
VIVA (VIsualization of VAriants): A VCF file visualization tool 1

 2

George A. Tollefson1, Jessica Schuster1,2, Fernando Gelin3,4,5, Ashok Ragavendran3,4,5, 3
Isabel Restrepo4,5, Paul Stey4,5, James Padbury1,2,3,6, Alper Uzun1,2,3,6* 4
 5
1) Dept. of Pediatrics, Women and Infants Hospital of Rhode Island; 2) Dept. of Pediatrics, 6
Brown University Warren Alpert Medical School; 3) Center for Computational Biology of 7
Human Disease, Brown University; 4) Center for Computation and Visualization, CIS, 8
Brown University, Providence, RI; 5) Computing and Information Services, Brown 9
University 6) Center for Computational Molecular Biology, Brown University. 10
 11

*Corresponding author; Alper Uzun, alper_uzun@brown.edu 12

ABSTRACT 13

The volume and pace of data accumulation from high-throughput sequencing studies 14

have been amplified by recent rapid technological advances in biological sciences. 15

Visualization of genomic data is essential for quality control, exploration, and 16

interpretation. Here, we describe a user-friendly visualization tool for variant call format 17

(VCF) files with which the users can interactively evaluate and share genomic data, as 18

well as create publication quality graphics. 19

 20

1. INTRODUCTION 21

Next generation sequencing produces an enormous amount of genomic data. The 22

volume of the genomic information varies based on the study. Many different types of file 23

formats are generated during the variant discovery process. One file format commonly 24

used in sequence analysis is the variant call format (VCF). It is a text file format generated 25

during the variant calling process that contains information about variant positions in the 26

genome. The structure includes variant information such as genotype and read depth 27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

data for samples at each genomic position. Read depth is a measure of sequencing 28

coverage at each variant position for each patient. VCF files include lines of meta-29

information, a header containing sample IDs, and data rows for specific variant genomic 30

locations. Since next generation sequencing is becoming increasingly accessible to 31

researchers and clinicians, the ability to easily retrieve and visualize genomic data from 32

VCF files is needed. This is beneficial for translational and personalized medicine. 33

 34

Interpreting data from VCF files presents several challenges. The ability to process 35

VCF files is limited by computational resources as the file size is often very large. To 36

facilitate memory efficient data retrieval, existing VCF file parsing and visualization tools 37

require users to preprocess their VCF files. This entails compressing and sorting VCF 38

files by genomic position before either subsetting the file with an external program, such 39

as VCFTools1, or indexing the files with Tabix2. Further, the VCF data structure is dense 40

and difficult to interpret in its raw data format and requires data querying to draw insights. 41

To facilitate efficient interpretation and data sharing, the need exists for user-friendly VCF 42

file parsing and visualization tools. 43

 44

We introduce “Visualization of Variants” (VIVA), a command line utility and Jupyter 45

Notebook3 based tool for evaluating and sharing genomic data for variant analysis and 46

quality control of sequencing experiments from VCF files. VIVA delivers flexibility, 47

efficiency, and ease of use compared with similar, existing tools including vcfR4, IGV5, 48

Genome Browser6, Genome Savant7, svviz8, and jvarkit – JfxNgs9. The distinguishing 49

features of VIVA include: (1) No need for VCF file preprocessing (including compression, 50

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

sorting, or indexing); (2) Ability to sort data by and visualize sample metadata; (3) No 51

coding is necessary; (4) Variety of publication quality output formats; (5) Interactive 52

HTML5 output for real-time data exploration and sharing; (6) Exports heatmap data as 53

text file matrices to analyze using other tools. 54

 55

2. RESULTS 56

In order to achieve this, VIVA employs the Julia programming language, a high-57

level, high-performance, dynamic programming language for numerical computing10. This 58

is the first tool of its kind written in the Julia programming language and able to be 59

integrated into workflows with other tools hosted by BioJulia, the Julia language 60

community for biologists and bioinformaticians. 61

 62

Using VIVA involves three main steps which are illustrated in Figure 1: 63

(1) User submits input files and chooses filtering options, if any are needed; 64

