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Abstract 

 

Background 

Synthetic cannabinoids are a commonly used class of recreational drugs that can have significant 

adverse effects. There have been sporadic reports of co-consumption of illicit drugs with 

rodenticides such as warfarin and brodifacoum (BFC) over the past 20 years but recently, 

hundreds of people have been reported to have been poisoned with a mixture of synthetic 

cannabinoids and BFC. We have sought to establish whether BFC directly affects cannabinoid 

receptors, or their activation by the synthetic cannabinoid CP55940 or the phytocannabinoid D9-

tetrahydrocannabinol (D9-THC). 

 

Methods 

The effects of BFC on the hyperpolarization of wild type AtT20 cells, or AtT20 cells stably 

expressing human CB1- and CB2-mediated receptors, were studied using a fluorescent assay of 

membrane potential. The effects of BFC on CB1 and CB2 mediated inhibition of forskolin-

stimulated adenylyl cyclase (AC) activation was measured using a BRET assay of cAMP levels 

in HEK 293 cells stably expressing human CB1 and CB2.  

 

Results 

BFC did not activate CB1 or CB2 receptors, or affect the hyperpolarization of wild type AtT20 

cells produced by somatostatin. BFC (10 µM) did not affect the hyperpolarization of AtT20-CB1 

or AtT20-CB2 cells produced by CP55940 or D9-THC. BFC (1 µM) did not affect the inhibition 

of forskolin-stimulated AC activity by CP55940 in HEK 293 cells expressing CB1 or CB2. BFC 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2019. ; https://doi.org/10.1101/589341doi: bioRxiv preprint 

https://doi.org/10.1101/589341
http://creativecommons.org/licenses/by-nc/4.0/


(1 µM) also failed to affect the desensitization of CB1 and CB2 signalling produced by prolonged 

(30 min) application of CP55940 or D9-THC to AtT20 cells.  

 

Discussion  

BFC is not a cannabinoid receptor agonist, and appeared not to affect cannabinoid receptor 

activation. Our data suggests there is no pharmacodynamic rationale for mixing BFC with 

synthetic cannabinoids, however, it does not speak to whether BFC may affect synthetic 

cannabinoid metabolism or biodistribution. The reasons underlying the mixing of BFC with 

synthetic cannabinoids are unknown, and it remains to be established whether the 

“contamination” was deliberate or accidental. However, the consequences for people who 

ingested the mixture were often serious, and sometimes fatal, but this seems unlikely to be due to 

BFC action at cannabinoid receptors.  
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Introduction 

 

Brodifacoum (BFC) is an inhibitor of vitamin K epoxide reductase and active ingredient of 

rodenticides (Brekenridge et al., 1978). There have been sporadic reports of brodifacoum 

consumption with drugs such as cocaine and cannabis (La Rosa et al., 1997; Waien et al, 2001; 

Spahr et al., 2007), and recently a large number of people have been hospitalized with poisoning 

by brodifacoum and related compounds following ingestion of what are believed to be synthetic 

cannabinoid receptor agonists (SCRA; Kelkar et al., 2018; Riley et al., Mortiz et al., 2018, 

Panigrahi et al., 2018). There is a little evidence suggesting that occasionally people have 

deliberately combined brodifacoum with cannabis (La Rosa et al., 1997; Spahr et al., 2007), and 

the apparent mixing of brodifacoum with a variety of different SCRA could suggest a deliberate 

attempt to enhance the effects of the drugs by recruiting either a pharmacokinetic or 

pharmacodynamic mechanism. In this study, we have examined the effects of brodifacoum on the 

acute signalling of human CB1 and CB2 receptors in AtT20FlpIn and HEK 293 cells. In 

AtT20FlpIn cells, activation of heterologously expressed CB1 or CB2 produces a 

hyperpolarization, mediated by activation of G protein-gated inwardly rectifying K channels 

(Mackie et al., 1995; Banister et al., 2016). In HEK 293 cells, we measured the real time 

modulation of forskolin-stimulated cAMP accumulation (Cawston et al., 2013). We found that 

cannabinoid-induced signaling was not affected by brodifacoum, indicating that combining 

