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Abstract

We introduce an alignment-free method, the Magnus Representation, to analyze genome sequences. The Magnus Rep-
resentation captures higher-order information in genome sequences. We combine our approach with the idea of k-mers
to define an effectively computable Mean Magnus Vector. We perform phylogenetic analysis on two datasets: mosquito-
borne viruses and filoviruses. Our results on ebolaviruses are consistent with previous phylogenetic analyses, and confirm
the modern viewpoint that the 2014 West African Ebola outbreak likely originated from Central Africa. Our analysis
also confirms the close relationship between Bundibugyo ebolavirus and Täı Forest ebolavirus.

1. Introduction

In the field of combinatorial group theory, Wilhelm
Magnus studied representations of free groups by non-
commutative power series (Lyndon and Schupp, 2015).
For a free group F with basis x1, . . . , xn and a power se-
ries ring Π in indeterminates ξ1, . . . , ξn, Magnus showed
that the map µ : xi 7→ 1 + ξi defines an isomorphism from
F into the multiplicative group Π× of units in Π. Using
concepts from Magnus’ work, we define the Magnus rep-
resentation and Magnus vector of a DNA/RNA sequence,
and apply them in the analysis of genomes (Huang, 2016;
Dong et al., 2017; Kwan and Arniker, 2009).

2. Materials and methods

2.1. Summary of the procedures

We compute the mean Magnus vectors of non-overlapping
k-mers of virus genomes, and their mutual Euclidean dis-
tances. We store the distances in a distance matrix and
construct a phylogenetic tree (or dendrogram) using neighbor-
joining or UPGMA.

2.2. Magnus Representation and Magnus Vector

The Magnus representation and Magnus vector of a
DNA/RNA sequence are described as follows. Consider
a DNA sequence S = x1x2 . . . xN of length N , where the
xi lie in the set {A,C,G, T} (or {A,C,G,U} in the case
of RNA). Our subsequent notation will mainly follow that
of DNA sequences for convenience, but we emphasize that
our methods work for RNA sequences as well. We define
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the Magnus representation of S, denoted ρ(S), to be the

product
∏N
i=1(1 + xi) in the non-commutative polynomial

algebra R〈A,C,G, T 〉, where R is a commutative ring. In
practice, we may take R to be the set of real numbers R,
the set of integers Z or the ring of integers modulo 2, Z/2.

The Magnus vector of a DNA sequence S, denoted by
v(S), is obtained by two steps:

1. Arrange the set of possible words over the alphabet
{A,C,G, T} of length less than or equal to N first by
ascending order of length and then by lexicographic
order.

2. With respect to the above arrangement, assign c ∈ R
for each term present in ρ(S) with coefficient c, and
0 for each term not present in ρ(S).

The Magnus vector is a (
∑N
i=1 4i)-tuple, or equivalently,

a (4N+1−4
3 )-tuple. We illustrate this in the following ex-

ample. Consider the DNA sequence S = AC. Then,
the Magnus representation is ρ(S) = (1 + A)(1 + C) =
1 + A + C + AC. The arrangement of the set of pos-
sible words of length less than or equal to 2 is: A, C,
G, T, AA, AC, AG, AT, CA, CC, CG, CT, GA, GC,
GG, GT, TA, TC, TG, TT. Hence, the Magnus vector is
the 20-tuple v(S) = (1, 1, 0, 0, 0, 1, 0, 0, . . . , 0). Note that
due to non-commutativity of the variables, if S′ = CA,
we observe that ρ(S′) = 1 + A + C + CA 6= ρ(S) and
v(S′) = (1, 1, 0, 0, 0, 0, 0, 0, 1, 0, . . . , 0) 6= v(S).

We show an example when R = Z/2. If S = AA, then
ρ(S) = (1 +A)(1 +A) = 1 +AA. By looking at the word
with greatest length in ρ(S), we observe that it is the DNA
sequence itself. Hence, for R = R, Z, or Z/2, the Magnus
representation is faithful (namely injective). This means
that the Magnus representation is able to distinguish be-
tween any two different DNA sequences, and detect all
forms of DNA mutations.

