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ABSTRACT 13 

The volume and pace of data accumulation from high-throughput sequencing studies 14 

have been amplified by recent rapid technological advances in biological sciences. 15 

Visualization of genomic data is essential for quality control, exploration, and 16 

interpretation. Here, we describe a user-friendly visualization tool for variant call format 17 

(VCF) files with which the users can interactively evaluate and share genomic data, as 18 

well as create publication quality graphics. 19 

 20 

1. INTRODUCTION 21 

Next generation sequencing produces an enormous amount of genomic data. The 22 

volume of the genomic information varies based on the study. Many different types of file 23 

formats are generated during the variant discovery process. One file format commonly 24 

used in sequence analysis is the variant call format (VCF). It is a text file format generated 25 

during the variant calling process that contains information about variant positions in the 26 

genome. The structure includes variant information such as genotype and read depth 27 
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data for samples at each genomic position. Read depth is a measure of sequencing 28 

coverage at each variant position for each patient. VCF files include lines of meta-29 

information, a header containing sample IDs, and data rows for specific variant genomic 30 

locations. Since next generation sequencing is becoming increasingly accessible to 31 

researchers and clinicians, the ability to easily retrieve and visualize genomic data from 32 

VCF files is needed. This is beneficial for translational and personalized medicine.  33 

 34 

Interpreting data from VCF files presents several challenges. The ability to process 35 

VCF files is limited by computational resources as the file size is often very large. To 36 

facilitate memory efficient data retrieval, existing VCF file parsing and visualization tools 37 

require users to preprocess their VCF files. This entails compressing and sorting VCF 38 

files by genomic position before either subsetting the file with an external program, such 39 

as VCFTools1, or indexing the files with Tabix2. Further, the VCF data structure is dense 40 

and difficult to interpret in its raw data format and requires data querying to draw insights. 41 

To facilitate efficient interpretation and data sharing, the need exists for user-friendly VCF 42 

file parsing and visualization tools.  43 

 44 

We introduce “Visualization of Variants” (VIVA), a command line utility and Jupyter 45 

Notebook3 based tool for evaluating and sharing genomic data for variant analysis and 46 

quality control of sequencing experiments from VCF files. VIVA delivers flexibility, 47 

efficiency, and ease of use compared with similar, existing tools including vcfR4, IGV5, 48 

Genome Browser6, Genome Savant7, svviz8, and jvarkit – JfxNgs9. The distinguishing 49 

features of VIVA include: (1) No need for VCF file preprocessing (including compression, 50 
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sorting, or indexing); (2) Ability to sort data by and visualize sample metadata; (3) No 51 

coding is necessary; (4) Variety of publication quality output formats; (5) Interactive 52 

HTML5 output for real-time data exploration and sharing; (6) Exports heatmap data as 53 

text file matrices to analyze using other tools. 54 

 55 

2. RESULTS 56 

In order to achieve this, VIVA employs the Julia programming language, a high-57 

level, high-performance, dynamic programming language for numerical computing10. This 58 

is the first tool of its kind written in the Julia programming language and able to be 59 

integrated into workflows with other tools hosted by BioJulia, the Julia language 60 

community for biologists and bioinformaticians. 61 

 62 

Using VIVA involves three main steps which are illustrated in Figure 1:  63 

(1) User submits input files and chooses filtering options, if any are needed;  64 

(2) VIVA reads VCF file and processes the data;  65 

(3) VIVA creates graphs and exports output files.  66 

 67 

Input data accepts four file formats. Examples of these input files are found in the 68 

documentation hosted at https://github.com/compbiocore/VariantVisualization.jl and are 69 

described in the Methods Section. The VCF file is the only required file.  70 

There are three optional text file inputs for variant filtering and sample selection: 71 

