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ABSTRACT: Genetic circuit design requires characterization of the dynamics of synthetic gene expression. This is a difficult prob -
lem since gene expression varies in complex ways over time and across different contexts. Here we present a novel method for
characterizing the dynamics of gene expression with a few parameters that account for changes in cellular context (host cell physi -
ology) and compositional context (adjacent genes). The dynamics of gene circuits were characterized by a trajectory through a
multi-dimensional phase space parameterized by the expression levels of each of their constituent transcriptional units (TU). These
trajectories followed piecewise linear dynamics, with each dynamical regime corresponding to different growth regimes, or cellular
contexts. Thus relative expression rates were changed by transitions between growth regimes, but were constant in each regime. We
present a plausible two-factor mathematical model for this behavior based on resource consumption. By analyzing different combi -
nations of TUs, we then showed that relative expression rates were significantly affected by the neighboring TU (compositional
context), but maintained piecewise linear dynamics across cellular and compositional contexts. Taken together these results show
that TU expression dynamics could be predicted by a reference TU up to a context dependent scaling factor. This model provides a
framework for design of genetic circuits composed of TUs. A common sharable reference TU may be chosen and measured in the
cellular contexts of interest. The output of each TU in the circuit may then be predicted from a simple function of the output of the
reference TU in the given cellular context. This will aid in genetic circuit design by providing simple models for the dynamics of
gene circuits and their constituent TUs.

Synthetic Biology is enabling the formalization of genetic
circuit design of increasing scale and predictability1 .  The de-
sign-build-test  cycle  has  been  exemplified  by  the  SBOL
stack2–4 and SynBioHub5, which allow a standardized descrip-
tion for designs using a common language to represent parts
and circuits. The SBOL stack and associated tools provide for
creation6 and storage of these designs, their sequences and the
experiments related to their characterization7 and performance,
as well  as models to allow simulation8.  The designs can be
linked to several repositories of parts that already exist, allow-
ing harmonization of all the data available from these reposito-
ries in an easy way that can be shared between laboratories. 

However, circuit behaviour remains unpredictable and ma-
jor efforts have been focused on avoiding uncertainties that af-
fects the design of reliable systems and their operation as spec-
ified9. For example Cellular Logic (Cello) is a design environ-
ment that provides automatic design of genetic circuits to per-

form desired  operations  through  a  set  of  specifications  and
constraints1. These constraints must be provided by the user
and hence come from the characterization of parts and compo-
nents.  Thus, in order to characterize and design genetic cir-
cuits and select the parts to build them it is necessary to ana-
lyze the context in which they are introduced. 

In this circuit context, we can define different levels or sub-
contexts.  First,  there  is  the  cellular  context,  related  to  the
physiological state of the cells which contain the genetic cir-
cuits 10–14. This is determined by nutrient availability and other
chemical changes in the cell environment, which lead to dif-
ferent  growth  regimes,  and  therefore  different  physiological
regimes. It has been shown that gene expression is  strongly
dependent on growth rates15–19, due to changes that affect the
availability of resources for transcription and translation such
as  Polymerases,  Ribosomes  or  dNTPs.  These  factors  may
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change dynamically during the operation of a genetic circuit,
for example during the growth cycle of a cell culture.

Second, we must take in count that gene circuits are carried
on plasmids or inserted into the genome, where two or more
Transcriptional Units (TU) can be present. These TUs consist
of promoters, assembled with an RBS, a CDS and a Termina-
tor. Inside the genetic circuit,  the different TUs can interact
with each other, for example when the product of one TU is
capable  of  positively  or  negatively  regulating  another  TU.
Apart from these direct interactions, there is also competition
between the TUs for cellular resources that allow transcription
and translation10,20–22 and with the rest of the genes that the cell
needs  to  express23 (“functional  composability  effects”).  Fur-
ther, within a circuit the spatial position inside the plasmid or
genome, the orientation and the proximity of TUs can affect
their  expression12, 22–25 (“physical  composability  effects”).
All  of these effects  constitute the  compositional context of
the genetic circuit.

Finally,  the  context  within  the TU itself  is  related  to  the
parts from which it is composed, and it has been demonstrated
that the flanking sequences of a part can affect its behaviour,
leading to different activity of the part depending on which se-
quences it  assembled with27–30.  We call  these effects  the  se-
quence context.