(2) VIVA reads VCF file and processes the data; 65

(3) VIVA creates graphs and exports output files. 66

 67

Input data accepts four file formats. Examples of these input files are found in the 68

documentation hosted at https://github.com/compbiocore/VariantVisualization.jl and are 69

described in the Methods Section. The VCF file is the only required file. 70

There are three optional text file inputs for variant filtering and sample selection: 71

(1) Variant List: A list of specific variant positions of interest to include in 72

visualizations. Users prepare a comma separated list in .csv format where the first 73

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

column includes chromosome number and the second column includes genomic 74

position; 75

(2) Sample Metadata Matrix: Users label their samples in a .csv file with phenotypic 76

or experimental metadata information so the program can group samples with 77

common traits and add this information to a heatmap of the genotype or read depth 78

data. Any number of binary phenotypic traits or experimental conditions can be 79

added to the matrix; 80

(3) Sample List: Users can select specific samples of interest to include in 81

visualizations by submitting a .csv file containing sample IDs. 82

 83

Since the number of data points allowed for visualization is limited both by the 84

user’s computational resources available for plotting and pixels needed for display, we 85

recommend using one or a combination of VIVA’s variant filtering options. These filtering 86

options include: 87

(1) Pass Filter: Selects variant records that have passed filters selected during 88

VCF generation; 89

(2) Variant List Filter: Uses the Variant List input file described above to select 90

variant records that match a list of genomic positions; 91

(3) Genomic Range Filter: Selects variants that lie within a given genomic range 92

(Ex: chr1:8,900,000-12,000,000). 93

 94

VIVA combines fast variant record filtering with visualization and data 95

summarization without requiring allocation of a large amount of memory. This allows 96

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

users with standard amounts of computational resources to analyze their whole VCF files. 97

We have developed filtering functions with a low-memory-footprint by evaluating each line 98

of the VCF file while only saving to memory variant lines that match filters. The VIVA 99

command line and Jupyter Notebook tools depend on several Julia packages including 100

VariantVisualization.jl, GeneticVariation.jl, ArgParse.jl, DataFrames.jl, PlotlyJS.jl. The 101

use of these packages is explained in detail in the Methods section. 102

 103

VIVA supports multiple visualization options. These include heatmaps of genotype 104

or read depth data with samples in columns and variant positions in rows. Genotype 105

heatmaps are categorical heatmaps that display the genotype values: homozygous 106

reference, heterozygous variant, homozygous variant, or no call for all selected samples 107

and variants. Read depth heatmaps are plots of continuous read depth values from 0-108

100, or no call. “No call” indicates that there was poor data quality during VCF generation 109

to this point. Read depth outlier values greater than 100 are capped to avoid loss of 110

resolution of low read depth values in visualizations. The read depth ceiling of 100 was 111

chosen because, for most purposes, a read depth value of 30+ is adequate for inclusion 112

in variant analysis11,12. VIVA can also generate scatter plots of average read depth across 113

samples or variant positions. Users can use these to identify issues with sample 114

preparation and variants that lie in difficult-to-sequence regions as demonstrated in Figure 115

2. Additionally, users can choose to save labeled data matrices of representative 116

genotype values or continuous read depth values for analysis in external programs. 117

 118

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

VIVA exports plots in a variety of interactive and static graphic formats. HTML5 119

output facilitates interactive visualization and supports cursor hover-text, zooming, 120

scrolling, and screen capture features. Cursor hover-text contains the sample ID, genomic 121

position, and value for each data point in heatmaps and scatter plots. This format can be 122

used for data sharing purposes and serves as a real-time data investigation tool. Static 123

visualizations can be saved in PDF, SVG, PNG, and EPS formats for print and web 124

publications and for presentations. 125

We believe that it is important to build a bioinformatics tool that can be used easily 126

by non-programmers. While users with coding skills can benefit from and contribute to 127

the open source code and command line tool, we have also implemented a Jupyter 128

notebook-based web application. It is an interactive web tool that enables the combination 129

of software code and visualization outputs in the same medium, with explanatory text 130

supported by links to documentation. 131

 132

Another important feature of VIVA is that it operates as a stand-alone application. 133