(1) Variant List: A list of specific variant positions of interest to include in 72 

visualizations. Users prepare a comma separated list in .csv format where the first 73 
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column includes chromosome number and the second column includes genomic 74 

position;  75 

(2) Sample Metadata Matrix: Users label their samples in a .csv file with phenotypic 76 

or experimental metadata information so the program can group samples with 77 

common traits and add this information to a heatmap of the genotype or read depth 78 

data. Any number of binary phenotypic traits or experimental conditions can be 79 

added to the matrix;  80 

(3) Sample List: Users can select specific samples of interest to include in 81 

visualizations by submitting a .csv file containing sample IDs. 82 

 83 

Since the number of data points allowed for visualization is limited both by the 84 

user’s computational resources available for plotting and pixels needed for display, we 85 

recommend using one or a combination of VIVA’s variant filtering options. These filtering 86 

options include:  87 

(1) Pass Filter: Selects variant records that have passed filters selected during 88 

VCF generation;  89 

(2) Variant List Filter: Uses the Variant List input file described above to select 90 

variant records that match a list of genomic positions;  91 

(3) Genomic Range Filter: Selects variants that lie within a given genomic range 92 

(Ex: chr1:8,900,000-12,000,000).  93 

 94 

VIVA combines fast variant record filtering with visualization and data 95 

summarization without requiring allocation of a large amount of memory. This allows 96 
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users with standard amounts of computational resources to analyze their whole VCF files. 97 

We have developed filtering functions with a low-memory-footprint by evaluating each line 98 

of the VCF file while only saving to memory variant lines that match filters. The VIVA 99 

command line and Jupyter Notebook tools depend on several Julia packages including 100 

VariantVisualization.jl, GeneticVariation.jl, ArgParse.jl, DataFrames.jl, PlotlyJS.jl. The 101 

use of these packages is explained in detail in the Methods section. 102 

 103 

VIVA supports multiple visualization options. These include heatmaps of genotype 104 

or read depth data with samples in columns and variant positions in rows. Genotype 105 

heatmaps are categorical heatmaps that display the genotype values: homozygous 106 

reference, heterozygous variant, homozygous variant, or no call for all selected samples 107 

and variants. Read depth heatmaps are plots of continuous read depth values from 0-108 

100, or no call. “No call” indicates that there was poor data quality during VCF generation 109 

to this point. Read depth outlier values greater than 100 are capped to avoid loss of 110 

resolution of low read depth values in visualizations. The read depth ceiling of 100 was 111 

chosen because, for most purposes, a read depth value of 30+ is adequate for inclusion 112 

in variant analysis11,12. VIVA can also generate scatter plots of average read depth across 113 

samples or variant positions. Users can use these to identify issues with sample 114 

preparation and variants that lie in difficult-to-sequence regions as demonstrated in Figure 115 

2. Additionally, users can choose to save labeled data matrices of representative 116 

genotype values or continuous read depth values for analysis in external programs. 117 

 118 
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VIVA exports plots in a variety of interactive and static graphic formats. HTML5 119 

output facilitates interactive visualization and supports cursor hover-text, zooming, 120 

scrolling, and screen capture features. Cursor hover-text contains the sample ID, genomic 121 

position, and value for each data point in heatmaps and scatter plots. This format can be 122 

used for data sharing purposes and serves as a real-time data investigation tool.  Static 123 

visualizations can be saved in PDF, SVG, PNG, and EPS formats for print and web 124 

publications and for presentations. 125 

We believe that it is important to build a bioinformatics tool that can be used easily 126 

by non-programmers. While users with coding skills can benefit from and contribute to 127 

the open source code and command line tool, we have also implemented a Jupyter 128 

notebook-based web application. It is an interactive web tool that enables the combination 129 

of software code and visualization outputs in the same medium, with explanatory text 130 

supported by links to documentation.  131 

 132 

Another important feature of VIVA is that it operates as a stand-alone application. 133 