It can be seen that the Magnus vector consists of many
coordinates even for N = 2, however it is typically sparse.
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Hence, we introduce the short Magnus vector to compress
the Magnus vector into fewer coordinates. The short Mag-
nus vector is defined to be the vector whose first coordinate
is the dimension of the Magnus vector (i.e. the number of

coordinates
∑N
i=1 4i), and the subsequent entries indicate

the position of the non-zero entries of the Magnus vector.
We denote the short Magnus vector also by v(S), since in
practice there is no danger of confusion. In the example
of S = AC, the short Magnus vector is v(S) = (20, 1, 2, 6).
For the example of S′ = CA, the short Magnus vector is
v(S′) = (20, 1, 2, 9). If R = Z/2, there is a one-to-one cor-
respondence between the set of Magnus vectors and the
set of short Magnus vectors.

We remark that there are other theoretical ways to
understand the algebra of formal power series on non-
commuting variables (see Appendix A).

2.3. Algorithm for Magnus Vector

We use a quaternary (base 4) system to encode the
DNA sequence. Namely, we let the digits 0, 1, 2, 3 repre-
sent the letters A, C, G, T respectively. We use the term
DNA subsequence to denote a sequence that can be de-
rived from the original DNA sequence by deleting some
or no letters without changing the order of the remaining
letters.

For a DNA sequence of length N , we count the num-
ber of occurrences of the subsequences “0”, “1”, “2”, “3”,
“00”, “01”, etc. The counting can be done efficiently
through dynamic programming. For each subsequence S
(considered as a base 4 number), we convert it to a dec-
imal (base 10) numeral dS . Let αS be the number of
occurrences of the subsequence S (in the original DNA
sequence), and lS be the length (number of digits) of S.

Define pS = 4lS−4
3 + dS + 1. Then, the pS-th component

of the Magnus vector is precisely αS .
For instance, consider the DNA sequence CCGAG and

the subsequence S = CCG = 112. Then, αS = 2, lS = 3
and dS = 22. Hence, pS = 43 and the 43rd component of
the Magnus vector is 2.

We implement the algorithm in Python.

2.4. k-mer and size selection

A k-mer is a segment of k consecutive nucleotides of a
genome sequence (Huang, 2016; Koren et al., 2017; Rizk
et al., 2013). Due to the length of the Magnus vector, it is
not practical to compute it for the entire genome sequence
of length N . Instead, we compute the Magnus vector for
each k-mer, which are enumerated by non-overlapping slid-
ing windows of size k, shifting k nucleotides each time
until the entire sequence (possibly excluding up to k − 1
nucleotides at the tail end if N is not divisible by k) is
scanned.

We choose non-overlapping sliding windows due to the
observation that the Magnus vectors of overlapping win-
dows may contain similar information (counting the same
subsequences). Hence, non-overlapping sliding windows

will reduce the total number of windows without much
loss of information. The value of k is chosen to be 5 as
it corresponds to the smallest classification errors of the
Baltimore and genus classification labels (Huang, 2016).
This leads to the Magnus vector having length 1364.

2.5. Mean Magnus Vector and Euclidean distance

We calculate the mean Magnus vector of a genome
sequence by dividing the sum of Magnus vectors of all
k-mers, by the total number of windows. We use the
Euclidean distance to calculate the distance between the
mean Magnus vector of two different genome sequences.

2.6. Benefits of our approach

The Magnus Representation (and Magnus vector) con-
tains higher-order information about the genome sequence,
in the form of its subsequences. This is in contrast to
lower-order information such as simply counting the num-
ber of letters ‘A’, ‘C’, etc., in the genome sequence. The
non-commutativity of the variables enhances the discrim-
inatory power of the Magnus Representation by distin-
guishing between permutations of subsequences.

By combining the Magnus Representation with the idea
of k-mers, we improve the computability issue of our ap-
proach. (It is infeasible to compute the Magnus Represen-
tation of an entire long genome sequence.) By breaking up
the genome sequence into k-mers, the mean Magnus vector
of a large genome sequence can be effectively computed.

2.7. Data

2.7.1. Mosquito-borne viruses

We use virus genome data from GenBank (Benson et al.,
2008, 2012), with a focus on mosquito-borne viruses such
as dengue (Tuiskunen Bäck and Lundkvist, 2013). We
also include two plant viruses (tobacco mosaic virus and
cauliflower mosaic virus) for contrast. We compute their
mean Magnus vector and the corresponding distance ma-
trix. We then draw a phylogenetic tree (neighbor-joining)
using MEGA7 (Kumar et al., 2016).