Users do not need to submit their VCF files into the cloud or other remote environments 134

which protects privacy. They can install VIVA locally or on a high-performance computing 135

cluster. 136

 137

VIVA is an open source tool built upon our Julia package, VariantVisualization.jl, 138

and is freely available at https://github.com/compbiocore/VariantVisualization.jl. In order 139

to run VIVA, users need to install the Julia Programming Language v1.1.0 onto their 140

operating systems. The tool undergoes routine cross-platform testing by the continuous 141

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

integration service, Travis CI, which is used for testing projects on GitHub. By building 142

VIVA using an open source Julia package, we have made it easy for other developers to 143

integrate VIVA into their programs and contribute to our code. 144

 145

We evaluated VIVA’s performance with a test data set on a MacBook Pro with 2.9 146

GHz Intel Core i5 CPU running macOS High Sierra with 8 GB 1867 MHz DDR3. Our test 147

data set was a 13.58 GB VCF file from a whole exome sequencing study containing 148

6,699,236 variants for 100 samples (human). We ran VIVA and selected 8700 variants-149

of-interest from our test VCF file with default options to generate all plots. We saved four 150

outputs, including a scatter plot of average sample read depth, a scatter plot of average 151

variant read depth, and heatmaps of genotype and read depth values, all in HTML file 152

format. We ran 5 replicates of this test and found it took an average of 4 minutes and 13 153

seconds with a range of 2 seconds. 154

 155

3. DISCUSSION 156

Grouping samples by metadata categories is broadly useful for comparative 157

evaluation between samples such as identifying batch effect between groups of samples 158

or differential presence of variants between sample groups in one VCF file. When sample 159

grouping is implemented by the user, metadata is visualized in a subplot of colorbars at 160

the top of heatmap visualizations. Users can add as many metadata category rows as 161

they like, and can group by any one trait at a time. The ability to group by combinations 162

of traits is under development for a future VIVA version. 163

 164

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

VIVA’s variety of visualization options creates many use cases for high-throughput 165

sequencing experiment quality control and variant analysis. We present two such use 166

cases in Figure 2. 167

 168

4. METHODS 169

4.1 Tool Architecture 170

VIVA exists as both a command line tool and as a Jupyter Notebook hosted utility. 171

Both of these tools are built with VariantVisualization.jl, our Julia programming language 172

package for VCF file parsing, data manipulation, and plotting. VariantVisualization.jl 173

depends upon a variety of other Julia packages which are described in this Methods 174

section. Both the command line tool and the Jupyter Notebook utility utilize functions from 175

VariantVisualization.jl in the following sequence: variant record selection, collection of 176

genotype or read depth values for selected variants into a numerical array, reordering the 177

columns of the numerical array using sample metadata, selection of specific samples, 178

and finally, plotting the resulting data. 179

 180

The VIVA command line utility is called from the command line by calling the Julia 181

language, the tool name, the name of the VCF file to visualize, and finally all usage 182

options (`julia viva -f file.vcf [options]`). VIVA options are evaluated and passed to 183

VariantVisualization.jl functions within the command line utility by the ArgParse.jl Julia 184

package. Users should reference the documentation hosted on the VariantVisualization.jl 185

GitHub repository (https://github.com/compbiocore/VariantVisualization.jl) or run `julia 186

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

viva –help` for a list of all features and use instructions. User instructions for the Jupyter 187