Users do not need to submit their VCF files into the cloud or other remote environments 134 

which protects privacy. They can install VIVA locally or on a high-performance computing 135 

cluster.  136 

 137 

VIVA is an open source tool built upon our Julia package, VariantVisualization.jl, 138 

and is freely available at https://github.com/compbiocore/VariantVisualization.jl. In order 139 

to run VIVA, users need to install the Julia Programming Language v1.1.0 onto their 140 

operating systems. The tool undergoes routine cross-platform testing by the continuous 141 
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integration service, Travis CI, which is used for testing projects on GitHub. By building 142 

VIVA using an open source Julia package, we have made it easy for other developers to 143 

integrate VIVA into their programs and contribute to our code. 144 

 145 

We evaluated VIVA’s performance with a test data set on a MacBook Pro with 2.9 146 

GHz Intel Core i5 CPU running macOS High Sierra with 8 GB 1867 MHz DDR3. Our test 147 

data set was a 13.58 GB VCF file from a whole exome sequencing study containing 148 

6,699,236 variants for 100 samples (human). We ran VIVA and selected 8700 variants-149 

of-interest from our test VCF file with default options to generate all plots. We saved four 150 

outputs, including a scatter plot of average sample read depth, a scatter plot of average 151 

variant read depth, and heatmaps of genotype and read depth values, all in HTML file 152 

format. We ran 5 replicates of this test and found it took an average of 4 minutes and 13 153 

seconds with a range of 2 seconds.  154 

 155 

3. DISCUSSION 156 

Grouping samples by metadata categories is broadly useful for comparative 157 

evaluation between samples such as identifying batch effect between groups of samples 158 

or differential presence of variants between sample groups in one VCF file. When sample 159 

grouping is implemented by the user, metadata is visualized in a subplot of colorbars at 160 

the top of heatmap visualizations. Users can add as many metadata category rows as 161 

they like, and can group by any one trait at a time. The ability to group by combinations 162 

of traits is under development for a future VIVA version. 163 

 164 
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VIVA’s variety of visualization options creates many use cases for high-throughput 165 

sequencing experiment quality control and variant analysis. We present two such use 166 

cases in Figure 2.  167 

 168 

4. METHODS 169 

4.1 Tool Architecture 170 

VIVA exists as both a command line tool and as a Jupyter Notebook hosted utility. 171 

Both of these tools are built with VariantVisualization.jl, our Julia programming language 172 

package for VCF file parsing, data manipulation, and plotting. VariantVisualization.jl 173 

depends upon a variety of other Julia packages which are described in this Methods 174 

section. Both the command line tool and the Jupyter Notebook utility utilize functions from 175 

VariantVisualization.jl in the following sequence: variant record selection, collection of 176 

genotype or read depth values for selected variants into a numerical array, reordering the 177 

columns of the numerical array using sample metadata, selection of specific samples, 178 

and finally, plotting the resulting data. 179 

 180 

The VIVA command line utility is called from the command line by calling the Julia 181 

language, the tool name, the name of the VCF file to visualize, and finally all usage 182 

options (`julia viva -f file.vcf [options]`). VIVA options are evaluated and passed to 183 

VariantVisualization.jl functions within the command line utility by the ArgParse.jl Julia 184 

package. Users should reference the documentation hosted on the VariantVisualization.jl 185 

GitHub repository (https://github.com/compbiocore/VariantVisualization.jl) or run `julia 186 
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viva –help` for a list of all features and use instructions. User instructions for the Jupyter 187 

Notebook tool are contained within the Jupyter Notebook. 188 

 189 

4.2 Data Input  190 

The only required input file is the VCF file. VIVA specifically supports VCF files for 191 

human genomes and will not recognize chromosomes with non-standard names (outside 192 

of chr1-22, chrX/Y/M). VCF variant records do not need to be sorted by chromosome 193 

position. Chromosomes may be named in either ‘chr1…chrX’ or ‘1…X’ conventions which 194 

must be consistent across all chromosomes. 195 

Three optional input files include:  196 

(1) a list of specific variant positions to select;  197 

(2) a sample metadata data table to group samples by;  198 

(3) a list of samples to select.  199 

 200 

The list of chromosome positions of interest must be formatted as a tab delimited .csv file 201 