SCRA with brodifacoum is not likely to enhance user experience through interactions with 

cannabinoid receptors.  
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Methods 

Hyperpolarization Assay 

Experiments on AtT20FlpIn cells stably transfected with human CB1 (AtT20-CB1) or CB2 

(AtT20-CB2) were carried out essentially as described in Banister et al., 2016. The AtT20FlpIn 

cells were created in our laboratory from wild type AtT20 cells we purchased from the American 

Type Culture Collection (ATCC CRL-1795). The assay method is based on that outlined in detail 

in Knapman et al., 2013. Cells were grown in DMEM (#D6429, Sigma-Aldrich, Castle Hill, 

NSW) supplemented with 10% fetal bovine serum (FBS, #12003C, SAFC Biosciences, 

Brooklyn, Vic), 100 units penicillin/100 µg ml -1 streptomycin (1%, #15140122 Life 

Technologies, Scoresby, Vic), hygromycin gold (80 µg ml-1, #ant-hg, Invivogen, San Diego, CA). 

Cells were grown in 75 cm2 flasks and passaged when 80-90% confluent. On the evening before 

experiments, cells were detached using trypsin/EDTA solution (#T3924, Sigma-Aldrich), 

resuspended in L-15 media (#11415064, Life Technologies) supplemented with 1% FBS, 

penicillin/streptomycin, and glucose (15 mM, SIGMA #G7021) and plated onto 96 well black 

walled, clear bottomed, culture plates which had been previously coated with poly-D-lysine 

(SIGMA #P6407). Cells were incubated overnight in a humidified incubator in room air.   

 

Proprietary FLIPR membrane potential dye (blue, #R8034, Molecular Devices, Sunnyvale CA) 

was dissolved in HEPES-buffered saline (HBS) of composition (mM) NaCl 145, HEPES 22, 

Na2HPO4  0.338, NaHCO3 4.17, KH2PO4 0.441, MgSO4 0.407, MgCl2 0.493, CaCl2 1.26, glucose 

5.56 (pH 7.4, osmolarity 315 ± 15) and added to the cells an hour before fluorescence reading 

began. Dye was used at 50% of the manufacturers recommended concentration, and cells were 

incubated at 37 oC in humidified room air for loading. Plates were read using a Flexstation 3 
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(Molecular Devices) plate reader at 37 oC. Plates were excited at a wavelength of 530 nm, 

emission was measured at 565 nm, with cut-off filter at 550 nm. Drugs were added using the 

pipetting function of the Flexstation in a volume of 20 µl after recording 60-120 s of baseline 

fluorescence. Readings were made every 2 seconds. Drug stocks were made up in DMSO 

(#D8418, Sigma-Aldrich) and diluted on the day of experiment, the final concentration of DMSO 

in the assay was 0.1 %. 

 

Data were expressed as the percentage change in baseline fluorescence produced by drug 

addition. The change in fluorescence produced by vehicle addition was subtracted from the traces 

before this calculation. Data is expressed as the mean ± SEM of at least 5 independent 

determinations performed in duplicate, unless otherwise noted. Pooled data was fit to a 4 

parameter logistic equation in Graphpad PRISM 7 (GraphPad Software, San Diego CA). 

 

Assay of cAMP levels 

Human embryonic kidney (HEK) 293 FlpIn cells stably transfected with human CB1 or CB2 

receptors tagged with three haemagglutinin epitopes at the amino terminus and human G protein 

gated inwardly rectifying potassium channel 4 (GIRK4) were used (the construction of these cells 

will be described in another place, and we did not assay CB receptor coupling to GIRK4 in this 

study). Cells were grown in DMEM containing 10% FBS and 100 units/penicillin, 100 μg/ml 

streptomycin and were maintained under selection with hygromycin (80 µg ml-1) and G418 (400 

µg ml-1). HEK 293 FlpIn cells were originally obtained from Life Technologies (now 