Notebook tool are contained within the Jupyter Notebook. 188

 189

4.2 Data Input 190

The only required input file is the VCF file. VIVA specifically supports VCF files for 191

human genomes and will not recognize chromosomes with non-standard names (outside 192

of chr1-22, chrX/Y/M). VCF variant records do not need to be sorted by chromosome 193

position. Chromosomes may be named in either ‘chr1…chrX’ or ‘1…X’ conventions which 194

must be consistent across all chromosomes. 195

Three optional input files include: 196

(1) a list of specific variant positions to select; 197

(2) a sample metadata data table to group samples by; 198

(3) a list of samples to select. 199

 200

The list of chromosome positions of interest must be formatted as a tab delimited .csv file 201

with chromosome number in the first column and variant start position in the second 202

column. An example of proper formatting can be found on the GitHub repository for VIVA 203

under the path, tests/test_files/positions_list_test_4X_191. Chromosome number 204

formatting should be consistent with chromosome number format in the VCF file (eg. 205

either chr1 or 1). The second optional input file, a phenotypic data table, is a table saved 206

in tab delimited .csv with information about each sample for grouping samples by common 207

traits. There is an example of this file in the VIVA GitHub repository under tests/test_files/ 208

sample_metadata_matrix.csv which can be used as a formatting guide. In this table, 209

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

column names are sample ids, row names are comma separated group trait terms 210

(‘case,control’), and cells contain a binary value for the sample/trait of interest. The third 211

optional input file is a tab delimited list of sample ids to select for visualization and should 212

be formatted to match the example file in the VIVA GitHub repository under 213

tests/test_files/select_samples_list.txt. 214

 215

4.3 Variant Record Filtering 216

Users set filtering and visualization options in the command line interface or in the 217

Jupyter Notebook VIVA utility’s settings. Variant records are evaluated to match the 218

filtering options and are stored in an array of chosen records. Selected records are 219

converted into numerical arrays and sorted by chromosomes 1-22,X,Y,M for plotting. 220

VIVA utilizes several Julia packages to read and process VCF files. VCFTools.jl is used 221

to display the number of variant records and samples in the VCF file at the start of the 222

program’s run. VIVA depends upon the GeneticVariation.jl Julia package to read data 223

from VCF files. GeneticVariation.jl was chosen because it allows for easy parsing and 224

data extraction from VCF records and is actively maintained by the BioJulia community. 225

VCF files are read in the form of a VCF.Reader object which allows reading records one 226

by one in an ::IO stream to allow processing large VCF files without loading them into 227

local memory. The VCF.Reader object holds all of the information contained in one row 228

of a VCF file, including chromosome number, position, filter status, and genotype 229

information for each patient. 230

 231

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

Variant records can be selected using three optional filtering choices: “--232

pass_filter”,”--list”, and “--range”. The first filtering option, “--pass_filter,” reads over all 233

records and selects variants that pass QC filters chosen when producing the VCF file. If 234

the record contains the string “PASS” in the “Filter” field, it is added into an array of 235

records for visualization. The second filter option is “--list” and selects variant records from 236

the user-provided list of chromosome start positions. The formatting of this list is specific 237

and is described in the “Data Input” subsection of this Methods section. The 238

VariantVisualization.jl package uses the io_sig_list_vcf_filter() function to iterate through 239

each record in the VCF.Reader object and check if the record matches the list of user-240

defined chromosome positions. To save time, the function stops iterating through the 241

records once the number of selected variant records matches the known number of 242

records in the list of chromosome positions of interest. The third variant record filter option 243

is “--range” and selects variant records with values in their chromosome and position 244

fields that are within a user-specified chromosome range. This range must be within a 245

single chromosome and defined in the specific format: “chr1:4000-50000000.” 246

 247

If no filters are applied, large VCF files (with 100,000+ variants) will take a long 248

time to process because they will have to be loaded into memory as an array of many 249

variant records. The user must have enough RAM to load the VCF file into memory as an 250

array of records. Generally this can be achieved on a shared computing cluster. As an 251

important reminder, we do not recommend visualizing this many variants at a time. 252

Heatmap visualizations are limited by pixel size, so visualized variants will lose definition 253

at this scale. 254

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

4.4 Converting to Numerical Arrays 255

Once variant records have been selected, a numerical array is generated to 256

contain either the genotype or read depth values for each variant in each sample. To 257

visualize genotype values in a categorical heatmap, genotype values are converted into 258

categorical representative values: no call = 0, homozygous reference = 1, heterozygous 259

reference = 2, homozygous variant = 3. Chromosome number and positions are stored 260

as row names and sample ids are stored as column names of these matrices. Column 261

and row names are used for reordering and selecting samples as well as labeling plots. 262