with chromosome number in the first column and variant start position in the second 202 

column. An example of proper formatting can be found on the GitHub repository for VIVA 203 

under the path, tests/test_files/positions_list_test_4X_191. Chromosome number 204 

formatting should be consistent with chromosome number format in the VCF file (eg. 205 

either chr1 or 1). The second optional input file, a phenotypic data table, is a table saved 206 

in tab delimited .csv with information about each sample for grouping samples by common 207 

traits. There is an example of this file in the VIVA GitHub repository under tests/test_files/ 208 

sample_metadata_matrix.csv which can be used as a formatting guide. In this table, 209 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint 

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/


column names are sample ids, row names are comma separated group trait terms 210 

(‘case,control’), and cells contain a binary value for the sample/trait of interest. The third 211 

optional input file is a tab delimited list of sample ids to select for visualization and should 212 

be formatted to match the example file in the VIVA GitHub repository under 213 

tests/test_files/select_samples_list.txt. 214 

 215 

4.3 Variant Record Filtering 216 

Users set filtering and visualization options in the command line interface or in the 217 

Jupyter Notebook VIVA utility’s settings. Variant records are evaluated to match the 218 

filtering options and are stored in an array of chosen records. Selected records are 219 

converted into numerical arrays and sorted by chromosomes 1-22,X,Y,M for plotting. 220 

VIVA utilizes several Julia packages to read and process VCF files. VCFTools.jl is used 221 

to display the number of variant records and samples in the VCF file at the start of the 222 

program’s run. VIVA depends upon the GeneticVariation.jl Julia package to read data 223 

from VCF files. GeneticVariation.jl was chosen because it allows for easy parsing and 224 

data extraction from VCF records and is actively maintained by the BioJulia community. 225 

VCF files are read in the form of a VCF.Reader object which allows reading records one 226 

by one in an ::IO stream to allow processing large VCF files without loading them into 227 

local memory. The VCF.Reader object holds all of the information contained in one row 228 

of a VCF file, including chromosome number, position, filter status, and genotype 229 

information for each patient.  230 

 231 
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Variant records can be selected using three optional filtering choices: “--232 

pass_filter”,”--list”, and “--range”. The first filtering option, “--pass_filter,” reads over all 233 

records and selects variants that pass QC filters chosen when producing the VCF file. If 234 

the record contains the string “PASS” in the “Filter” field, it is added into an array of 235 

records for visualization. The second filter option is “--list” and selects variant records from 236 

the user-provided list of chromosome start positions. The formatting of this list is specific 237 

and is described in the “Data Input” subsection of this Methods section. The 238 

VariantVisualization.jl package uses the io_sig_list_vcf_filter() function to iterate through 239 

each record in the VCF.Reader object and check if the record matches the list of user-240 

defined chromosome positions. To save time, the function stops iterating through the 241 

records once the number of selected variant records matches the known number of 242 

records in the list of chromosome positions of interest. The third variant record filter option 243 

is “--range” and selects variant records with values in their chromosome and position 244 

fields that are within a user-specified chromosome range. This range must be within a 245 

single chromosome and defined in the specific format: “chr1:4000-50000000.”  246 

 247 

If no filters are applied, large VCF files (with 100,000+ variants) will take a long 248 

time to process because they will have to be loaded into memory as an array of many 249 

variant records. The user must have enough RAM to load the VCF file into memory as an 250 

array of records. Generally this can be achieved on a shared computing cluster. As an 251 

important reminder, we do not recommend visualizing this many variants at a time. 252 

Heatmap visualizations are limited by pixel size, so visualized variants will lose definition 253 

at this scale. 254 
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4.4 Converting to Numerical Arrays 255 