Thermofisher, #75007). 
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Cellular cAMP levels were measured using the pcDNA3L-His-CAMYEL plasmid, which 

encodes the cAMP sensor YFP-Epac-RLuc (CAMYEL), (Cawston et al., 2013; Hunter et al., 

2017). The pcDNA3L-His-CAMYEL was a kind gift from Dr. Angela Finch (The University of 

New South Wales, NSW, Australia), and originally obtained from American Type Culture 

Collection (Manassas, VI, USA). Cells were seeded in 10 cm dishes at a density of 6,000,0000 

such that they would be 60-70% confluent the next day. The day after seeding, pcDNA3L-His-

CAMYEL plasmid were transiently transfected into cells using linear polyethyleneimine (PEI, 

m.w. 25 kDa) (#23966, Polysciences, Warrington, PA, USA). The DNA-PEI complex mixture 

was added into the cells at the ratio of 1:6, and incubated for 24 hours in 5% CO2 at 37 °C. After 

the incubation, cells were detached from the dish using trypsin/EDTA and the pellet was 

resuspended in 10 ml Leibovitz’s L-15, no phenol red (#21083027, Gibco) media supplemented 

with 1% FBS, 100 units/penicillin, 100 μg/ml streptomycin and 15 mM glucose. The cells were 

seeded at a density of 100,000 cells per well in poly D-lysine (Sigma-Aldrich) coated, white wall, 

clear bottom 96 well microplates. Cells were incubated overnight at 37 °C in ambient CO2.  

 

On the following day, drugs were prepared in HBS containing 0.1 mg ml-1 BSA. For 

measurement of cAMP inhibition, all the drugs were made in 3 µM of forskolin. Coelenterazine-

h substrate (2.5 µM) (#S2011, Promega, Madison, WI, USA) was added to the cells, and 

incubated for 5 mins prior to the addition of drugs or vehicle. Luminescence was measured using 

a Flexstation 3 (Molecular Devices) microplate reader at 37 °C. The cells were measured at an 

emission wavelength of 461 nm and 542 nm simultaneously, with an integration time of 1 s. 

Drugs were added in a volume of 10 µl (10X) to each well to give the desired concentration. The 

final concentration of DMSO in each well was always 0.1%. Raw data are presented as inverse 
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BRET ratio of emission at 461/542. Background reading (no substrate) was subtracted from raw 

values before calculating ratios. For convenience, values are expressed such that an increase in 

ratio correlates with increase in cAMP production. AUC analysis was performed in GraphPad 

prism (Graph Pad Software Inc., San Diego, CA), and data were expressed as percentage of the 

difference between basal (vehicle, 0%) and forskolin (100%) values over a 5 minute period after 

forskolin addition. 

 

(-) CP 55940 was from Cayman Chemical (#90084, Ann Arbor MI), D9-tetrahydrocannabinol 

(THC) was from THCPharm (Frankfurt, Germany) and was a kind gift from the Lambert 

Initiative for Cannabis Therapeutics (University of Sydney). Brodifacoum was from Sigma-

Aldrich (#46036), and forskolin was from Ascent Scientific Ltd. 

 

Data was normally distributed (D’Agonstino and Pearson normality test, PRISM), differences 

between groups were tested using unpaired Student’s t-Test (PRISM).  
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Results 

 

Application of brodifacoum for 5 minutes at concentrations up to 30 µM did not significantly 

affect the fluorescence of AtT20 cells expressing CB1 or CB2 receptors (Figure 1). Prolonged 

exposure to brodifacoum at concentrations greater than 10 µM produced decreases in 

fluorescence in AtT20 cells expressing CB receptors as well as wild type cells, and so for 

experiments examining the potential interaction between brodifacoum and cannabinoids we used 

a concentration of 1 µM.  