In addition to heatmap visualizations, users can generate scatter plots of average read 263

depth values across samples as well as across variants. Users can identify problematic 264

samples with low coverage by plotting average sample read depth. To do this, the means 265

of read depth values for all selected variants are calculated for each sample and are 266

plotted in a scatter plot. Similarly, users can identify hard to variant regions with low 267

coverage by plotting average variant read depth. To plot average variant read depth, the 268

mean of read depth values for each sample is calculated for each variant and are plotted 269

in a scatter plot. Read depth outlier values are capped at 100 to scale the data for 270

visualization, as is done with read depth heatmap plotting. For analysis in external 271

programs, users can choose to save these numerical arrays as tables. 272

 273

 274

 275

 276

 277

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

4.5 Sample Ordering and Selection 278

There are two options to manipulate the VCF data using sample ids. These options 279

both depend upon the DataFrames.jl v0.11.7 package. Users can reorder the columns of 280

the VCF file to explore trends across samples by supplying a matrix of sample metadata 281

and sample ids. This is described in the “Data Input and Preprocessing” subsection of 282

this Methods section. 283

 284

To reorder sample columns, the numerical array of genotype or read depth data is 285

converted into a DataFrame. Then the sample metadata matrix is grouped according to 286

a chosen trait and the order of the sample ids contained within the sorted metadata matrix 287

is used to reorder the.numerical DataFrame. To select columns, the numerical array is 288

converted into a DataFrame and a new DataFrame is declared to only include columns 289

with column names matching the sample ids provided in user defined list. These 290

DataFrames are converted back into arrays for plotting. 291

 292

4.6 Generating Plots 293

We have built our plotting functions using PlotlyJS.jl v0.10.2. PlotlyJS.jl is a Julia 294

wrapper for plotly.js, an open-source JavaScript charting library. We used this library to 295

build heatmap functions for plotting read depth and genotype data and to create summary 296

scatter plots of average read depth values. We chose PlotlyJS.jl because it is very 297

customizable, well maintained, and integrates with Rsvg.jl v0.2.1 to allow saving graphics 298

in a variety of publication quality, scalable formats. 299

 300

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

Numerical arrays of read depth or genotype values are plotted by a heatmap 301

function to produce a categorical heatmap. Categorical genotype values 0, 1, 2, and 3 302

represent genotype conditions “no call”, “homozygous reference”, “heterozygous variant”, 303

and “homozygous variant” and are plotted with the Viridis color palette. We chose this 304

color palette by the recommendation of Nathaniel Smith and Stefan van der Walt who 305

announced Viridis as the default colormap of the popular python plotting package, 306

Matplotlib 2.0 at the SciPy 2015 Conference. They stated Viridis is accessible to viewers 307

with color blindness, visually appealing, and able to be converted to grayscale13. 308

Continuous read depth values are plotted in a continuous value heatmap using shades 309

of blue that are reminiscent of ocean floor relief maps. This caps the maximum DP at 100 310

and prevents high read depth values from obscuring resolution of low read depth values 311

which are usually of greater interest. They are optimized to show clear distinction between 312

read depths in the range of 0-50 by coloring all read depth values over 100 the same, 313

since read depth of greater than 30 is usually adequate for downstream analysis. 314

Heatmap y-axes are labeled with chromosome positions using input matrix row names 315

and x-axes are labeled with sample ids using column names of the input matrix. 316

Save formats for all heatmap and scatter plots include PDF, HTML, SVG, PNG, and EPS. 317

Interactive plots can be saved in HTML to be used for real-time data exploration and are 318

easily shared with other researchers who don’t have VIVA installed. By default, VIVA 319

saves graphics in HTML format. HTML plots are in HTML5 format and can be viewed in 320

any browser and support zooming, panning, and hover labels over the cursor for real-321

time data exploration. Hover labels contain chromosome position and sample number 322

labels. When HTML is chosen as the save format, the plot axes are not labeled with tick 323