Once variant records have been selected, a numerical array is generated to 256 

contain either the genotype or read depth values for each variant in each sample. To 257 

visualize genotype values in a categorical heatmap, genotype values are converted into 258 

categorical representative values: no call = 0, homozygous reference = 1, heterozygous 259 

reference = 2, homozygous variant = 3. Chromosome number and positions are stored 260 

as row names and sample ids are stored as column names of these matrices. Column 261 

and row names are used for reordering and selecting samples as well as labeling plots.  262 

In addition to heatmap visualizations, users can generate scatter plots of average read 263 

depth values across samples as well as across variants. Users can identify problematic 264 

samples with low coverage by plotting average sample read depth. To do this, the means 265 

of read depth values for all selected variants are calculated for each sample and are 266 

plotted in a scatter plot. Similarly, users can identify hard to variant regions with low 267 

coverage by plotting average variant read depth. To plot average variant read depth, the 268 

mean of read depth values for each sample is calculated for each variant and are plotted 269 

in a scatter plot. Read depth outlier values are capped at 100 to scale the data for 270 

visualization, as is done with read depth heatmap plotting. For analysis in external 271 

programs, users can choose to save these numerical arrays as tables.  272 

 273 

 274 

 275 

 276 

 277 
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4.5 Sample Ordering and Selection 278 

There are two options to manipulate the VCF data using sample ids. These options 279 

both depend upon the DataFrames.jl v0.11.7 package. Users can reorder the columns of 280 

the VCF file to explore trends across samples by supplying a matrix of sample metadata 281 

and sample ids. This is described in the “Data Input and Preprocessing” subsection of 282 

this Methods section.  283 

 284 

To reorder sample columns, the numerical array of genotype or read depth data is 285 

converted into a DataFrame. Then the sample metadata matrix is grouped according to 286 

a chosen trait and the order of the sample ids contained within the sorted metadata matrix 287 

is used to reorder the.numerical DataFrame. To select columns, the numerical array is 288 

converted into a DataFrame and a new DataFrame is declared to only include columns 289 

with column names matching the sample ids provided in user defined list. These 290 

DataFrames are converted back into arrays for plotting. 291 

 292 

4.6 Generating Plots 293 

We have built our plotting functions using PlotlyJS.jl v0.10.2. PlotlyJS.jl is a Julia 294 

wrapper for plotly.js, an open-source JavaScript charting library. We used this library to 295 

build heatmap functions for plotting read depth and genotype data and to create summary 296 

scatter plots of average read depth values. We chose PlotlyJS.jl because it is very 297 

customizable, well maintained, and integrates with Rsvg.jl v0.2.1 to allow saving graphics 298 

in a variety of publication quality, scalable formats.  299 

 300 
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Numerical arrays of read depth or genotype values are plotted by a heatmap 301 

function to produce a categorical heatmap. Categorical genotype values 0, 1, 2, and 3 302 

represent genotype conditions “no call”, “homozygous reference”, “heterozygous variant”, 303 

and “homozygous variant” and are plotted with the Viridis color palette. We chose this 304 

color palette by the recommendation of Nathaniel Smith and Stefan van der Walt who 305 

announced Viridis as the default colormap of the popular python plotting package, 306 

Matplotlib 2.0 at the SciPy 2015 Conference. They stated Viridis is accessible to viewers 307 

with color blindness, visually appealing, and able to be converted to grayscale13.  308 

Continuous read depth values are plotted in a continuous value heatmap using shades 309 

of blue that are reminiscent of ocean floor relief maps. This caps the maximum DP at 100 310 

and prevents high read depth values from obscuring resolution of low read depth values 311 

which are usually of greater interest. They are optimized to show clear distinction between 312 

read depths in the range of 0-50 by coloring all read depth values over 100 the same, 313 

since read depth of greater than 30 is usually adequate for downstream analysis. 314 

Heatmap y-axes are labeled with chromosome positions using input matrix row names 315 

and x-axes are labeled with sample ids using column names of the input matrix. 316 

Save formats for all heatmap and scatter plots include PDF, HTML, SVG, PNG, and EPS. 317 