2.7.2. Ebolaviruses

Following the seminal paper by Hui Zheng, Stephen S.-
T. Yau and coauthors (Zheng et al., 2015), we study 69
filoviruses, and draw the phylogenetic tree. Virus genome
data are also taken from GenBank. The 69 filoviruses cor-
respond exactly to the ones in Figure 2 and Supplementary
Table S2 of Zheng et al. (2015).

3. Results

3.0.1. Mosquito-borne viruses

The distance matrix (presented as a lower-triangular
matrix) is given in Table 1, with entries correct to 3 deci-
mal places.

The phylogenetic tree (strictly speaking, a dendrogram)
drawn using MEGA7 by neighbor-joining is presented in
Figure 1.
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Table 1: Distance matrix (lower-triangular)

1 2 3 4 5 6 7 8 9 10
1
2 0.189
3 0.360 0.478
4 0.437 0.559 0.146
5 0.593 0.720 0.427 0.393
6 0.569 0.700 0.419 0.380 0.249
7 0.585 0.656 0.401 0.437 0.657 0.723
8 0.584 0.718 0.386 0.346 0.188 0.283 0.596
9 0.781 0.860 0.727 0.713 0.932 0.791 0.964 0.883
10 0.887 0.792 1.046 1.111 1.398 1.336 1.087 1.374 1.029

Legend:

1. Dengue virus type 1 strain 16007 (10735 bp)

2. Dengue virus type 2 strain 16681 (10723 bp)

3. Dengue virus type 3 vector p3(delta30) (15145 bp)

4. Dengue virus type 4 vector p4 (15270 bp)

5. Zika virus VEN/UF-1/2016 (10808 bp)

6. Yellow fever virus strain Trinidad 79A isolate 788379 (10760 bp)

7. Chikungunya virus strain 06113879 (11929 bp)

8. West Nile virus from USA (11030 bp)

9. Tobacco mosaic virus genome (variant 1) (6395 bp)

10. Cauliflower mosaic virus isolate NY8153 (8030 bp)

 Zika virus

 West Nile virus

 Yellow fever virus

 Dengue virus type 4

 Dengue virus type 3

 Chikungunya virus

 Dengue virus type 1

 Dengue virus type 2

 Tobacco mosaic virus

 Cauliflower mosaic virus

0.10

Figure 1: Phylogenetic tree (neighbor-joining) drawn using MEGA7.
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3.0.2. Ebolaviruses

The phylogenetic tree was drawn using the UPGMA
(unweighted pair group method with arithmetic mean)
method, using MEGA7. The optimal tree with the sum of
branch length = 2.09343667 is shown in Figure 2. The tree
is drawn to scale, with branch lengths in the same units as
those of the evolutionary distances used to infer the phylo-
genetic tree. The evolutionary distances were obtained by
calculating the Euclidean distance between the respective
mean Magnus vectors.

We chose the UPGMA method to correspond to Figure
2 in Zheng et al. (2015).

In the process, we also discover that some viruses are
labelled as distinct in GenBank, but are actually the same
virus with identical DNA. They are the following pairs
of viruses (denoted by their GenBank Accession Num-
ber): (FJ217161, NC 014373), (AF522874, NC 004161),
(AY729654, NC 006432).

4. Discussion

4.0.1. Mosquito-borne viruses

Our results obtained by the Magnus vector approach
make biological sense. Intuitively, the mosquito-borne viruses
should be more or less similar within the group, but should
have big differences compared to plant viruses such as to-
bacco mosaic virus and cauliflower mosaic virus. Our re-
sults clearly reflect this, as shown in the phylogenetic tree
in Figure 1.

Our results also show some interesting phenomena among
the mosquito-borne viruses. Among the 4 types of dengue
viruses, Type 1 and Type 2 appear to be closely related.
On the other hand, Type 3 and Type 4 also appear to be
closely related, but having some differences from Types 1
and 2. In short, the 4 dengue viruses seem to form two
clusters.