 

We generated concentration-response curves for the high efficacy cannabinoid agonist CP55940 

and the lower efficacy agonist THC after 5 minutes of exposure to brodifacoum (Figure 2). In 

AtT20-CB1 cells, application of CP55940 produced a maximum change in fluorescence of 33 ± 1 

%, with a pEC50 of 7.7 ± 0.04; in the presence of brodifacoum the maximum change in 

fluorescence of 33 ± 1 %, with a pEC50 of 7.7 ± 0.06. In AtT20-CB2 cells, application of 

CP55940 produced a maximum change in fluorescence of 29 ± 1.1 %, with a pEC50 of 7.3 ± 0.1; 

in the presence of brodifacoum the maximum change in fluorescence of 31 ± 1.2 %, with a pEC50 

of 7.4 ± 0.1 (Figure 2). Brodifacoum failed to affect the hyperpolarization produced by THC in 

AtT20-CB1 cells (control, pEC50 6.4 ± 0.6, maximum change in fluorescence 18 ± 5 %; in 

brodifacoum, pEC50 6.5 ± 0.5, max 18 ± 5 %). In AtT20-CB2 cells THC produces a small 

hyperpolarization, the response to 10 µM THC was unchanged in the presence of brodifacoum 

(6.4 ± 1.2 % in control, 7.4 ± 1.8 % in brodifacoum, P = 0.65) (Figure 2). Application of 

brodifacoum (10 µM) or CP55940 (1 µM) for 5 minutes produced very small changes in the 

fluorescence of wild type AtT20 cells, and neither drug affected the response to subsequently 
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applied somatostatin (100 nM), which activates native sst receptors in AtT20 cells (Gunther et 

al., 2016) (Supplementary Figure 1). 

Inhibition of adenylyl cyclase activity is another significant biological effect of cannabinoid 

receptor activation. Brodifacoum (300 nM – 30 µM) co-applied with forskolin (3 µM) for 10 

minutes did not affect increases in cAMP levels in HEK 293 cells expressing CB1 or CB2 (Figure 

3). Brodifacoum (1 µM) incubation for 5 minutes also failed to affect the CP55940 inhibition of 

forskolin-stimulated cAMP elevation. In cells expressing CB1, CP55940 inhibited cAMP with a 

pEC50 of 7.5 ± 0.3, to a minimum of 52 ± 12 % of forskolin alone; in the presence of brodifacoum 

these were pEC50 7.4 ± 0.2 and minimum of 52 ± 7% of the forskolin response. Brodifacoum also 

did not affect forskolin-stimulated cAMP levels HEK293 cells expressing CB2 (Figure 3), or 

CP55940 inhibition of cAMP levels (pEC50 in control cells expressing CB2 7.4 ± 0.2, to a 

minimum of 39 ± 7 %; in brodifacoum pEC50 of 7.5 ± 0.1; to a minimum of 45 ± 4 %).  

 

We also examined the possibility that brodifacoum could affect the sustained responses to 

CP55940 or THC. As previously described (Cawston et al., 2013), prolonged application of 

cannabinoids in AtT20-CB1 cells produces a response that wanes over time, reflecting 

desensitization of receptor signaling. The degree to which this desensitization reflects changes in 

signaling specific to cannabinoid receptors is tested by application of somatostatin, which 

activates receptors native to AtT20 cells (Gunther et al., 2016; Heblinski et al., 2019). In these 

experiments, CP55940 (100 nM) or THC (10 µM) were applied 2 minutes after addition of 

brodifacoum (1 µM), and the fluorescence monitored for 30 minutes before the addition of 

somatostatin (100 nM) (Figure 4). Desensitization was quantified after 30 min of agonist 

application, and was expressed as the % decline from the peak response. We did not observe any 
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significant difference in the desensitization of CB1 signaling mediated by CP55940 (100 nM) 

when co-applied with brodifacoum (P = 0.55). The presence of brodifacoum had no effect on the 

SOMATOSTATIN (100 nM) induced hyperpolarization alone, or after 30 mins of CP55940 

treatment (P = 0.75)(Supplementary Figure 2). The desensitization produced by THC (10 µM, 30 

mins) in AtT20-CB1 cells was not different when co-applied with brodifacoum, (Control, 65 ± 

6%; brodifacoum treated, 53 ± 8%, P = 0.3) (Figure 4). A similar reversal of the 

hyperpolarization produced by CP55940 (100 nM) in AtT20-CB2 cells was also observed. 