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

labels per sample id and per chromosome. Plots saved in any format other than HTML 324

will have x and y-axis tick labels. 325

 326

4.7 Jupyter Notebook 327

Jupyter is an open source computational notebook that combines code, descriptive 328

text, and interactive output and has become the computational notebook of choice with 329

data scientists. We have used the VariantVisualization.jl Julia package to set up a Jupyter 330

Notebook with the full functionality of the command line tool to guide users unfamiliar with 331

running bioinformatics tools from the command line through using VIVA. It includes a 332

concise user manual in the first cell of the notebook. The next cells contain clearly labeled 333

fields for entering the VCF file name and desired options. The user only needs to fill out 334

the data input and option selection fields, then run the final cell to produce, save, and 335

display interactive plots within the notebook. Users can re-run analysis with different 336

settings more quickly in the notebook. 337

 338

 339

4.8 Software and Code Availability 340

The open source Julia command line tool, Juypter notebook, and Julia package 341

are available at https://github.com/compbiocore/VariantVisualization.jl. Installation and 342

comprehensive use instructions are detailed in the VIVA documentation which is available 343

at https://github.com/compbiocore/VariantVisualization.jl. Julia package version numbers 344

listed in this Methods section are subject to change as they are updated routinely as part 345

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

of VIVA’s ongoing development, Instructions on reproducing figures in this article are 346

detailed in the user manual as well. 347

 348

5. CONCLUSIONS 349

In conclusion, we have built a visualization tool for exploratory analysis and 350

generation of publication quality graphics for variant analysis projects using Variant Call 351

Format (VCF) files. Researchers and clinicians can use VIVA to explore phenotypic and 352

genotypic associations, batch effect on coverage, and differential incidence of variants 353

between samples in their variant analysis experiments. 354

 355

ACKNOWLEDGEMENTS 356

We thank Ben J. Ward (The Clavijo Group, The Earlham Institute, Norwich 357

Research Park), developer of GeneticVariation.jl, who provided frequent technical 358

support while we developed our functions for memory efficient variant record extraction 359

from large VCF files. We thank Spencer Lyon (Managing Director, Valorum Data), 360

developer of PlotlyJS.jl, who provided technical support while we developed our plotting 361

functions. We also thank the Center for Computation and Visualization (CCV) and the 362

Computational Biology Core at Brown University for their support in testing VIVA’s 363

performance on different system configurations. This work was supported by the National 364

Institutes of Health (grants 5P20GM109035-04, 5P30GM114750) and the Kilguss 365

Research Core at Women & Infants Hospital. 366

 367

 368

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

REFERENCES 369

 370
1 Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156-2158, 371

doi:10.1093/bioinformatics/btr330 (2011). 372
2 Li, H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. 373

Bioinformatics 27, 718-719, doi:10.1093/bioinformatics/btq671 (2011). 374
3 Perkel, J. M. Why Jupyter is data scientists' computational notebook of choice. Nature 375

563, 145-146, doi:10.1038/d41586-018-07196-1 (2018). 376
4 Knaus, B. J. & Grunwald, N. J. vcfr: a package to manipulate and visualize variant call 377

format data in R. Mol Ecol Resour 17, 44-53, doi:10.1111/1755-0998.12549 (2017). 378
5 Robinson, J. T. et al. Integrative genomics viewer. Nat Biotechnol 29, 24-26, 379

doi:10.1038/nbt.1754 (2011). 380
6 Rosenbloom, K. R. et al. The UCSC Genome Browser database: 2015 update. Nucleic 381

Acids Res 43, D670-681, doi:10.1093/nar/gku1177 (2015). 382
7 Fiume, M. et al. Savant Genome Browser 2: visualization and analysis for population-383

scale genomics. Nucleic Acids Res 40, W615-621, doi:10.1093/nar/gks427 (2012). 384
8 Spies, N., Zook, J. M., Salit, M. & Sidow, A. svviz: a read viewer for validating 385

structural variants. Bioinformatics 31, 3994-3996, doi:10.1093/bioinformatics/btv478 386
(2015). 387