Zika virus and West Nile virus show signs of having
close similarities as well. A plausible biological explana-
tion for this may be the fact that both Zika virus and West
Nile virus are believed to originate from the geographical
region in or near Uganda (Central East Africa). Zika virus
was first discovered in the Zika Forest of Uganda in 1947
(Schwartz, 2016). West Nile virus was also originally dis-
covered in Uganda in the year 1937 (Johnston and Conly,
2000), in the West Nile area, which gives rise to its name.

4.0.2. Ebolaviruses

Our results are consistent (though not identical) with
Zheng et al. (2015), which employs the reliable and highly
successful alignment-free natural vector method (Yu et al.,
2013).

In particular, our results also have the following prop-
erties shared by Zheng et al. (2015): The five species of the
Ebolaviruses are separated well (EBOV, SUDV, RESTV,
BDBV, TAFV). The viruses from the same country are
(generally, with a few exceptions) classified together within

each species. The MARV and EBOV genomes are closer
than the LLOV and EBOV genomes. In the branch of
EBOV, majority (seven out of eight) of the viruses from
Guinea and Sierra Leone of the 2014 outbreak are sepa-
rated from others. Bundibugyo ebolavirus and Täı Forest
ebolavirus are in the same group.

It was considered unusual by Zheng et al. (2015) that
Bundibugyo ebolavirus and Täı Forest ebolavirus are in the
same group according to their classification using natural
vectors. This is because Bundibugyo ebolavirus is a deadly
species while the Täı Forest ebolavirus is not so deadly.
Our results confirm that, though unusual, it seems that
the two viruses are indeed closely related. Hence, it ap-
pears that the virulence of ebolaviruses may not directly
correlate with their genetic proximity.

Our results show that the Reston virus (RESTV) is
most closely related to the Sudan virus (SUDV). This re-
sult is consistent with previous known phylogenetic anal-
yses (Cantoni et al., 2016).

Our results also show a close similarity between ebolaviruses
from the 2014 West Africa Ebola outbreak and ebolaviruses
from Central Africa. In particular, the virus KM233096
from Sierra Leone is classified in the same group as HQ613403
from the Democratic Republic of the Congo. This is con-
sistent with the general consensus among experts that the
2014 West African virus likely spread from Central Africa
within the past decade (Gire et al., 2014; Alexander et al.,
2015).

According to Alexander et al. (2015), the outbreak in
Sierra Leone is believed to have started from the introduc-
tion of two genetically different viruses from Guinea. Our
results are consistent with this, since the virus KM233096
is in a distinct group from the other 4 viruses from Mano
River in Sierra Leone.

5. Further Improvements

We outline some further improvements that can be
made to our approach. Some of the improvements may
lead to increased computational costs.

5.1. Overlapping windows

Instead of non-overlapping sliding windows, overlap-
ping windows can be used to increase robustness against
frameshift errors in genome sequencing.

5.2. Increasing window size

Increasing the window size (increasing k for the k-
mers) also has the benefit of increasing robustness against
frameshift errors. This is because with a larger window,
subsequences will be more likely to stay in the window de-
spite frameshifts, hence minimizing the effect on the mean
Magnus vector.