Treatment with brodifacoum did not significantly affect the desensitization produced by 

CP55940 compared to control cells (Control, 77 ± 6%; brodifacoum treated, 63 ± 8%, P = 0.2). 

THC (10 µM, 30 mins) signaling at CB2, although modest, also declined during continuous drug 

exposure, and this was also not affected by co-application of brodifacoum (37 ± 14% in control, 

20 ± 7% in brodifacoum treated, P = 0.3)(Figure 4). The hyperpolarization induced by 

SOMATOSTATIN after prolonged application of CP55940 (P=0.56) or THC (P=0.87) to AtT20-

CB2 cells was also not significantly different in the presence of brodifacoum (Supplementary 

Figure 2).  
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Discussion 

 

The principal finding of this study is that brodifacoum does not affect CB1 or CB2 signalling, 

either to K channels in AtT20 cells or adenylyl cyclase in HEK 293 cells. In the assay of K 

channel activation, there was no effect on the concentration response relationship for CP55940 or 

THC, and brodifacoum did not affect the desensitization of signalling produced by prolonged 

application of either drug. Activation of GIRK is mediated by the Gbg subunits of G protein 

heterotrimers, and many Gi/Go coupled receptors effectively signal through this pathway in 

AtT20 cells (e.g. Mackie et al., 1995; Gunther et al., 2016, Knapman et al., 2013, Heblinski et al., 

2018). We have previously used the fluorescent measurement of membrane potential to study 

CB1 and CB2 agonists, antagonists, and allosteric modulators of CB1 (Cawston et al. 2013). 

Brodifacoum had no effect on the potency, maximum effect or time-dependence of the actions of 

the high efficacy synthetic cannabinoid CP55940 or the lower efficacy phytocannabinoid THC, 

indicating that it is unlikely to act as modulator of the pharmacodynamic effects of cannabinoids.  

 

Inhibition of adenylyl cyclase activity by CB receptors is mediated via the Ga subunits of G 

protein heterotrimers, and brodifacoum also failed to affect this signal transduction pathway. 

The precise cellular signalling mechanisms responsible for the subjective effects of Cannabis and 

synthetic cannabinoid agonists are not established, although the signal transduction of 

cannabinoid receptors has been extensively studied (Howlett & Abood, 2017; Ibsen et al. 2017) 

and it is unlikely that any one pathway is responsible. It remains formally possible that 

brodifacoum could selectively modulate pathways other than Gbg-mediated activation of GIRK 

or Ga-mediated inhibition of cAMP accumulation, but the lack of any effect whatsoever on the 
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effects of CP55940 or THC suggest that ligand interactions with cannabinoid receptors are 

unaffected by brodifacoum.  

 

The concentration of brodifacoum in blood or brain after co-ingestion with synthetic 

cannabinoids is unknown. However, concentrations of up to 3 µM have been reported in the 

serum of people who have deliberately ingested large quantities of rat poison (Weitzel et al., 

1990; Hollinger et al., 1993). Brodifacoum at 1 µM failed to affect CB1 or CB2 receptor 

signalling when measured continuously over a period of 30 minutes, and 10 µM brodifacoum 

failed to mimic or affect the acute response to a maximally effective concentration CP 55940, 

although at this concentration prolonged application of brodifacoum produced a decrease in the 

fluorescence of wild type AtT20 cells, as well as those expressing CB1 and CB2 receptors. This 

effect at higher concentrations may reflect direct interactions of brodifacoum with cell 

membranes (Maragoni et al., 2016). Concentrations of brodifacoum in the upper range of what 

we tested are achieved only after ingestion of large amounts of rat bait, it is possible that they 

could be achieved while ingesting contaminated synthetic cannabinoids, but this remains 

unreported.  