Interactive plots can be saved in HTML to be used for real-time data exploration and are 318 

easily shared with other researchers who don’t have VIVA installed. By default, VIVA 319 

saves graphics in HTML format. HTML plots are in HTML5 format and can be viewed in 320 

any browser and support zooming, panning, and hover labels over the cursor for real-321 

time data exploration. Hover labels contain chromosome position and sample number 322 

labels. When HTML is chosen as the save format, the plot axes are not labeled with tick 323 
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labels per sample id and per chromosome. Plots saved in any format other than HTML 324 

will have x and y-axis tick labels.  325 

 326 

4.7 Jupyter Notebook 327 

Jupyter is an open source computational notebook that combines code, descriptive 328 

text, and interactive output and has become the computational notebook of choice with 329 

data scientists. We have used the VariantVisualization.jl Julia package to set up a Jupyter 330 

Notebook with the full functionality of the command line tool to guide users unfamiliar with 331 

running bioinformatics tools from the command line through using VIVA. It includes a 332 

concise user manual in the first cell of the notebook. The next cells contain clearly labeled 333 

fields for entering the VCF file name and desired options. The user only needs to fill out 334 

the data input and option selection fields, then run the final cell to produce, save, and 335 

display interactive plots within the notebook. Users can re-run analysis with different 336 

settings more quickly in the notebook.  337 

 338 

 339 

4.8 Software and Code Availability  340 

The open source Julia command line tool, Juypter notebook, and Julia package 341 

are available at https://github.com/compbiocore/VariantVisualization.jl. Installation and 342 

comprehensive use instructions are detailed in the VIVA documentation which is available 343 

at https://github.com/compbiocore/VariantVisualization.jl. Julia package version numbers 344 

listed in this Methods section are subject to change as they are updated routinely as part 345 
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of VIVA’s ongoing development, Instructions on reproducing figures in this article are 346 

detailed in the user manual as well. 347 

 348 

5. CONCLUSIONS 349 

In conclusion, we have built a visualization tool for exploratory analysis and 350 

generation of publication quality graphics for variant analysis projects using Variant Call 351 

Format (VCF) files. Researchers and clinicians can use VIVA to explore phenotypic and 352 

genotypic associations, batch effect on coverage, and differential incidence of variants 353 

between samples in their variant analysis experiments.  354 

 355 
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 411 
 412 

Figure 1: Workflow of VIVA. INPUT: VCF is a required file. Users can use one or any 413 
combination of variant filters, sample selection and grouping options. DATA 414 
PROCESS: Data processing requires Julia programing language and depends on 415 
several well-maintained Julia packages. Plotting uses the PlotlyJS.jl wrapper for Plotly. 416 
VIVA has two interface choices; users may use the program through a Jupyter 417 
Notebook or from the command line. OUTPUT: VIVA’s four visualization options 418 
include heatmaps of genotype and read depth data as well as scatter plots of average 419 
sample read depth and average variant read depth data. These visualizations can be 420 
saved in HTML, PDF, SVG, or EPS formats. HTML format enables users to share and 421 
analyze the data interactively between research groups which supports collaborative 422 
work environments. 423 
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 424 

Figure 2: VIVA Use Cases. We present two use cases for VIVA. In both, unique variant 425 
positions are stored in rows and individual samples are stored in columns. We selected 426 
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VIVA options to display only chromosome labels, rather than each specific chromosomal 427 
position, to create a cleaner presentation. In the first use case (Fig. 2A), we visualize a 428 
differential burden of putative disease associated variants between cases and controls by 429 
visualizing genotype data and grouping samples by case and control. In the second use 430 
case (Fig. 2B), we identify batch effects between samples sequenced at two separate 431 
facilities for a variant analysis study by visualizing read depth information and grouping 432 
samples by sequencing facility. We chose to visualize variants within chromosomes 4 and 433 
X arbitrarily to reduce the dimension of the data for memory efficient plotting. 434 
 435 
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