An increase in the window size also allows the Magnus
Vector to capture more higher-order information in the
form of longer subsequences.
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 EBOV/Mayinga/Yambuku,DRC/1976(AF086833)
 EBOV/Mayinga/Yambuku,DRC/1976(NC_002549)
 EBOV/Mayinga/Yambuku,DRC/1976(AY142960)
 EBOV/deRoover/DRC/1976
 EBOV/Bonduni/Tandala,DRC/1977
 EBOV/Mayinga/Yambuku,DRC/1976(AF272001)
 EBOV/13625Kikwit/Kikwit,DRC/1995
 EBOV/13709Kikwit/Kikwit,DRC/1995
 EBOV/2Nza/Gabon/1996
 EBOV/1Ikot/Gabon/1996
 EBOV/Gabon/Mekouka,Gabon/1994
 EBOV/1Eko/Gabon/1996
 EBOV/1Mbie/Gabon/1996
 EBOV/1Oba/Gabon/1996
 EBOV/Ilembe/Elombe,Gabon/2002
 EBOV/Luebo43/Luebo,DRC/2007
 EBOV/Luebo9/Luebo,DRC/2007
 EBOV/Luebo5/Luebo,DRC/2007
 EBOV/Luebo0/Luebo,DRC/2007
 EBOV/Luebo23/Luebo,DRC/2007
 EBOV/Luebo1/Luebo,DRC/2007
 EBOV/Luebo4/Luebo,DRC/2007
 EBOV/ManoRiver-G3713.2/SierraLeone/2014
 EBOV/ManoRiver-G3856.1/SierraLeone/2014
 EBOV/ManoRiver-G3846/SierraLeone/2014
 EBOV/ManoRiver-G3686.1/SierraLeone/2014
 EBOV/Gueckedou-C05/Gueckedou,Guinea/2014
 EBOV/Kissidougou-C15/Kissidougou,Guinea/2014
 EBOV/Gueckedou-C07/Gueckedou,Guinea/2014
 EBOV/Mayinga/Yambuku,DRC/1976(AF499101)
 EBOV/Zaire/Kikwit,DRC/1995
 EBOV/034-KS/DRC/2008
 EBOV/Kikwit/Kikwit,DRC/1995
 EBOV/M-M/DRC/2007
 EBOV/ManoRiver-G3822/SierraLeone/2014
 RESTV/Pennsylvania/Philippines/1990
 RESTV/Pennsylvania/Philippines/1989(NC_004161)
 RESTV/MkCQ8167/Philippines/1996
 RESTV/Pennsylvania/Philippines/1989(AY769362)
 RESTV/Reston08-C/Philippines/2008
 RESTV/Reston08-A/Philippines/2008
 RESTV/Reston09-A/Philippines/2009
 RESTV/Reston08-E/Philippines/2008
 RESTV/Reston/Philippines/1996
 SUDV/Maleo/Maleo,Sudan/1979
 SUDV/Boniface/Sudan/1976
 SUDV/Yambio/Yambio,South Sudan/2004
 SUDV/EboSud-639/Luwero,Uganda/2012
 SUDV/Gulu/Gulu,Uganda/2000(AY729654)
 SUDV/Gulu/Gulu,Uganda/2000(NC_006432)
 SUDV/Nakisamata/Nakisimata,Uganda/2011-05
 SUDV/EboSud-682/Kibaale,Uganda/2012
 SUDV/EboSud-609/Kibaale,Uganda/2012
 SUDV/EboSud-602/Kibaale,Uganda/2012
 SUDV/EboSud-603/Kibaale,Uganda/2012
 TAFV/Cote_dIvoire/Tai Forest,Ivory Coast/1994
 BDBV/Bundibugyo/Bundibugyo,Uganda/2007-11
 BDBV/Bundibugyo/Uganda/2007
 BDBV/EboBund-112/Isiro,DRC/2012
 BDBV/EboBund-120/Isiro,DRC/2012
 BDBV/EboBund-122/Isiro,DRC/2012
 BDBV/EboBund-14/Isiro,DRC/2012
 MARV/LakeVictoria-Ravn/1987
 MARV/LakeVictoria-Leiden/2008
 MARV/R.aegyptiacus-tc/UGA/2008
 MARV/LakeVictoria-Mausoke/1980
 MARV/isolateMbg-423/2012
 MARV/H.sapiens-tc/COD/1999
 LLOV/M.schreibersii-wt/ESP/2003

0.0000.0500.1000.1500.2000.2500.300

Figure 2: Phylogenetic tree of 69 filoviruses drawn using MEGA7 (UPGMA).
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5.3. Weighted Magnus Vector

The Hadamard product (entrywise product) of a Mag-
nus Vector (m1, . . . ,mn) with a weight vector (w1, . . . , wn)
produces a weighted Magnus Vector (m1w1, . . . ,mnwn).
This can be used to emphasize certain subsequences by
increasing their weight.
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APPENDIX A

CHENGYUAN WU, SHIQUAN REN, JIE WU, AND KELIN XIA

1. Algebra of formal power series on non-commuting variables

Let F be a free group on letters x1, x2, · · · . Let R be a commutative ring. Con-
sider the group ring R(F ), which is an algebra over R. Consider the augmentation
ideal filtration of R(F ), where IF = ker(ε : R(F ) → R) with ε(g) = 1 for g ∈ F .
The augmentation ideal filtration is given by InF = (IF ) · (IF ) . . . (IF ), the n-
fold product of IF . Let A(F ) = lim←−R(F )/InF , the inverse limit. Then, one can

prove that A(F ) is the algebra of formal power series on non-commuting variables
x1, x2, . . . using the property that F is a free group. The mapping F → A(F )
is exactly the Magnus representation. We will describe it in greater detail in the
following paragraphs.