 

Several case reports suggest an interaction between therapeutic warfarin and cannabis or 

cannabidiol (Grayson et al., 2018; Yamreudeewong et al., 2009). It has been suggested that 

cannabinoid inhibition of enzymes responsible for the metabolism of warfarin can increase blood 

levels of the drug, and while these studies have focussed on potentially dangerous changes in 

warfarin concentration, levels of cannabinoids could also be reciprocally elevated. Such 

interactions may inform a decision to deliberately combine “superwarfarin” with SCRA, as has 
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been previously suggested for cannabis (La Rosa et al 1997; Spahr et al., 2007), although 

whether brodifacoum is metabolized by pathways shared with SCRA in humans is unknown. 

Apart from the obvious danger of ingesting brodifacoum, altering the metabolism of SCRA is 

likely to have unpredictable consequences, as some metabolites of SCRA retain cannabinoid 

receptor activity (e.g. Brents et al., 2011; Chimalaconda et al., 2012; Longworth et al., 2017) and 

may contribute to the overall SCRA experience.  

 

Ingestion of brodifacoum is relatively common, while death from exposure is rare, owing to 

ready treatment with vitamin K (King and Tran, 2015; Gummin et al., 2018). The high number of 

deaths associated with the combination of SCRA and anticoagulants in 2018 (at least 8, Connors, 

2018) may point to an interaction between the drugs or a very high dose of ingested 

anticoagulant. It may also reflect the identity and dose of the synthetic cannabinoid(s) consumed 

(which remains largely unreported), as well as the general health status of the drug users. Deaths 

from synthetic cannabinoid exposure are uncommon, but well documented (e.g. Kasper et al., 

2018; Treki et al., 2015). While there is a general acceptance that brodifacoum or a similar agent 

is responsible for the coagulopathies associated with synthetic cannabinoid ingestion, 

identification of the synthetic cannabinoid has not been reported in most cases. Intriguingly, 

several groups have reported cannabinoid receptor ligands based on a coumarin scaffold 

(Behrenswerth et al., 2009; Han et al., 2015). While these drugs have been reported to be either 

antagonists/inverse agonists (Behrenswerth et al., 2009) or CB2-selctive agonists (Han et al., 

2015), they remain largely uncharacterized. Given the propensity of chemists producing and in 

some cases designing cannabinoids for the recreational market, it cannot be ruled out that some 

of the coagulopathy associated with synthetic cannabinoid use arises from a novel, coumarin-
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based cannabinoid that retains some of the vitamin K epoxide inhibitory of warfarin and 

brodifacoum. 

 

In conclusion, we report that brodifacoum does not appear to be an agonist or antagonist of 

human cannabinoid receptors, and it also does not appear to be an allosteric modulator of CB1 or 

CB2 activation of K channels or inhibition of adenylyl cyclase. Why brodifacoum has been mixed 

with synthetic cannabinoid receptor agonists remains a matter for speculation, although an 

intended effect on synthetic cannabinoid drug pharmacokinetics cannot be ruled out.  
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Figure Legends 

 

Figure 1: The effects of brodifacoum (BFC) and CP55940 in AtT20 cell expressing CB1 or 

CB2. Representative traces showing the change in fluorescence induced by application of 

CP55940 (1 µM) but not BFC (10 µM) in A) AtT20-CB1 and B) AtT20-CB2 cells. Values are 

expressed as a percentage of predrug baseline. A reduction in fluorescence indicates a 

hyperpolarization. The prolonged application of BFC (10 µM) produces small changes in the 

fluorescence in AtT20 cells expressing cannabinoid receptors. Drug was added for the duration of 

the bar; the traces are representative of at least five independent experiments. 

