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Abstract Estimates of the marginal effect of measures of adiposity such as body mass index 

(BMI) on healthcare costs are important for the formulation and evaluation of policies targeting 

adverse weight profiles. Many existing estimates of this association are affected by endogeneity 

bias caused by simultaneity, measurement error and omitted variables. The contribution of this 

study is to avoid this bias by using a novel identification strategy – random germline genetic 

variation in an instrumental variable analysis – to identify the presence and magnitude of the 

causal effect of BMI on inpatient hospital costs. We also use data on genetic variants to 

undertake much richer testing of the sensitivity of results to potential violations of the 

instrumental variable assumptions than is possible with existing approaches. Using data on over 

300,000 individuals, we found effect sizes for the marginal unit of BMI more than 50% larger 

than multivariable effect sizes. These effects attenuated under sensitivity analyses, but 

remained larger than multivariable estimates for all but one estimator. There was little 

evidence for non-linear effects of BMI on hospital costs. Within-family estimates, intended to 

address dynastic biases, were null but suffered from low power. This paper is the first to use 

genetic variants in a Mendelian Randomization framework to estimate the causal effect of BMI 

(or any other disease/trait) on healthcare costs. This type of analysis can be used to inform the 

cost-effectiveness of interventions and policies targeting the prevention and treatment of 

overweight and obesity, and for setting research priorities. 
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1 Introduction 

A positive association between adiposity and healthcare costs is well established. It has been 

documented for a variety of different contexts, circumstances and health systems (1-3). This 

association has powerful economic salience because of its apparent consequences for the level, 

growth and composition of healthcare spending.   

 

The underlying biological relationship between adiposity and health is complex (4), but the 

endocrinal (5), cardiometabolic (6, 7) and other changes (8) associated with increased adiposity 

are themselves linked to substantial healthcare resource requirements (9). Increases in the 

mean and variance of adiposity, reflected in widely used measures of nutritional status such as 

body mass index (BMI - weight divided by the square of standing height) have led to important 

changes in the global distribution of adiposity (10-12). The worldwide prevalence of overweight 

(BMI>=25kg/m2) and obesity (BMI>=30kg/m2) is 28.8% for men and 29.8% for women. This 

accounts for some 2.1 billion individuals, an increase of approximately 50% since 1980 (13). 

More individuals globally are now either overweight or obese than are underweight (11, 14).  

 

Correlational evidence of the BMI-cost association is influential. Examples of this influence 

include the development of guidelines and policies to prevent obesity (15), evaluation of 

interventions targeting overweight and obesity (16) , and the prioritization of research into the 

consequences of obesity (17). However, a critical limitation of much if not all of this 

multivariable1 research is that it can be seriously affected by endogeneity bias (18).   

 

This endogeneity arises through three channels. The first is measurement error arising from 

mismeasurement of BMI (and other measures of adiposity), particularly where individuals self-

report weight (19, 20). The second is reverse causation or simultaneity bias, which would occur 

if healthcare costs influenced adiposity. The third source of bias is omitted variable bias, arising 

from unknown or unmeasured common causes of both adiposity and healthcare costs.  

 

The direction of the omitted variable bias will generally not be known a priori. Disease 

processes that are related to healthcare costs may also influence adiposity.  For example, 

higher BMI is associated with increased risk for cancers (21), but cancer (including prodromal 

cancer) may itself lead to reductions in BMI (22). Similarly, people with higher BMI are more 

likely to smoke, while smoking itself lowers BMI (23, 24). Without evidence of the wider 

                                                      
1 Henceforth we use “multivariable” as shorthand for all study designs and estimators that do not use either formal 

randomization or reliance on some kind of natural experiment. We avoid the use of the term “observational” for this purpose, 

as Mendelian Randomization is itself a form of observational analysis. We also avoid the use of ordinary least squares (OLS) as 

shorthand for these other study designs, as many other  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/589820doi: bioRxiv preprint 

https://doi.org/10.1101/589820
http://creativecommons.org/licenses/by/4.0/


determinants of both adiposity and healthcare cost, the analyst cannot reliably predict 

directions of bias when undertaking multivariable analyses of this association. 

 

BMI-health outcome associations are therefore distorted because one of the drivers of health 

outcomes like health care cost is own health status. This observation has motivated attempts to 

use instrumental variable (IV)  analyses in which the instrument for own BMI is the BMI of a 

biological relative, for example in relation to the association between BMI and mortality (25). 

This approach has also been used to model the causal impact of adiposity on costs, and 

arguably represents the most credible attempt to date to overcome the endogeneity biases of 

multivariable analysis.  

 

For example, Cawley and Meyerhoefer (26) used the BMI of a biological relative as an IV. This 

suggested that the healthcare costs of obesity were drastically underestimated by prior 

multivariable analyses, with a fourfold difference in the marginal costs of obesity between 

multivariable and causal IV analysis reported, and a threefold difference in the costs of a 

marginal unit of BMI. Large but less pronounced differences between multivariable and IV 

models were also reported in studies using similar instruments by Cawley et al (27), Black et al 

(28) and Kinge and Morris (29). 

 

However, this approach does have limitations. The association of biological relatives and 

healthcare costs may itself be affected by omitted variables that are common and independent 

causes of both BMI and healthcare costs. These could include the home environment that is 

shared by biological relatives and which may influence food consumption, proclivity to exercise, 

and access to and use of healthcare services. People who have children (necessary for the 

biological relative approach) may differ from those who do not have children. Intrauterine 

influences of maternal BMI on offspring BMI, such as smoking and alcohol drinking during 

pregnancy (30), and genetic influences that affect healthcare costs other than through adiposity 

(31), will also confound this relationship.   

 

This paper exploits a novel identifying approach - germline genetic variation associated with 

BMI – in an instrumental variable analysis. This approach has the advantage (in principle) of 

avoiding the limitations of both multivariable analysis and the use of a biological relative as an 

instrument. At each point of variation in the genome, offspring typically inherit one allele from 

their mother, and one from their father. This random inheritance of alleles is a natural 

experiment, in which individuals in a population can be divided into  groups based on their 

inherited “dosage” of these variants (32). If the instrumental variable assumptions hold, these 

genetic variants can be used to test whether BMI affects healthcare costs. Using genetic 

variants as IVs in this way has become known as Mendelian Randomization (33). 
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Robust evidence of the causal association between adiposity and healthcare costs is a critical 

input for the formulation and evaluation of cost-effective policies and interventions targeting 

(in particular) overweight and obesity (8), as well as for identifying research priorities in this 

area. The widespread use of models lacking robust identification may substantially 

underestimate the true causal effects of obesity. Very large, high-quality datasets that can 

facilitate this type of analysis are beginning to become available (34, 35) but remain largely if 

not entirely unexploited by health economists studying the causal effect of health conditions 

and traits on cost outcomes. Below, we introduce Mendelian Randomization as a form of IV 

analysis.  

 

2 Methods 

2.1 Mendelian Randomization and instrumental variable analysis 

Here, we briefly introduce the high-level biological mechanisms that motivate the use of 

genetic variants in IV analysis. More detailed introductions and extended overviews of 

Mendelian Randomization are available elsewhere (36-39). 

 

A single nucleotide polymorphism (SNP) is a specific location (or locus) in the human genome 

that differs between people in the population. At each SNP people will have two alleles, one for 

each chromosome. During cell division at conception (meiosis), offspring inherit at random one 

of their mother’s two alleles, and one of their father’s two alleles. Specific SNPs or sets of SNPs 

are known to associate with particular health conditions or influence the development of 

particular traits. Thus, the phenotype (a measurable disease or trait such as BMI) may be 

influenced by genotype (an underlying genetic structure associated with the phenotype).  

 

The provenance of the term Mendelian Randomization (40), and the potential utility of genetic 

variants as IVs, is founded on Mendel’s first and second laws of inheritance. The first law 

describes random segregation of alleles from parent to child during the formation of gametes. 

The second law describes the independent assortment of alleles for different phenotypes at 

conception. Genetic variants that are in different locations in the genome are generally 

inherited in a way that is independent of the inheritance of other genetic variants. The 

allocation of these genetic variants to offspring is therefore random, conditional on parental 

genotype.  
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We now describe the core instrumental variable assumptions in the context of Mendelian 

Randomization. These assumptions can be described as comprising the relevance assumption, 

the independence assumption, and the exclusion restriction.  