Definition 1.1 (cf. [1, p. 132]). The homomorphism ε : R(F )→ R given by

ε(
∑

g∈F
agg) =

∑

g∈F
ag

is called the augmentation mapping of R(F ) and its kernel, denoted by IF , is called
the augmentation ideal of R(F ).

Proposition 1.2 (cf. [1, p. 133]). The set {g − 1 | g ∈ F, g 6= 1} is a basis of IF
over R.

Thus, we can write

IF =




∑

g∈F
ag(g − 1) | g ∈ F, g 6= 1, ag ∈ R



 ,

where the sums are finite sums.

Proof. If α =
∑
g∈F agg belongs to IF , then ε(α) =

∑
g∈F ag = 0. Hence, α can

be expressed in the form:

α =
∑

g∈F
agg −

∑

g∈F
ag =

∑

g∈F
ag(g − 1).

We note that ε(g − 1) = 0 so that g − 1 ∈ IF . Hence, this implies that {g − 1 |
g ∈ F, g 6= 1} is a generating set for IF over R. If a1(g1− 1) + · · ·+ an(gn− 1) = 0
for distinct gi 6= 1, then a1g1 + · · ·+angn− (a1 + · · ·+an)1 = 0. Since gi 6= 1, hence
we have a1 = · · · = an = 0. This shows linear independence of the generating set.
Thus, we have shown that {g − 1 | g ∈ F, g 6= 1} is a basis for IF . �

Corollary 1.3. The augmentation ideal IF is generated by

T := {x1 − 1, x2 − 1, . . . } ∪ {x−11 − 1, x−12 − 1, . . . }
as an R-algebra.

That is, every element α ∈ IF can be expressed as a polynomial with indeter-
minates in T and coefficients in R.

1
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Proof. By Proposition 1.2, any element in IF is of the form α =
∑
g∈F ag(g − 1).

Since F is a free group, any element g ∈ F is a word in T . By applying repeatedly
the identity

ab− 1 = (a− 1)(b− 1) + (a− 1) + (b− 1)

for a, b ∈ F , we see that g − 1 is a polynomial with indeterminates in T and
coefficients in R. Hence, it follows that the same is true for α.

Since ε(xi− 1) = ε(x−1i − 1) = 0, it is clear that conversely, any polynomial with
indeterminates in T and coefficients in R is in IF . �

Corollary 1.4. The augmentation ideal IF is generated by

S = {x1 − 1, x2 − 1, . . . }
as an ideal of R(F ), or equivalently, as an R(F )-submodule.

Proof. By Proposition 1.2, any element α ∈ F is of the form α =
∑
g∈F ag(g − 1),

where g ∈ F is a word in S.
By the identities

ab− 1 = a(b− 1) + (a− 1)

and

x−1i − 1 = −x−1i (xi − 1),

it follows that g − 1 is a finite linear combination of {x1 − 1, x2 − 1, . . . } with
coefficients in R(F ). Hence, the same is true for α.

Conversely, since ε(xi − 1) = 0 and ε is an R-algebra homomorphism, it is clear
that any linear combination of {x1 − 1, x2 − 1, . . . } with coefficients in R(F ) is in
IF . �

Definition 1.5 (cf. [2, p. 651]). An inverse system in the category of R-algebras

R-Alg consists of an ordered pair {Mi, ψ
j
i }, where (Mi)i∈I is a family of R-algebras

indexed by a partially ordered set (I,�) and (ψji : Mj → Mi)i�j is a family of
R-algebra homomorphisms, such that the following diagram commutes whenever
i � j � k:

Mk Mi

Mj

ψk
i

ψk
j

ψj
i

Proposition 1.6 (cf. [2, p. 652]). For m ≥ n, define ψmn : R(F )/ImF → R(F )/InF
by

ψmn : α+ ImF 7→ α+ InF.

Then, {R(F )/InF,ψmn } is an inverse system over N.

