)dt. (29)

Fist we find P (T2 > t) and P (T3 > t) as

P (T2 > t) =

∫ ∞
t

λ2e
−λ2udu = −(e−λ2u)|∞t = e−λ2t. (30)

P (T3 > t) =

∫ ∞
t

λ3e
−λ3udu = −(e−λ3u)|∞t = e−λ3t. (31)

Using Eqs. (29)-(31) we have

P (T1 < T2&T1 < T3) =

∫ ∞
0

e−λ2t ∗ e−λ3t ∗ λ′1(t)e−λ1(t)dt. (32)

Coalescent happen first

We need to find P (T2 < T1&T2 < T3). We know

P (T2 < T1&T2 < T3) =

∫ ∞
0

P (T1 > t)P (T3 > t)fT2(t)dt. (33)

Fist we find P (T1 > t) and P (T3 > t) as

P (T1 > t) =

∫ ∞
t

λ′1(u)e−λ1(u)du = −(e−λ1(u))|∞t = e−λ1(t). (34)

27

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/587832doi: bioRxiv preprint 

https://doi.org/10.1101/587832


P (T3 > t) =

∫ ∞
t

λ3e
−λ3udu = −(e−λ3u)|∞t = e−λ3t. (35)

Using Eqs. (33)-(35) we have

P (T2 < T1&T2 < T3) =

∫ ∞
0

e−λ1(t) ∗ e−λ3t ∗ λ2e
−λ2tdt. (36)

Migration happen first

We need to find P (T3 < T1&T3 < T2). We know

P (T3 < T1&T3 < T2) =

∫ ∞
0

P (T1 > t)P (T2 > t)fT3(t)dt. (37)

Fist we find P (T1 > t) and P (T2 > t) as

P (T1 > t) =

∫ ∞
t

λ′1(u)e−λ1(u)du = −(e−λ1(u))|∞t = e−λ1(t). (38)

P (T2 > t) =

∫ ∞
t

λ2e
−λ2udu = −(e−λ2u)|∞t = e−λ2t. (39)

Using Eqs. (37)-(39) we have

P (T3 < T1&T3 < T2) =

∫ ∞
0

e−λ1(t) ∗ e−λ2t ∗ λ3e
−λ3tdt. (40)

Distribution of the time to the first event

If we have three events, Divergence T1, Coalescent T2 and Migration T3, the distribution of
time to the first event T = min(T1, T2, T3) is as

P (T > t) = P{min(T1, T2, T3) > t} = P{T1 > t}P{T2 > t}P{T3 > t} =

e−λ1(t) × e−λ2t × e−λ3t = e−(λ1(t)+λ2t+λ3t), (41)

so T = min(T1, T2, T3) has an exponential distribution.
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