 

The first IV assumption (“relevance”) is that the instrument should be associated with the 

treatment variable, which in the case of this paper is BMI.2 The associations of SNPs with 

diseases and traits are readily determined from genome wide association studies (41, 42), 

which study the independent association with specific phenotypes of many SNPs - potentially 

hundreds of thousands - across the genome. These associations are corrected for multiple 

testing so that genome-wide significance is obtained as the conventional p-value threshold 

value based on an alpha of 0.05 divided by k, where k  can be interpreted (conservatively) as 

the number of independent statistical tests conducted across the genome (43) if there are one 

million independent genetic variants (44). These associations will be validated in independent 

replication samples (45). Following convention, we will describe p<= 5x10-8 as genome-wide 

significant.  

 

The second assumption is that there are no omitted variables in the associations of the IV and 

the outcome (health care costs). This assumption is generally unproblematic since the SNPs are 

determined at conception, and therefore prior to the postnatal circumstances, events and 

behaviours of later life. However, time of conception (such as month or year of birth) could 

theoretically associate with SNPs and health care costs.  Population stratification, the 

separation of individuals into distinct subgroups that differ in allele frequencies, is one means 

by which the second assumption may be violated, since differences in alleles in this case would 

indicate differential ancestry rather than disease susceptibility (46).  

 

Ancestry influences the distribution of genetic variants, but also risks of disease not necessarily 

due to those variants. This potential confounding by ancestry is typically accounted for by 

adjusting for the genetic principal components (47) and restricting analysis to genetically 

homogenous ethnic groups. Simultaneity bias, if present at all and absent population 

stratification, is likely to be modest although  this assumption is best tested rather than 

assumed for any particular study  (48). Examples of independence of common genetic variation 

from common omitted variables (and thus that SNPs are likely to be independent of 

environmental influences) has been demonstrated empirically (37, 49).  

 

The third IV assumption is that the SNP(s) affect the outcome only via the treatment variable; 

that is, via the condition or trait of interest. This is the exclusion restriction. Violations of this 

                                                      
2 The treatment variable may be referred to as the exposure, the modifiable factor, the risk factpor or the intermediate 

phenotype. Following the econometrics literature, we will refer to BMI as the treatment variable.   
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assumption is the primary threat to the validity of IVs used in Mendelian Randomization. There 

are two principal mechanisms by which this assumption may be violated in Mendelian 

Randomization.  

 

The first is the correlation of the SNP(s) in question with other SNPs that affect the outcome 

through a path other than via the condition or trait of interest (50). This correlation of variants, 

known as linkage disequilibrium, arises when particular variants tend to be inherited together 

(contrary to Mendel’s second law), generally because they are located in close physical 

proximity on the genome (51).  

 

The second mechanism concerns variants that affect more than one phenotype. A SNP that 

affects BMI may also, for example, affect the risk of depression through a BMI–independent 

mechanism. IV analysis relating, for example, a set of BMI SNPs to cost outcomes would suffer 

from omitted variable bias in this case if depression independently affects both BMI and 

healthcare costs. This is sometimes known as horizontal pleiotropy (37). Pleiotropy (52, 53), the 

effect of a single SNP on multiple phenotypes (53, 54), may be pervasive throughout the human 

genome (55). There would be no bias in this analysis if depression was on the causal pathway 

between BMI and healthcare costs, a situation sometimes referred to as vertical pleiotropy (37) 

(37), or if the other phenotype did not affect the outcome of interest.  

 

Finally, we note that Mendelian Randomization does not identify population average treatment 

effects. IV analysis identifies local average treatment effects if a monotonicity condition holds. 

Monotonicity requires that the direction of effect on the treatment from varying the level of 

the instrumental variable should be in the same direction for all individuals. When 

monotonicity is satisfied, IV analysis (including Mendelian Randomization) identifies a local 

average treatment effect; that is, an effect in those whose treatment would differ if the value 

of the IV differed.  

 

2.2 Estimation  

For a single SNP, the ratio (or Wald) estimator can be calculated as the ratio of the association 

of the outcome with the variant to the association of the treatment variable (BMI in this paper) 

with the SNPs. This gives the effect of the variant on the outcome, scaled by the effect to the 

SNPs on the treatment. This is equivalent to the two-stage least squares estimator for a single 

SNP. Using the terminology of Bowden et al (56), indexing individuals by i and denoting SNPs as 

G (indexed j from 1 up to J) these two relationships can be written as:  

 

Equation 1 
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Equation 2 

� = ������

�

���

+ ��� + ���  

 

Without loss of generality, we ignore constants and exogenous omitted variables in Equations 1 

and 2.  The alpha term is the direct effect of variants on the outcome that do not operate 

through the BMI treatment variable. If the exclusion restriction holds then alpha will be zero, 

since valid instruments influence outcomes only through an effect on the treatment.  

 

Note also that the two associations described in Equations 1 and 2 in the Wald estimator need 

not come from the same sample, in which case a two-sample IV estimator is used (57). A two-

sample approach using summarized data may offer similar or better efficiency than a single 

sample study using individual-level data (58), particularly if larger sample sizes are available 

under a two-sample approach.  In the two-sample setting, genetic variants should have similar 

effects in each population. One simple practical test for this in Mendelian Randomization is to 

examine similarity in terms of ethnic group and distributions of sex and age (48).  

 

Rewriting equations (1) and (2) into the reduced form yields:  

 

Equation 3 

� = Γ���� + ��`� = (�� + ���)��� + ��`�  

 

Where ��`� is the error term of the reduced form. The ratio estimate is ratio of the effect of the 

SNPs on the outcome, scaled by their effect on the treatment, which can be written (ignoring 

the error term) as: 

 

Equation 4 

Γ���
�� =

�� + ���
�� =

��
�� + � 

 

The ratio estimates from each individual variant can be combined using weighted regression or 

equivalently inverse variance weighted (IVW) meta-analysis to produce an overall causal 

estimate (henceforth for simplicity we refer to this estimate as the IVW estimate – Equation 5). 
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This assumes that there no correlation between the Wald estimates for each SNP, which will 

hold if they are not in linkage disequilibrium. 

 

Equation 5 

�	��	�

∑ ���
����
�	��
���

∑ ���
����
�
���

 

Here, the ����
 terms are the variance of the error term in the outcome-SNP regression models; 

the small variance of the error term in the treatment-SNP regression is ignored (the no-

measurement error assumption).  

 

The estimates for each variant should converge toward the same causal parameter estimate if 

the exclusion restriction holds; put differently, there should be no more heterogeneity in the 

estimates for all parameters than would be expected by chance. This can be assessed using 

Cochran’s Q statistic (59, 60) in two-sample settings (this is closely related to Sargan’s over-

identification test (61) in single sample settings), which follows a χ
 distribution with J-1 

degrees of freedom: 

 

Equation 6 

 = � 1

���

(�	� − �	��	

�

���

) 

Cochran’s Q can identify failure of the instrumental variable assumptions, but not whether this 

is due to one, some or all IVs being invalid. As such, it is a relatively crude “catch all” test of 

instrument validity.  

 

2.3 Sensitivity analysis 

A number of methods have been developed to accommodate violations of the exclusion 

restriction due to pleiotropy that is suggested by (but not necessarily unambiguously identified 

by) high heterogeneity as indicated by Cochran’s Q (62, 63). The following considers different 

methods for assessing possible violations of the exclusion restriction, in the spirit of Conley et al 

(64), in relaxing the assumption that the alpha parameter is exactly zero and in seeking 

methods to generate consistent estimates of the causal effect even if some or all of the IVs are 

invalid.  

 

If pleiotropy (i.e. non-zero ��  terms) is present but small in magnitude then biases in any causal 

analysis will be modest. If ��  is zero on average across all SNPs then the relationship is 

estimated with more noise and hence some loss of efficiency than if all ��  values were zero, but 
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the bias term will have zero mean on average even if some or all of the pleiotropic effects are 

large. In this case, the IVW estimator could be implemented using a random effects meta-

analysis.  

 

If the mean effect of alpha is not zero, then directional pleiotropy is present. So-called MR-

Egger methods allow for directional pleiotropy by modelling both the slope and intercept of the 

ratio estimator. 

 

Equation 7 

Γ�� = �� + ���� + ���  

 

Note that the “Γ�, ��” terms included in Equation 7 are themselves estimates, respectively the 

SNP-cost and SNP-BMI estimates. All SNPs can be invalid instruments under MR-Egger, provided 

that the InSIDE assumption (Instrument Strength Independent of Direct Effect) assumption 

holds. The MR-Egger effect estimate can be written as 
�������,����

���(���)
  which can be re-expressed as 

the true effect estimate �	  plus a bias term 
������ ,����

���(���)
. This InSIDE assumption appears to be 

plausible in some cases (e.g.(65)) but less so in others (e.g (37, 56)).This assumption is most 

likely to hold in this context when it is the exclusion restriction assumption that is violated due 

to horizontal pleiotropy, rather than to other violations of the IV assumptions, such as 

associations with omitted variables in the BMI-cost relationship. MR-Egger estimators are less 

powerful and less efficient than the estimators discussed below because of the need to 

estimate both the slope parameter and the intercept parameter.  