 

Figure 2: Brodifacoum (BFC) effect on CP55940 and ∆9-THC induced hyperpolarization of 

AtT20 cell expressing CB1 or CB2. Representative traces showing the change in fluorescence for 

CP55940 on A) AtT20-CB1, and B) AtT20-CB2 in the presence of BFC 1 µM or vehicle. Values 

are expressed as a percentage of predrug baseline. A reduction in fluorescence indicates a 

hyperpolarization. Drugs were added for the duration of the bar; the traces are representative of at 

least five independent experiments. Concentration response curve of hyperpolarization of AtT20-

CB1 or AtT20-CB2 cells stimulated with C), D) CP55940 or E), F) ∆9-THC in the continued 

presence of either HBS or BFC. Data represents the mean ± SEM of five independent 

determinants performed in duplicate. There was no difference in the potency or maximal effect of 

CP55940 and ∆9-THC between HBS or in presence of BFC. 

 

Figure 3: Brodifacoum (BFC) does not modulate cAMP accumulation via CB1 or CB2 

receptors expressed in HEK 293 cells. Representative data from the CAMYEL assay for HEK 
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293 cells expressing CB1 receptors, an increase in inverse BRET ratio (emission at 461/542 nm) 

corresponds to an increase in cAMP. A) BFC does not affect the rapid increase in cAMP 

production produced by forskolin (3 µM); B) BFC (1 µM) does not affect responses to forskolin 

(3 µM) applied in the presence of CP55940. Data are representative of at least five independent 

experiments. Concentration response curve showing CP55940 induced inhibition of forskolin-

stimulated cAMP elevation in presence and absence of BFC 1 µM on HEK 293 cells expressing 

C) CB1 or D) CB2. Data are expressed as a percentage of response produced by forskolin (3 µM), 

and plotted as mean ± SEM of five independent determinants performed in duplicate. 

Concentration response curve showing the effect of BFC on forskolin (3 µM)-stimulated cAMP 

elevations in HEK 293 cells expressing E) CB1 or F) CB2. Data are expressed as a percentage of 

response produced by forskolin (3 µM), and plotted as mean ± SEM of five independent 

determinants performed in duplicate. 

 

Figure 4: The effect of brodifacoum (BFC) on CP55940 and Δ9-THC mediated 

desensitization of signalling in AtT20-CB1 and -CB2. Representative traces showing 

desensitization of signalling in AtT20-CB1 and AtT20-CB2 on prolonged stimulation with A), C) 

CP55940 (100 nM) or B), D) Δ9-THC (10 µM) in the presence of BFC 1 µM or HBS. Cells were 

challenged with somatostatin (100 nM) after 30 minutes of CP55940 or Δ9-THC. Drugs were 

added for the duration of the bar; the traces are representative of at least five independent 

experiments. Scatter dot plot representing desensitization of E) CB1 and F) CB2 on exposure to 

CP55940 or Δ9-THC for 30 mins in the presence of BFC 1 µM or HBS. This plot shows 

percentage desensitization comparing peak fluorescence after the addition of drugs and 30 mins 
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post addition. Data represents the mean ± SEM of five independent determinants performed in 

duplicate. 
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Supplementary Figures: 

Supplementary Figure 1: Effects of brodifacoum (BFC) and CP55940 in wild type AtT20 

cells. Scatter dot plot representing the percentage change in fluorescence for BFC (30 µM), BFC 

(10 µM), CP55940 (10 µM), and Vehicle (0.1% DMSO) alone (blue dots), and the response to 

the subsequent addition of SOMATOSTATIN (100 nM) to AtT20-WT cells (black dots). Data 

represents the mean ± SEM of five independent determinants performed in duplicate (p > 0.05).  

 

Supplementary Figure 2: Effect of brodifacoum (BFC) on somatostatin (SRIF) challenge 

after 30 minutes of drugs on AtT20-CB1 and -CB2 cells. Comparison of percentage change in 

fluorescence after SRIF (100 nM) challenge on AtT20-CB1, and AtT20-CB2 in the continuous 

presence of A), C) CP55940 or B), D) Δ9-THC added with either HBS or BFC (1 µM). BFC did 

not affect the hyperpolarization induced by SRIF after prolonged application of CP55940 or Δ9-

THC. Data represents the mean ± SEM of five independent determinants performed in duplicate 

(p > 0.05).  
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