9 Pierre Lindenbaum, M. K., Richard Redon. JfxNgs : A BAM/VCF viewer with 388
javascript-based filtering/reformatting functionalities. Preprint at 389
https://doi.org/10.1101/120196 (2017). 390

10 Jeff Bezanson, S. K., Viral B. Shah, Alan Edelman. Julia: A Fast Dynamic Language for 391
Technical Computing. preprint at arXiv:1209.5145 (2012). 392

11 Ajay, S. S., Parker, S. C., Abaan, H. O., Fajardo, K. V. & Margulies, E. H. Accurate and 393
comprehensive sequencing of personal genomes. Genome Res 21, 1498-1505, 394
doi:10.1101/gr.123638.111 (2011). 395

12 Bentley, D. R. et al. Accurate whole human genome sequencing using reversible 396
terminator chemistry. Nature 456, 53-59, doi:10.1038/nature07517 (2008). 397

13 Walt, N. S. S. v. d. in 14th annual meeting of the SciPy (Scientific Python) Conference 398
(2015). 399

 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

 411
 412

Figure 1: Workflow of VIVA. INPUT: VCF is a required file. Users can use one or any 413
combination of variant filters, sample selection and grouping options. DATA 414
PROCESS: Data processing requires Julia programing language and depends on 415
several well-maintained Julia packages. Plotting uses the PlotlyJS.jl wrapper for Plotly. 416
VIVA has two interface choices; users may use the program through a Jupyter 417
Notebook or from the command line. OUTPUT: VIVA’s four visualization options 418
include heatmaps of genotype and read depth data as well as scatter plots of average 419
sample read depth and average variant read depth data. These visualizations can be 420
saved in HTML, PDF, SVG, or EPS formats. HTML format enables users to share and 421
analyze the data interactively between research groups which supports collaborative 422
work environments. 423

Required File Computing

Plotting

Interface

Output formats
Variant Filters

Sample Selection & Grouping

INPUT DATA
PROCESS OUTPUT

Sample
Metadata Matrix

Sample
List

Variant
List Interactive data sharing

between research groups

Genomic
Range

PASS
Filter

ACAGATA

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

 424

Figure 2: VIVA Use Cases. We present two use cases for VIVA. In both, unique variant 425
positions are stored in rows and individual samples are stored in columns. We selected 426

1

2
3

6
7

8
9
10

11
14
15
17
19
22
X

case,control

Genotype Use Case 1: Variant Burden Between Case and Controls

Trait 2

Trait 1

No Call

Homozygous Reference

Heterozygous Variant

Homozygous Variant

Sample ID (Grouped by case | control)

G
en
om
ic
 L
oc
at
io
n

4

X

seq_site_1,seq_site_2
case,control

Read Depth Use Case 2: Batch Effect Between Seq Facilities

Trait 2

Trait 1

No Call

0

20

40

60

80

100+
Depth / Trait

Sample ID (Grouped by seq_site_1 | seq_site_2)

G
en
om
ic
 L
oc
at
io
n

Fig. 2A

Fig. 2B

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

VIVA options to display only chromosome labels, rather than each specific chromosomal 427
position, to create a cleaner presentation. In the first use case (Fig. 2A), we visualize a 428
differential burden of putative disease associated variants between cases and controls by 429
visualizing genotype data and grouping samples by case and control. In the second use 430
case (Fig. 2B), we identify batch effects between samples sequenced at two separate 431
facilities for a variant analysis study by visualizing read depth information and grouping 432
samples by sequencing facility. We chose to visualize variants within chromosomes 4 and 433
X arbitrarily to reduce the dimension of the data for memory efficient plotting. 434
 435

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/589879doi: bioRxiv preprint

https://doi.org/10.1101/589879
http://creativecommons.org/licenses/by-nc-nd/4.0/