 

An alternative to relying on the InSIDE assumption is to use the median ratio estimate of all 

available instruments (66). This estimator will be unbiased if more than half of the instruments 

are valid, i.e. �� = 0	 for at least half of all SNPs. The simple intuition for this estimator is that 

invalid instruments in the IVW approach will contribute weight to the overall regression 

estimate and will be biased even asymptotically. On the assumption that the majority of 

instruments are valid, then invalid instruments contribute no weight and are less biased than 

IVW in finite samples and unbiased asymptotically. We implement a penalized weighted 

median estimator. SNPs contributing to the median 50% of the statistical weight are used to 

form the median estimate. The weights are a function of the precision with which SNPs are 

estimated, and the penalization involves “down weighting” outlying SNPs that contribute 

substantial heterogeneity to the Cochran Q statistic.     
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The final class of estimators we consider are mode based (67) . The underlying assumption, in 

terms of the alpha expression, is that �������,�
, …��� = 0. The intuition is that classifying 

variants into clusters based on similarity of effect will be consistent if the largest homogenous 

cluster are valid SNPs. All other SNPs outside this cluster, even a majority of individual variants 

in the sample, could be invalid, provided this “zero model pleiotropy” assumption holds. This 

approach requires the setting of an arbitrary bandwidth parameter to define the clusters. We 

implement a more efficient version of the simple median estimator by weighting median 

estimates by the inverse variance of the effect of the SNPs on the outcome. This is given effect 

by creating an empirical density function formed from the weighted mode estimates.   

 

It is important to note that the second and third IV assumptions are not directly testable, and 

the assumptions underlying alternative modelling approaches for ��  term are themselves 

untestable. However, these approaches are important forms of sensitivity analysis that allow 

the instrumental variable assumptions to be relaxed, albeit at the cost of other untestable 

assumptions. Similarity of estimated effect under each of the estimators considered would 

offer some reassurance that the same causal effect is being identified, although MR-Egger 

offers much lower precision than the other estimators .  

 

We also assessed whether any heterogeneity present in the main analysis was also present 

when analyzing broad categorization of overall inpatient hospital costs into elective costs, non-

elective costs, and other costs. Elective admissions are those that are planned. Non-elective 

admissions are not arranged in advance, and may include, for example, emergency care or 

maternity care. The “other” category includes all other costs, including day cases, which are 

elective admissions but where an overnight stay is neither planned nor undertaken. The 

inverse-variance weighted Mendelian Randomization models were re-run using only costs in 

each respective category as the outcome variable. We examined effect sizes, p-values and 

heterogeneity statistics for each model and compared them to the base “all inpatient costs” 

analysis. We emphasize that the distinctions between these sub-categories are not absolute, 

since the categorization is somewhat arbitrary. More details are provided in the Supplementary 

Material.  

 

We performed four further sensitivity analyses. The first considered whether the association 

between BMI and healthcare cost may be non-linear, the second estimated a multivariable 

Mendelian Randomization instrumenting for both BMI and body fat percentage, the third 

assessed the impact of potential weak instrument bias, and the fourth involved a within-family 

Mendelian Randomization analysis to avoid bias from so-called dynastic effects (68).  

 

Non-linear models 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/589820doi: bioRxiv preprint 

https://doi.org/10.1101/589820
http://creativecommons.org/licenses/by/4.0/


There is some evidence of a non-linear association between BMI and hospital costs from 

multivariable and causal studies (e.g. (26, 27)), although the presence or absence of such an 

effect can reflect the specific modelling approach used. Fitting non-linear models in the IV 

settings is complicated when the instruments explain a relatively small proportion of variance in 

the treatment (as in the present example), because any non-linear effects may not be 

detectable in the relatively narrow range over which such effects influence the treatment-

outcome association (69).  

 

To avoid this, we used methods developed by Staley and Burgess (69) to test for and model 

non-linearity in Mendelian Randomization models. This approach involves the following steps. 

First, a control function approach is adopted in which the IV-free distribution of BMI is 

estimated. This is necessary because stratifying on the original distribution may induce an 

association between the IV and the cost outcome that violates the exclusion restriction – this 

possibility arises because BMI is itself a potential outcome intermediate between the IV and the 

cost outcome. The second step involves choosing the number of quantiles into which BMI is to 

be stratified, before the estimation of the local average treatment effect in each stratum. The 

estimation of the treatment-outcome model from these data can then be implemented using 

either a fractional polynomial method and a piecewise linear method. We implemented the 

former method, based on an assumption that the relationship between BMI and costs is more 

likely to be relatively smooth than piecewise in the type of sample analyzed.   

 

Multivariable Mendelian Randomization – BMI and body fat 

 

Multivariable Mendelian Randomization can estimate the direct causal effect of more than one 

treatment (70, 71) and therefore allows potentially pleiotropic exposures to be jointly modelled 

to avoid violations of the exclusion restriction. For this analysis we remain agnostic as to which 

of the two measures of adiposity that we study below- BMI and percentage of body fat – more 

accurately index the health-compromising consequences of fatness. The percentage of body fat 

arguably better captures body composition than does BMI and may better predict particular 

health outcomes (e.g.(20, 72, 73)), but BMI nevertheless retains broad applicability and utility 

as an easily measured variable that offers robust associations with a variety of relevant health 

outcomes (4).   

 

In this application of multivariable Mendelian Randomization, genetic variants for BMI and for 

percentage of body fat are included in the same model. This allows for these biologically related 

treatments to be modelled together, and for the potential mediation of one treatment (BMI for 

example) by another (body fat percentage) to affect the outcome. The coefficients in the 

estimated models reflect the direct causal effect of each treatment, holding the other 
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treatment fixed. These models have considerably lower power to detect causal effects than 

univariable Mendelian Randomization, but the analysis can nevertheless usefully estimate the 

direct effect of BMI on outcome compared to the total (comprising the direct effect of BMI and 

its indirect effects via body fat percentage) estimated in conventional Mendelian 

Randomization (74). 

 

Weak instruments 

 

We estimated the “robust adjusted profile score” model of Zhao et al (75) , which is unbiased in 

the presence of many weak instruments, and is also robust to measurement error in the SNPs-

treatment models. Even if SNPs satisfy the relevance assumption at genome-wide levels of 

significance, it is possible that they are “weak” instruments, in the sense of explaining only a 

small proportion of the variance in the treatment (76, 77). Weak instruments will bias the 

causal estimate in finite samples toward the non-IV estimate (76, 78). The Zhao et al approach 

relies on a version of the InSIDE assumption that underpins the MR-Egger approach, but unlike 

MR-Egger assumes that the pleiotropic effects ��,�
, …�� have mean zero.  

 

Within-family Mendelian Randomization 

 

Finally, we consider within-family Mendelian Randomization. This is intended to address biases 

from dynastic effects (68), although within-family analysis also avoids any biases caused by 

cryptic population structure not accounted for by restricting analysis to homogenous ethnic 

group and the use of genetic principal components.  Dynastic effects refer (in the present 

context) to the direct effect of parents’ BMI on their children. This type of effect may reflect 

non-transmitted alleles (79) – even if children do not receive a BMI-increasing SNP, their 

parents may possess such a SNP and this in turn can influence the environment in their children 

are raised. If present, the main Mendelian Randomization analysis presented here would 

wrongly attribute some of the influence of parental BMI to the child’s BMI-increasing SNPs that 

are included in the analysis. We therefore explored whether bias from dynastic effects could be 

reduced by conducting a within-family Mendelian Randomization in which a family “fixed 

effect” adjusts for environmental conditions created by parents that are shared by offspring 

(38).  

 

Siblings were identified in the UK Biobank by using data on kinship taken from the KING toolset 

and data on the proportion of loci shared between individuals. More details are available in 

Brumpton et al (80). We restricted analysis to the IVW estimator. This is because the MR-Egger, 

median and mode estimators used in the main analysis on the sample of unrelated individuals 

have lower power than the IVW estimator. The sample of included related individuals is 11% (n 
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= 36,196) of that used in the main analysis, and the power of IVW methods is therefore much 

reduced. We estimated fixed effect instrumental variable models, clustering on family units,and  

conditioning on sex and the first ten genetic principal components.  