Proof. IF is the kernel of ε and thus a subalgebra of R(F ). Each InF is also a
subalgebra and there is a decreasing filtration

R(F ) ⊇ IF ⊇ I2F ⊇ I3F ⊇ · · · .
Since ImF ⊆ InF for m ≥ n, the maps ψmn are well-defined. For α + IkF ∈

R(F )/IkF , we have

ψki (α+ IkF ) = α+ IiF = ψjiψ
k
j (α+ IkF ).

Hence, {R(F )/InF,ψmn } is an inverse system over N. �

The categorical definition for inverse limit is stated in [2, p. 653]. The inverse
limit is unique up to isomorphism, if it exists.
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APPENDIX A 3

Proposition 1.7 (cf. [2, p. 669]). The inverse limit of an inverse system {Mi, ψ
j
i }

of R-algebras over a partially ordered index set I exists.
In particular,

lim←−Mi
∼= {(mi) ∈

∏
Mi | mi = ψji (mj) whenever i � j}.

Proof. The proof is similar to that of [2, p. 669]. �

Theorem 1.8. Let

A(F ) = lim←−
n∈N

R(F )/InF,

where F is a free group with free generating set {x1, x2, . . . }.
Then,

A(F ) ∼= R[[x1, x2, . . . ]],

the algebra of formal power series on non-commuting variables x1, x2, · · · .
Proof. First, we observe that a change of variables yi − 1 = xi induces an isomor-
phism

R[[x1, x2, . . . ]] ∼= R[[x1 − 1, x2 − 1, . . . ]].

We can further view R[[x1 − 1, x2 − 1, . . . ]] as the inverse limit

lim←−
n∈N

R[x1, x2, . . . ]/(x1 − 1, x2 − 1, . . . )n,

where (x1 − 1, x2 − 1, . . . ) denotes the ideal of R[x1, x2, . . . ] generated by {x1 −
1, x2 − 1, . . . }.

Alternatively, we can view R[[x1 − 1, x2 − 1, . . . ]] as the inverse limit

lim←−
n∈N

R[[x1, x2, . . . ]]/J
n,

where J denotes the ideal of R[[x1, x2, . . . ]] generated by {x1 − 1, x2 − 1, . . . }.
Consider the homomorphism φ : R(F ) → R[[x1 − 1, x2 − 1, . . . ]] defined on the

generators of F by xi 7→ xi and extending to R(F ). The map is well-defined because

x−1i =
1

1− (1− xi)
=
∞∑

k=0

(−1)k(xi − 1)k

lies in R[[x1 − 1, x2 − 1, . . . ]].
Let α ∈ IF . By Corollary 1.3, α can be expressed as a polynomial with indeter-

minates in

T = {x1 − 1, x2 − 1, . . . } ∪ {x−11 − 1, x−12 − 1, . . . }
and coefficients in R. By the identity

x−1i − 1 = −x−1i (xi − 1),

we see that φ(α) ∈ J . Hence, we have φ(IF ) ⊆ J . Similarly, we have φ(InF ) ⊆ Jn,
for all n ∈ N.

Hence, the homomorphism θ : R(F )/InF → R[[x1, x2, . . . ]]/J
n defined by θ(α+

InF ) = α + Jn is well-defined. The homomorphism then extends to θ̃ : A(F ) →
R[[x1 − 1, x2 − 1, . . . ]].

By Corollary 1.4, we see that (x1 − 1, x2 − 1, . . . )n ⊆ InF . Hence, the map
ψ : R[x1, x2, . . . ]/(x1 − 1, x2 − 1, . . . )n → R(F )/InF defined by

ψ(α+ (x1 − 1, x2 − 1, . . . )n) = α+ InF

is well-defined. Subsequently, ψ extends to ψ̃ : R[[x1−1, x2−1, . . . ]]→ A(F ) which

is the inverse of θ̃. Hence, θ̃ is an isomorphism, and this completes the proof. �

We then have the following corollary.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 25, 2019. ; https://doi.org/10.1101/588582doi: bioRxiv preprint 

https://doi.org/10.1101/588582
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 CHENGYUAN WU, SHIQUAN REN, JIE WU, AND KELIN XIA

Corollary 1.9. The mapping F → A(F ) defined on the generators by xi 7→ 1 +xi
and extended to F is exactly the Magnus representation. �
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