 

3 Data  

3.1 UK Biobank 

Individual-level data were drawn from the UK Biobank study. This large prospective cohort 

enrolled 503,317 adults (representing a response rate of 5.45%) aged between 37 and 73 

(99.5% of enrollees were aged between 40 and 69) living in England, Scotland and Wales (81).  

At the baseline appointment, participants completed a number of questionnaires, biomarker 

specimens were drawn, physical function was assessed, and consent was given to link these 

data to death registers and healthcare records (34).   

 

Weight and height were measured at the baseline appointment by nurses. Weight was 

measured using weighing devices. Body composition was measured using bio-impedance 

(opposition of alternating current to adipose tissue). Both measures were very similar (Lin’s rho 

p-value <0.001) and impedance-based BMI data were used when the conventional BMI data 

was missing. Observations that had a mean difference between traditional and impedance-

based measures of BMI of more than 5 standard deviations from the mean difference were 

excluded from the analysis. Whole body percentage fat mass calculated from impedance was 

used in the multivariable Mendelian Randomization analysis.   

 

3.2 Measurement of costs 

Admitted patient care episodes, sometimes referred to as inpatient care episodes, were 

obtained from Hospital Episode Statistics (HES) (for English care providers) and from the Patient 

Episode Database for Wales (for Welsh providers) that were linked to UK Biobank. Inpatients 

are those admitted to hospital and who occupy a hospital bed but need not necessarily stay 

overnight (i.e. day case care). Due to differences in the collection and valuation of care in 

Scottish hospitals compared to hospitals in England and Wales (82), only costs from the latter 

two jurisdictions are included in this analysis. Linkages to other forms of care were not available 

at the time of writing.  

 

Each “Finished Consultant Episode” (FCE) can be characterized by a number of variables, most 

importantly procedure codes (83) and diagnosis codes (based on ICD-10 codes (84)). These FCEs 

were converted, using NHS software (85), into Healthcare Resource Groups (HRGs). HRGs are 
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used for casemix-adjusted remuneration of publicly-funded hospitals in England and Wales. 

Unit costs were assigned to each HRG, and inpatient costs per person year of follow-up were 

calculated for each patient on the basis of their recorded FCEs (if any). Further details on the 

cost calculations are given in Dixon et al (86). 

 

Only episodes and UK Biobank baseline appointments occurring on or after 1 April 2006 were 

eligible to be included in the analysis because of changes to the hospital payment system that 

came into effect at that time (87). Data on inpatient episodes was available until patient death, 

patient emigration (rates of which are estimated to be a modest 0.3% (81)), or the censoring 

date for inpatient care data of 31 March 2015. Cost data are reported in 2016/17 pounds 

sterling.  

 

3.3 Genetic data and linkage to phenotypic data 

Genetic data was subject to  quality controls by UK Biobank (88), as well as further in-house 

processing and management (89, 90). Briefly, 488,377 individuals in the UK Biobank were 

successfully genotyped. Removal of individuals was performed as follows: sex mismatches and 

individuals with abnormal numbers of sex chromosomes, related individuals, and those who 

withdrew consent. To avoid biases from population stratification, the sample was restricted to 

individuals of white British ancestry (as determined by self-report or analysis of genetic 

principal components (88)). Bringing together all the genetic and phenotypic data, including the 

cost data necessary to calculate IV models, resulted in 307,048 individuals included in the 

analysis. Further detail on these steps is provided in the Supplementary Material. Related 

individuals were analyzed separately for the within-family Mendelian Randomization analysis.  

 

The most recent and largest genome-wide association study that did not explicitly overlap (91) 

with UK Biobank participants was Locke et al (92). Proxy SNPs were used for any SNPs identified 

in Locke et al (92)  but not present in UK Biobank, provided that a suitable proxy with an R2 

statistic between the proxy and missing SNPs of at least 0.8 was available in UK Biobank. To 

avoid violations of the IV assumptions due to linkage disequilibrium, only SNPs that were 

correlated with each other with an R2 of less than 0.001 within 10,000 kilobases were retained 

for analysis using the MR-Base R package (93).  

 

In total, 79 of the 97 genome-wide significant SNPs identified in Locke et al (92) were included 

in the analysis, following this process and the removal of triallelic and unreconciled palindromic 

SNPs. Locke et al includes groups of heterogenous ancestry (94). The list of 79 SNPs from Locke 

et al included those from studies of both European and non-European ancestry. In sensitivity 

analysis, we re-ran the Mendelian Randomization analysis restricting the SNPs (n=69) from 
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Locke et al to those of only European ancestry. Data on SNPs implicated in fat mass percentage 

used in multivariable analysis described below were taken from Lu et al (95).  

 

Both the individual variants and a summary polygenic allele score created from these variants 

were used in analysis. The allele score was used in tests of association between potential 

omitted variables present at conception that were available in UK Biobank (sex, year of birth, 

month of birth) using linear regression. The allele score was calculated as the sum of the BMI-

increasing alleles for SNPs attaining genome wide significance in Locke et al (92). Each SNP was 

weighted by the size of its effect on BMI.  

 

We compared the Mendelian Randomization estimates to those from multivariable models by 

estimating the effect of a marginal unit of BMI on costs using a generalized linear model (GLM) 

with a gamma family and log link function following Dixon et al (86).3  

 

The causal estimates from the Egger, median and mode estimators were converted from 

standard deviation units of BMI reported in the Locke et al (92) to natural units of BMI by 

dividing by the median standard deviation of BMI (4.6) in that study, as reported in Budu-

Aggrey et al (96). This rescaling allows the results of all estimators to be interpreted as the 

marginal effect of a unit (kg/m2) increase in BMI on inpatient costs. 

 

Analysis was conducted primarily in R using the MR Base package (93). Stata version 15.1 

(StataCorp, College Station, Texas) was used for some elements of the analysis. Analysis code is 

available at github.com/pdixon-econ 

 

4 Results 

Of the 307,048 individuals included in the analysis sample, 54% were female (n=164,903), and 

mean age was 56.9 years (standard deviation: 8.0). Mean inpatient hospital cost per person-

year of follow-up was £479, while median costs were £88. Mean and median follow-up of 

inpatient hospital data was 6.1 years. The most common ICD-10 chapters under which patients 

were admitted (other than for symptoms and findings not otherwise classified) were neoplasms 

(most commonly breast cancer) and musculoskeletal disorders (most commonly arthropathies).  

 

There was evidence of association of the allele score with nine of the first ten principal 

components (largest p-value, from the eighth principal component=0.11)) but weaker evidence 

                                                      
3 The estimated effect of a marginal unit BMI differ between those reported in Dixon et al because the sample here is restricted 

to those with valid genetic data  
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of association with month (p=0.464), year of birth (p=0.07) and sex (p=0.06). Sex and all ten 

principal components were included as covariates in all Mendelian Randomization models. 

 

Results indicate that the effect of an additional unit of BMI is approximately 58% higher using 

IVW methods than under multivariable analyses (Table 1).  

 

Table 1 Mendelian Randomization and multivariable estimates of marginal effect of 

an additional unit of BMI on per person year inpatient hospital costs 

 Beta (£) SE P Value 

Estimator    
Inverse variance weighted random effects 

estimator (IVW RE) 

21.22  3.50  <0.001 

Multivariable estimate 13.47    0.49 <0.001 

Note: We report p-values smaller than 0.001 as <0.001. Larger p-values are reported to two decimal places 

However, there is evidence of heterogeneity (Cochran’s Q =107.8, p-value for null of no 

heterogeneity =0.01) in the base IVW results, one cause of which may be pleiotropy in violation 

of the exclusion restriction. Heterogeneity is apparent in the forest plot (Figure 1). A forest plot 

without heterogeneity would show all variants “lining up” around the same point estimate of 

effect, subject to sampling variation which will mean that not all variants would lie on precisely 

the same line even in the complete absence of heterogeneity.  
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Figure 1 Forest plot of SNPs

 

The two diamonds at the bottom of the plot represent the point estimate the IVW estimate 

from using all variants together with a 95% confidence interval, and for contrast the MR-Egger 

point estimate with confidence intervals. The results of MR-Egger and other methods to adjust 

for pleiotropy are indicated in Table 2, again presented for comparison alongside the base IVW 

results.  

 

Table 2 Results of primary Mendelian Randomization models 

 Beta (£) SE P-value 

Estimator    

IVW RE (for reference) 21.21  3.50  <0.001 

MR-Egger 7.41  8.44  0.38 

Penalized weighted median 18.85  5.00  <0.001 

Weighted mode 16.75 6.08 0.01 

 

Figure 2 presents a scatter plot summarising these estimates. All estimators identify a positive 

effect of BMI on hospital costs, although the MR-Egger estimator is consistent with a null effect. 

The MR-Egger Cochran’s Q test of heterogeneity was 103.44 (p-value 0.02) and the intercept of 
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this model was estimated as £1.93 (standard error: 1.07, p-value: 0.08). The IVW estimate is 

larger than all other estimates, although similar to the penalized weighted median estimate. If 

pleiotropy is present in the IVW model but not in the penalized weighted median model, it 

appears to be inflating somewhat the effect estimates, which would be the case if some of the 

included SNPs act on other conditions or traits that tend to increase inpatient costs on average.  

  

Figure 2 Scatter plot of estimators  

  

The InSIDE assumption, which must be satisfied for unbiased MR-Egger estimates, is most likely 

to hold where the violations of the IV assumptions are caused by pleiotropy that does not 

influence omitted variables in the BMI-cost association. In practice, there is probably good 

reason to suspect violations of this type, as any variant that influences, for example, mental 

health may well be an omitted variable that independently influences both BMI and inpatient 

costs. In the case of this hypothetical example, instrument strength (measured by the 

association of BMI) may be correlated with a direct effect of the SNP (via mental health) on the 

cost outcome. Thus, any variant included amongst the 79 here that causes people to have 

inpatient care may well induce violations of InSIDE.  
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It is notable that the median and mode estimators are reasonably similar, despite the 

differences in the assumptions underlying each method. This is suggestive evidence that a 

similar causal effect is perhaps being identified by these two methods.  

 

Models using a restricted set of SNPs indicated lower effects sizes and greater differences 

between the median and mode estimators (Table 3).  

 

Table 3 Results of all Mendelian Randomization models with restricted SNP list 

 Beta (£) SE P-value 

Estimator    
IVW RE for reference 18.70  3.80  <0.001 

MR-Egger 6.47  11.02 0.56 

Penalized weighted median 16.10  5.03 0.001 

Weighted mode 7.48 8.41 0.38 

 

Heterogeneity was also somewhat lower when using the restricted list of SNPs, with Cochran’s 

Q for the IVW model of 88.32 (p-value=0.04).  

 

4.1 Other sensitivity analyses 

Using the full analysis sample, and dividing the IV-free BMI distribution into 100 quantiles, there 

was little evidence of non-linearity. There was evidence consistent with the null for a quadratic 

term (p=0.80), for differences in local average treatment effect estimates across quantiles 

(p=0.25)), for heterogeneity in the associations between the instrument and BMI across 

quantiles (p=0.09) and of a linear trend in the association between the instrument and BMI 

across quantiles (p=0.43). We conclude that the association between adiposity and inpatient 

hospital costs for this sample is approximately linear.   

 

There was modest attenuation of the effect of BMI on costs when including body fat 

percentage in a multivariable Mendelian Randomization analysis. The causal coefficient on the 

body fat percentage IV was consistent with the null, while the effect estimate on BMI was 

within the confidence intervals of the base IVW estimate (Table 4).   

 

Table 4 Results of multivariable Mendelian Randomization analysis 

 Beta (£) SE P-value 

Genetic variants    
IVW RE of BMI only (for reference) 21.21  3.50  <0.001 
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BMI 22.40    9.12 0.01 

Body fat percentage -2.75 13.31 0.84 

 

This suggests that any direct effect of body fat percentage on hospital costs is limited, and body 

fat percentage probably does not mediate the effects of body mass index on hospital costs. If 

body fat percentage were a mediator, the causal effect of BMI would change much more 

markedly between the univariable and multivariable Mendelian Randomization analyses.    

 

Finally, application of the robust adjusted profile score method of Zhao et al (75) did not 

substantially alter the base IVW estimates of the causal effect.  

 

Table 5 Results of robust adjusted profile score  

 Beta SE P-value 

Genetic variants    
Base IVW estimates (for reference) 21.21  3.50  <0.001 

Robust adjusted profile score  21.69 3.06 <0.001 

 

Subject to the assumptions of the method, particularly that all pleiotropic effects have mean 

zero, this suggests that weak instruments and measurement error in the SNP-treatment 

association are not likely to be material sources of bias, at least for the base case results.  

 

For the within-family analysis, 36,196 individuals were observed in 17,864 family units. The 

estimated effect of an additional unit of BMI was £3.46 (standard error 4.17, p-value 0.41, 95% 

confidence interval -£4.71 to £11.63). The effect size estimated is much smaller than in all other 

analyses and is consistent with the null.  This could suggest that dynastic biases are responsible 

for the apparently material effect of BMI on inpatient costs in the main analysis using unrelated 

individuals. However, power to reject the null in this sample is weak, and it is possible that this 

finding is a false negative.  

 

Finally, we consider disaggregation of all costs into elective costs, non-elective costs and other 

costs (Table 6). Effect sizes for an additional unit of BMI were larger in absolute terms for 

elective costs than for non-elective costs, and heterogeneity was more pronounced under the 

former (Cochran’s Q 107.2, p-value = 0.01) than the latter (Cochran’s Q ,p-value = 0.12). These 

values were both lower than the corresponding value using all inpatient in the main analysis 

(Cochran’s Q=107.8 , p-value=0.01), although the value of the statistic for inpatient-only costs 

was very similar to that for all costs. Heterogeneity for other costs only was similar to that for 

non-elective costs (Cochran’s Q=93.9, p-value=0.11). 
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Table 6 Disaggregated cost estimates  

 Beta SE P-value 

Cost outcome   
 

Base IVW estimates (all costs) 21.21  3.50  <0.001 

Elective costs only 17.96   4.13 <0.001 

Non-elective costs only 9.00 3.80 0.02 

“Other” costs only  4.17 3.13 0.18 

 

The largest effect of BMI appears to be on elective care costs, for which estimated 

heterogeneity (as measured by Cochran’s Q) was similar to that for overall aggregate costs. 

While suggestive, there are a few reasons to be cautious in making this kind of interpretation. 

First, the categorisations used are somewhat arbitrary. Second, comparing the disaggregated 

costs both to each other and to all costs involves comparing different groups of individuals, 

since some cohort members report costs only in one subcategory of costs.  

 

5 Discussion  

The well-established positive association between adiposity and hospital costs appears to be 

causal. The results presented here using a novel Mendelian Randomization methodology 

suggest that this effect of a marginal unit of BMI is higher than that suggested by multivariable 

analyses. To our understanding, this is the first application of Mendelian Randomization to 

studying hospital costs as an outcome. Black et al ( (28)) describe their biological relative 

instrumental variable analysis as Mendelian Randomization, but their work did not otherwise 

use data on genetic variants and is perhaps best considered as a distinct type of study design.  

Below, we briefly consider potential reasons for a narrower difference between IV estimates 

and multivariable estimates than is reported elsewhere, before considering the generalizability 

of the results, and finally potential remaining biases that may affect our estimates. 

 

5.1 Comparison with other findings 

Estimated differences between IV and multivariable models are smaller than those obtained 

from analyses using biological relatives as instruments, albeit these biological instrument 

studies were conducted on samples that may differ quite markedly from the sample studied 

here.  Regression dilution (97), caused by measurement error in BMI, would tend to inflate 

differences between multivariable and IV analysis, since the multivariable results may be biased 

downward. One possible basis for the much narrower difference reported here is that the 
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multivariable analyses are based on high-quality independent (i.e. not self-reported) 

measurements of weight and height.  

 

There is a lack of a “gold standard” against which to judge multivariable and IV models or the 

various Mendelian Randomization estimators. Methods are being developed to choose 

amongst MR estimators including  machine learning (55) and principled approaches to the 

treatment of “outlier” SNPs (98), although a degree of judgement and some contextual 

reasoning seems unavoidable in interpreting Mendelian Randomization analysis.   

 

Despite the absence of a clear means to choose between types of estimator, policy evaluations 

and other quantitative analysis requiring estimates of the marginal cost of a unit of BMI should 

treat multivariable estimates as a lower bound. Analysts should consider including higher 

estimates of the cost of a marginal BMI unit in primary analysis.  

 

5.2 Generalizability of findings 

Are the results from this analysis likely to be generalizable to wider populations? Two issues 

merit consideration. The first is whether the Mendelian Randomization estimates are 

themselves helpful in understanding the effect of BMI on inpatient hospital costs. The second is 

whether the particular features of the UK Biobank sample, which is healthier and wealthier 

than the population from which it is drawn because of non-random participation, may itself 

create bias.  

 

On the first point, Mendelian Randomization methods estimate, in this case, the effects on 

inpatient costs of a life-long exposure to BMI-increasing SNPs, rather than a temporary or acute 

effect of higher or lower BMI. We use the term “life-long” to refer to the effect of genetic 

variation determined at conception and assume that the association between the genetic 

variants and BMI does not change with age (99).The effect sizes estimated under all but the 

MR-Egger Mendelian Randomization analyses were larger in magnitude than the multivariable 

estimates, which suggests that they may reflect a cumulative exposure to higher BMI (100).   

 

It is plausible that lifelong exposure to higher BMI, randomly determined at conception, could 

manifest in higher rates of inpatient admission and the use of more complex and expensive 

treatments amongst the middle-aged and early-old aged individuals represented in the UK 

Biobank cohort. As BMI is potentially modifiable, this suggests that policies targeting reductions 

in BMI (where clinically appropriate to do so) could reduce use of hospital resources (amongst 

other impacts on morbidity and mortality (101)).  
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The results of our analysis are most relevant to policy analyses effecting relatively modest 

changes in BMI, since the amount of variance in BMI explained by the SNPs used is less than 

2%. We note that the more recent Yengo et al (91) GWAS explains a higher proportion of 

variance in BMI but has a substantial overlap with the UKBiobank, and therefore could not be 

used in this analysis.  A further consideration is that included SNPs, and common genetic 

variants in general, may not satisfy the stable unit treatment value assumption in the sense that 

genetically influenced BMI may not have precisely the same impact on downstream cost 

outcomes than BMI influenced by drug therapies, diet interventions or exercise regimen (78). 

The difference in timing of effect between, for example, mid-life interventions targeting BMI 

and genetically elevated BMI (determined at conception) is another example of how Mendelian 

Randomization may not satisfy the stable unit treatment value assumption.   

 

The second issue concerning the generalizability of our findings relates to the similarity or 

otherwise of the UK Biobank cohort to the wider population, and the implications that any 

differences may have on the generalisability of the results presented here. Relative to the UK 

population participants in the cohort study had lower levels of mortality (34), lower rates of 

health-compromising behaviour, and are better educated (81). BMI and use of hospital 

resources may themselves influence participation in the study (since sicker individuals were less 

likely to participate), and some degree of selection bias is possible (102). This specific bias goes 

by different names, including “collider bias” (103-105) and bias due to “bad controls” (106).   

 

This selection appears to be problematic (in terms of bias and Type 1 error rates) for Mendelian 

Randomization only when selection effects are themselves particularly large (107). Since the 

size of this effect will generally be unknown (because the mechanism driving selection is 

unknown) it is not possible to be definitive about its scope in the present context. Gkatzionis 

and Burgess (108) suggest, on the basis of their simulations, that selection in general is 

probably less important as a source of bias than, for example, violations of the exclusion 

restriction caused by pleiotropy. It is also important to note that selection will also affect the 

non-causal multivariable estimates of a marginal unit of BMI presented alongside the causal IV 

analysis. It is possible that the precise figure for a marginal unit of BMI under either method 

may differ in other cohorts but nevertheless the ratio of the causal to non-causal costs will be 

stable when studied in other contexts.   

 

5.3 Potential remaining biases 

Three other potential sources of bias may be present. The first is bias from assortative mating, 

which refers to departures from random mating (109).  The simulation and modelling study of 

Hartwig et al (110) found that bias from assortative mating would affect all forms of Mendelian 
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Randomization analysis described above, including methods that attempt to account for 

pleiotropic SNPs.  

 

Bias from assortative mating can overestimate SNPs-BMI and SNP-inpatient costs associations. 

This bias is larger when the strength of non-random assortment is high, the outcome is highly 

heritable and when the process of non-random mating has been present for a number of 

generations. In the absence of data relating to these influences, we simply note here that this 

bias may be present to some extent in the results presented here, and that data on family trios 

(parents and offspring) would help assess if assortative mating was present. 

 

The second source of bias is from dynastic effects. We conducted a within-family Mendelian 

Randomization analysis to assess this bias. Results from these models were consistent with the 

null, but were much more imprecise than the other estimated models. The power offered by 

this analysis is a function of unknown variables, including the proportion of variance in offspring 

BMI that is explained by parental BMI. The dynastic bias is greater the larger is this effect. 

Evidence from Kong et al (79) find that the effect size of non-transmitted BMI-increasing alleles 

to be much smaller than the effect size for transmitted alleles (as modelled in the main 

analysis), which suggests dynastic effects may not be a large source of bias. Larger sample sizes, 

potentially involving meta-analysis across cohorts where within-family Mendelian 

Randomization is possible, would provide the one means to definitively understand whether 

power or substantive dynastic biases explain the null results from the within-family models 

estimated here.  

 

Finally, Mendelian Randomization analysis may be confounded by cryptic geographic or 

population structure. There is some evidence, for example, that geographic structure is present 

in the UK Biobank sample (111). This could bias associations between health outcomes and 

genetic data, albeit that our inclusion of genetic principal components will address some but 

potentially not all such biases.    

 

6 Conclusion 

We have reported the first Mendelian Randomization analysis, using data on individual patients 

and specific SNPs, to estimate the causal effect of adiposity on inpatient hospital costs. Results 

suggest that multivariable analysis probably understates the effect of BMI on hospital costs.   

Mendelian Randomization is a feasible and potentially valuable form of analysis to answer 

these and related questions in health economics. The methods could be readily applied in 

modelling outcomes for other traits, behaviours, circumstances and diseases.   

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/589820doi: bioRxiv preprint 

https://doi.org/10.1101/589820
http://creativecommons.org/licenses/by/4.0/


Declarations 

Funding statement: PD, GDS, SH and NMD are members of the MRC Integrative Epidemiology 

Unit at the University of Bristol which is supported by the Medical Research Council and the 

University of Bristol (MC_UU_12013/1, MC_UU_12013/9). PD acknowledges support from a 

Medical Research Council Skills Development Fellowship (MR/P014259/1). SH was supported by 

Health Foundation grant “Social and economic consequences of health status - Causal inference 

methods and longitudinal, intergenerational data” 

 

Conflict of interest statement: The authors declare no conflicts of interest. 

 

Acknowledgments: The authors are grateful for comments on this work to seminar participants 

at Cambridge, Cornell, Newcastle and Oxford, and to conference participants at the Winter 

2019 Health Economics Study Group meeting at York.  

 

References 

 

 

1. Cawley J. An economy of scales: A selective review of obesity's economic causes, 
consequences, and solutions. Journal of health economics. 2015;43:244-68. 
2. Finkelstein E, Yang H. Obesity and medical costs. In: Cawley J, editor. The Oxford 
HAndbook of the Social Science of Obesity. New York: Oxford University Press; 2011. 
3. Withrow D, Alter DA. The economic burden of obesity worldwide: a systematic review of 
the direct costs of obesity. Obesity reviews : an official journal of the International Association 
for the Study of Obesity. 2011;12(2):131-41. 
4. Corbin LJ, Timpson NJ. Body mass index: Has epidemiology started to break down causal 
contributions to health and disease? Obesity. 2016;24(8):1630-8. 
5. Corbin LJ, Richmond RC, Wade KH, Burgess S, Bowden J, Smith GD, et al. Body mass 
index as a modifiable risk factor for type 2 diabetes: Refining and understanding causal 
estimates using Mendelian randomisation. Diabetes. 2016. 
6. Lyall DM, Celis-Morales C, Ward J, Iliodromiti S, Anderson JJ, Gill JMR, et al. Association 
of Body Mass Index With Cardiometabolic Disease in the UK Biobank: A Mendelian 
Randomization Study. JAMA cardiology. 2017;2(8):882-9. 
7. Emdin CA, Khera AV, Natarajan P, et al. Genetic association of waist-to-hip ratio with 
cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA. 2017;317(6):626-34. 
8. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden 
of the projected obesity trends in the USA and the UK. The Lancet. 2011;378(9793):815-25. 
9. Lehnert T, Sonntag D, Konnopka A, Riedel-Heller S, Konig HH. Economic costs of 
overweight and obesity. Best Pract Res Clin Endocrinol Metab. 2013;27(2):105-15. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/589820doi: bioRxiv preprint 

https://doi.org/10.1101/589820
http://creativecommons.org/licenses/by/4.0/


10. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, 
regional, and global trends in body-mass index since 1980: systematic analysis of health 
examination surveys and epidemiological studies with 960 country-years and 9·1 million 
participants. The Lancet. 2011;377(9765):557-67. 
11. N. C. D. Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 
1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 
million participants. The Lancet. 2016;387(10026):1377-96. 
12. Davey Smith G. A fatter, healthier but more unequal world. The Lancet. 
2016;387(10026):1349-50. 
13. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, 
and national prevalence of overweight and obesity in children and adults during 
1980&#x2013;2013: a systematic analysis for the Global Burden of Disease Study 2013. The 
Lancet. 2014;384(9945):766-81. 
14. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, et al. Maternal and 
child undernutrition and overweight in low-income and middle-income countries. The Lancet. 
2013;382(9890):427-51. 
15. Government Office for Science. Tackling Obesities: Future Choices – Project Report 2 
Edition. 2007. 
16. Avenell A, Broom J, Brown TJ, Poobalan A, Aucott L, Stearns SC, et al. Systematic review 
of the long-term effects and economic consequences of treatments for obesity and implications 
for health improvement. Health technology assessment (Winchester, England). 2004;8(21):iii-iv, 
1-182. 
17. Kraak VA, Liverman CT, Koplan JP. Preventing childhood obesity: health in the balance: 
National Academies Press; 2005. 
18. Auld MC, Grootendorst P. Challenges for causal inference in obesity research. In: Cawley 
J, editor. The Oxford Handbook of the Social Science of Obesity. New York: Oxford University 
Press; 2011. 
19. Cawley J, Maclean JC, Hammer M, Wintfeld N. Reporting error in weight and its 
implications for bias in economic models. Economics & Human Biology. 2015;19:27-44. 
20. Burkhauser RV, Cawley J. Beyond BMI: The value of more accurate measures of fatness 
and obesity in social science research. Journal of Health Economics. 2008;27(2):519-29. 
21. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body Fatness 
and Cancer — Viewpoint of the IARC Working Group. New England Journal of Medicine. 
2016;375(8):794-8. 
22. Tisdale MJ. Cachexia in cancer patients. Nature Reviews Cancer. 2002;2:862. 
23. Taylor A, Richmond R, Palviainen T, Loukula A, Kaprio J, Relton C, et al. The effect of 
body mass index on smoking behaviour and nicotine metabolism: a Mendelian randomization 
study. bioRxiv. 2018. 
24. Carreras-Torres R, Johansson M, Haycock PC, Relton CL, Davey Smith G, Brennan P, et al. 
Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ. 
2018;361. 
25. Davey Smith G, Sterne JAC, Fraser A, Tynelius P, Lawlor DA, Rasmussen F. The 
association between BMI and mortality using offspring BMI as an indicator of own BMI: large 
intergenerational mortality study. BMJ. 2009;339. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/589820doi: bioRxiv preprint 

https://doi.org/10.1101/589820
http://creativecommons.org/licenses/by/4.0/


26. Cawley J, Meyerhoefer C. The medical care costs of obesity: An instrumental variables 
approach. Journal of Health Economics. 2012;31(1):219-30. 
27. Cawley J, Meyerhoefer C, Biener A, Hammer M, Wintfeld N. Savings in Medical 
Expenditures Associated with Reductions in Body Mass Index Among US Adults with Obesity, by 
Diabetes Status. Pharmacoeconomics. 2015;33(7):707-22. 
28. Black N, Hughes R, Jones AM. The health care costs of childhood obesity in Australia: An 
instrumental variables approach. Economics & Human Biology. 2018;31:1-13. 
29. Kinge JM, Morris S. The Impact of Childhood Obesity on Health and Health Service Use. 
Health services research. 2018;53(3):1621-43. 
30. Lawlor D, Richmond R, Warrington N, McMahon G, Davey Smith G, Bowden J, et al. 
Using Mendelian randomization to determine causal effects of maternal pregnancy 
(intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing 
them. Wellcome open research. 2017;2:11-. 
31. Dixon P, Davey Smith G, von Hinke S, Davies NM, Hollingworth W. Estimating Marginal 
Healthcare Costs Using Genetic Variants as Instrumental Variables: Mendelian Randomization in 
Economic Evaluation. Pharmacoeconomics. 2016;34(11):1075-86. 
32. Evans DM, Davey Smith G. Mendelian Randomization: New Applications in the Coming 
Age of Hypothesis-Free Causality. Annual Review of Genomics and Human Genetics. 
2015;16(1):327-50. 
33. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology 
contribute to understanding environmental determinants of disease? International journal of 
epidemiology. 2003;32(1):1-22. 
34. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: An Open 
Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and 
Old Age. PLoS Med. 2015;12(3):e1001779. 
35. Collins R. What makes UK Biobank special? The Lancet.379(9822):1173-4. 
36. von Hinke S, Davey Smith G, Lawlor DA, Propper C, Windmeijer F. Genetic Markers as 
Instrumental Variables. Journal of Health Economics. In press,. 
37. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal 
inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-98. 
38. Pingault JB, O'Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic 
data to strengthen causal inference in observational research. Nature reviews Genetics. 2018. 
39. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a 
guide, glossary, and checklist for clinicians. BMJ. 2018;362. 
40. Davey Smith G. Capitalizing on Mendelian randomization to assess the effects of 
treatments. Journal of the Royal Society of Medicine. 2007;100(9):432-5. 
41. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and 
complex traits. Nature reviews Genetics. 2005;6(2):95-108. 
42. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA, et al. 
Genome-wide association studies for complex traits: consensus, uncertainty and challenges. 
Nature reviews Genetics. 2008;9(5):356-69. 
43. Bush WS, Moore JH. Chapter 11: Genome-Wide Association Studies. PLOS 
Computational Biology. 2012;8(12):e1002822. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/589820doi: bioRxiv preprint 

https://doi.org/10.1101/589820
http://creativecommons.org/licenses/by/4.0/


44. Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, et al. 
Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC 
genomics. 2010;11:724-. 
45. . !!! INVALID CITATION !!! {}. 
46. Cardon LR, Palmer LJ. Population stratification and spurious allelic association. The 
Lancet. 2003;361(9357):598-604. 
47. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal 
components analysis corrects for stratification in genome-wide association studies. Nature 
genetics. 2006;38(8):904. 
48. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-
forgotten) practices: the design, analysis, and interpretation of Mendelian randomization 
studies. The American Journal of Clinical Nutrition. 2016. 
49. Davey Smith G, Lawlor DA, Harbord R, Timpson N, Day I, Ebrahim S. Clustered 
Environments and Randomized Genes: A Fundamental Distinction between Conventional and 
Genetic Epidemiology. PLoS Med. 2007;4(12):e352. 
50. Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian 
randomization: Using genes as instruments for making causal inferences in epidemiology. 
Statistics in Medicine. 2008;27(8):1133-63. 
51. Visscher Peter M, Brown Matthew A, McCarthy Mark I, Yang J. Five Years of GWAS 
Discovery. The American Journal of Human Genetics. 2012;90(1):7-24. 
52. Paaby AB, Rockman MV. The many faces of pleiotropy. Trends in Genetics. 
2013;29(2):66-73. 
53. Stearns FW. One Hundred Years of Pleiotropy: A Retrospective. Genetics. 
2010;186(3):767-73. 
54. Lobo I. Pleiotropy: One Gene Can Affect Multiple Traits. Nature Education,. 2008;1(1). 
55. Hemani G, Bowden J, Haycock PC, Zheng J, Davis O, Flach P, et al. Automating Mendelian 
randomization through machine learning to construct a putative causal map of the human 
phenome. bioRxiv. 2017. 
56. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: 
effect estimation and bias detection through Egger regression. International journal of 
epidemiology. 2015;44(2):512-25. 
57. Angrist JD, Krueger AB. The Effect of Age at School Entry on Educational Attainment: An 
Application of Instrumental Variables with Moments from Two Samples. Journal of the 
American Statistical Association. 1992;87(418):328-36. 
58. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with 
multiple genetic variants using summarized data. Genetic epidemiology. 2013;37(7):658-65. 
59. Cochran WG. The Comparison of Percentages in Matched Samples. Biometrika. 
1950;37(3/4):256-66. 
60. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in 
medicine. 2002;21(11):1539-58. 
61. Sargan JD. The Estimation of Economic Relationships using Instrumental Variables. 
Econometrica. 1958;26(3):393-415. 
62. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in 
Mendelian randomization studies. Human Molecular Genetics. 2018;27(R2):R195-R208. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/589820doi: bioRxiv preprint 

https://doi.org/10.1101/589820
http://creativecommons.org/licenses/by/4.0/


63. Davey Smith G, Hemani G, Bowden J. Invited Commentary: Detecting Individual and 
Global Horizontal Pleiotropy in Mendelian Randomization—A Job for the Humble Heterogeneity 
Statistic? American journal of epidemiology. 2018;187(12):2681-5. 
64. Conley TG, Hansen CB, Rossi PE. Plausibly Exogenous. The Review of Economics and 
Statistics. 2010;94(1):260-72. 
65. Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA. Detection and interpretation of 
shared genetic influences on 42 human traits. Nature genetics. 2016;48(7):709-17. 
66. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian 
Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic 
Epidemiology. 2016;40(4):304-14. 
67. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian 
randomization via the zero modal pleiotropy assumption. International journal of epidemiology. 
2017;46(6):1985-98. 
68. Fletcher JM. The promise and pitfalls of combining genetic and economic research. 
Health Economics. 2011;20(8):889-92. 
69. Staley JR, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-
outcome relationship using instrumental variables with application to Mendelian 
randomization. Genetic Epidemiology. 2017;41(4):341-52. 
70. Burgess S, Thompson SG. Multivariable Mendelian Randomization: The Use of 
Pleiotropic Genetic Variants to Estimate Causal Effects. American journal of epidemiology. 
2015;181(4):251-60. 
71. Burgess S, Freitag DF, Khan H, Gorman DN, Thompson SG. Using multivariable 
Mendelian randomization to disentangle the causal effects of lipid fractions. PLoS One. 
2014;9(10):e108891. 
72. Yusuf S, Hawken S, Ôunpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and 
the risk of myocardial infarction in 27 000 participants from 52 countries: a case-control study. 
The Lancet. 2005;366(9497):1640-9. 
73. Kragelund C, Omland T. A farewell to body-mass index? The Lancet. 
2005;366(9497):1589-91. 
74. Sanderson E, Davey Smith G, Windmeijer F, Bowden J. An examination of multivariable 
Mendelian randomization in the single-sample and two-sample summary data settings. 
International journal of epidemiology. 2018. 
75. Zhao Q, Wang J, Bowden J, Small DS. Statistical inference in two-sample summary-data 
Mendelian randomization using robust adjusted profile score. arXiv preprint arXiv:180109652. 
2018. 
76. Davies NM, von Hinke S, Farbmacher H, Burgess S, Windmeijer F, Davey Smith G. The 
many weak instruments problem and Mendelian randomization. Statistics in Medicine. 
2015;34(3):454-68. 
77. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for 
Mendelian randomization. Statistical Methods in Medical Research. 2015. 
78. Burgess S, Thompson S. Mendelian Randomization: Methods for Using Genetic Variants 
in Causal Estimation. Boca Raton, Florida: CRC Press; 2015. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/589820doi: bioRxiv preprint 

https://doi.org/10.1101/589820
http://creativecommons.org/licenses/by/4.0/


79. Kong A, Thorleifsson G, Frigge ML, Vilhjalmsson BJ, Young AI, Thorgeirsson TE, et al. The 
nature of nurture: Effects of parental genotypes. Science (New York, NY). 2018;359(6374):424-
8. 
80. Brumpton B, Sanderson E, Hartwig FP, Harrison S, Cho Y, Howe L, et al. Within-family 
studies for Mendelian randomization: avoiding dynastic and population stratification biases 
2019. 
81. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison of 
Sociodemographic and Health-Related Characteristics of UK Biobank Participants with the 
General Population. American journal of epidemiology. 2017. 
82. Information Services Division NHS National Services Scotland. Scottish National Tariff 
Project 2010 [Available from: http://www.isdscotlandarchive.scot.nhs.uk/isd/3552.html 
[Accessed 5 July 2018]. 
83. UK Biobank. Data providers and dates of data availability 2017 [Available from: 
https://biobank.ctsu.ox.ac.uk/crystal/exinfo.cgi?src=Data_providers_and_dates. 
84. World Health Organization. The ICD-10 classification of mental and behavioural 
disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization; 
1992. 
85. NHS. Reference Costs Grouper 2016 [Available from: 
http://content.digital.nhs.uk/casemix/costing. 
86. Dixon P, Davey Smith G, Hollingworth W. The Association Between Adiposity and 
Inpatient Hospital Costs in the UK Biobank Cohort. Applied Health Economics and Health Policy. 
2018. 
87. Department of Health. A simple guide to Payment by Results. Leeds; 2012. 
88. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank 
resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203-9. 
89. Mitchell R, Hemani G, Dudding T, Paternoster L. UK Biobank Genetic Data: MRC-IEU 
Quality Control, Version 1. University of Bristol; 2017. 
90. Harrison S. The Causal Effects of Health Measures on Social and Economic Outcomes in 
UK Biobank. 2019. 
91. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis 
of genome-wide association studies for height and body mass index in approximately 700000 
individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641-9. 
92. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body 
mass index yield new insights for obesity biology. Nature. 2015;518(7538):197-206. 
93. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base 
platform supports systematic causal inference across the human phenome. eLife. 
2018;7:e34408. 
94. Berg JJ, Harpak A, Sinnott-Armstrong N, Joergensen AM, Mostafavi H, Field Y, et al. 
Reduced signal for polygenic adaptation of height in UK Biobank. bioRxiv. 2018:354951. 
95. Lu Y, Day FR, Gustafsson S, Buchkovich ML, Na J, Bataille V, et al. New loci for body fat 
percentage reveal link between adiposity and cardiometabolic disease risk. Nature 
Communications. 2016;7:10495. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/589820doi: bioRxiv preprint 

https://doi.org/10.1101/589820
http://creativecommons.org/licenses/by/4.0/


96. Budu-Aggrey A, Brumpton B, Tyrrell J, Watkins S, Modalsli EH, Celis-Morales C, et al. 
Evidence of a common causal relationship between body mass index and inflammatory skin 
disease: a Mendelian Randomization study. bioRxiv. 2018. 
97. Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and regression dilution 
bias. BMJ. 2010;340. 
98. Cho Y, Haycock PC, Gaunt TR, Zheng J, Morris AP, Davey Smith G, et al. MR-TRYX: 
Exploiting horizontal pleiotropy to infer novel causal pathways. bioRxiv. 2018:476085. 
99. Swanson SA, Labrecque JA. Interpretation and Potential Biases of Mendelian 
Randomization Estimates With Time-Varying Exposures. American journal of epidemiology. 
2018;188(1):231-8. 
100. Holmes MV, Ala-Korpela M, Davey Smith G. Mendelian randomization in 
cardiometabolic disease: challenges in evaluating causality. Nature Reviews Cardiology. 
2017;14:577. 
101. Wade KH, Carslake D, Sattar N, Davey Smith G, Timpson NJ. BMI and Mortality in UK 
Biobank: Revised Estimates Using Mendelian Randomization. Obesity. 2018;26(11):1796-806. 
102. Hughes RA, Davies NM, Davey Smith G, Tilling K. Selection bias in instrumental variable 
analyses. bioRxiv. 2018. 
103. Glymour MM. Using causal diagrams to understand common problems in social 
epidemiology. In: Oakes JM, Kaufman JS, editors. Methods in Social Epidemiology. San 
Francisco: Jossey-Bass-John Wiley & Sons 2006. p. 393-428. 
104. Munafò MR, Tilling K, Taylor AE, Evans DM, Davey Smith G. Collider scope: when 
selection bias can substantially influence observed associations. International journal of 
epidemiology. 2017:dyx206-dyx. 
105. Spirtes P, Glymour CN, Scheines R, Heckerman D, Meek C, Cooper G, et al. Causation, 
prediction, and search: MIT press; 2000. 
106. Angrist J, Pischke J-S. Mostly harmless econometrics: An empiricist's companion. Oxford: 
Princeton University Press; 2009. 
107. Hughes R, Davies N, Davey Smith G, Tilling K. Selection bias when estimating average 
treatment effects using one-sample instrumental variable analysis. Epidemiology. 2018. 
108. Gkatzionis A, Burgess S. Contextualizing selection bias in Mendelian randomization: how 
bad is it likely to be? International journal of epidemiology. 2018:dyy202-dyy. 
109. Vandenberg SG. Assortative mating, or who marries whom? Behavior Genetics. 
1972;2(2):127-57. 
110. Hartwig FP, Davies NM, Davey Smith G. Bias in Mendelian randomization due to 
assortative mating. Genetic Epidemiology. 2018;42(7):608-20. 
111. Haworth S, Mitchell R, Corbin L, Wade KH, Dudding T, Budu-Aggrey A, et al. Apparent 
latent structure within the UK Biobank sample has implications for epidemiological analysis. 
Nature Communications. 2019;10(1):333. 
 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/589820doi: bioRxiv preprint 

https://doi.org/10.1101/589820
http://creativecommons.org/licenses/by/4.0/