One of the goals of synthetic biology is to be able to charac-
terize genetic parts to eventually predict their dynamical be-
haviour when used to build circuits from parts operating in dif-
ferent  cellular,  compositional and  sequence contexts. Thus,
it is necessary to develop accurate but simple models that al-
low  characterization  of  parts  from  measurement  data  in  a
range  of  conditions.  For  example,  Kelly  and  co-workers31

pointed out the importance of having standardized models for
characterization  and that these  should be shareable between
labs. They developed a method to measure promoter relative
activity through analysis of the synthesis rate of GFP in differ-
ent conditions. They characterized promoters relative to a ref-
erence promoter,  measured separately, reducing the variance
compared to the absolute promoter activity. 

Later, Keren et al., 201332, evaluated large libraries of pro-
moters from Escherichia coli and Saccharomyces cerevisiae in
different growth media. Using fluorescent protein fusions they
showed that during maximal growth (exponential regime) pro-
moter activities were proportional, meaning that they differed
only by a scaling factor, across all conditions tested. They pre-
sented a simple resource allocation model to account for this
behaviour.  Effectively  they  demonstrated  a  simple  linear
model to characterize promoters relative to one another. This
model allowed decoupling of promoter activity from cellular
context and extraction of quantitative characteristics of pro-
moters. 

Previously we studied combinations of two promoters in the
same plasmid each fused to  distinct  fluorescent  reporters  in
similar TUs33. This allowed us to concurrently track activities
of two promoters in the same cells. Similarly to Keren et al.
our work showed that in exponential growth regime promoter
activities were proportional, and further that their relative ac-
tivities  (constant  of  proportionality)  were  constant  across  a
range of growth conditions. This model allowed us to reduce

variation in promoter characteristics (relative activity) due to
cellular context from 78% to less than a 3% of total variance.

Another approach to dealing with gene circuit context is to
build systems that are designed to remove context effects. Se-
quence context has been addressed by a number of strategies:
such  as  engineering  modular  insulated  transcriptional  ele-
ments30, hammerhead ribozyme and hairpin (RiboJ) structures
to maintain promoter response regardless of the downstream
sequence27, promoter insulation sequences1,29,34; and bicistronic
devices  for  translation  initiation  (BCDs35).  Compositional
context due to competition for resources has been addressed
using feedback control10 and methods to address retroactivity
have been proposed by Del Vecchio et al.36.

These approaches require additional circuit design complex-
ity and still may not remove all context effects35. Further, few
of these studies analyze the time dynamics of gene expression
in circuits. Thus there is a need for dynamic characterization
methods that account for the various levels of context effects
present in gene circuits. Here we construct simple circuits con-
sisting of combinations of three fluorescent reporter TUs, and
consider the full growth cycle of cell cultures. We track the
trajectories  of  these  circuits  through the  phase  space of  re-
porter  expression levels.  The combination of  TUs and their
phase space trajectories reveal the effects of cellular and com-
positional context  on the dynamics of their expression, and
suggest approaches for reliable gene circuit design that over-
come them.

Results and discussion

Multi-fluorescent reporter plasmids for relative charac-
terisation

In previous work we studied the relative activity of promot-
ers of interest with respect to a common reference promoter,
with each promoter in a separate TU33. Here we extend this
work to more complex systems involving three TUs, again us-
ing one of them as a common reference. We used fluorescent
reporters to construct the simplest three TU system where no
TUs are  explicitly  coupled to  any others and each TU pro-
duces a measurable output. We constructed a series of 12 plas-
mids from 10 TUs, each containing one of 7 promoters (Figure
1). Two of the promoters were repressible, by TetR (R0040)
and  LacI  (R0010).  Each  plasmid  contained  three  TUs;  one
driving RFP, another  driving YFP, and a common reference
driving the CFP protein. The constitutive reference TU pro-
moter was chosen according to Kelly et al. 2009. Each RFP
TU and YFP TU was designed with the same ribosome bind-
ing  site  with  bicistronic  design  (BCD)  translational  ele-
ments35 (BCD2 and BCD12 respectively) and similar termina-
tor (ECK0818 and ECK9600 respectively).

We measured the RFP, YFP, and CFP fluorescence levels,
and optical density (OD) of  E. coli containing each plasmid
using  a  microplate  reader.  These  assays  considered  the  full
growth process of bacteria, a dynamically changing  cellular
context,  as  they transition through different growth regimes
over 24 hours. Repressor proteins LacI and TetR were consti-
tutively expressed from the genome meaning that three of the
TUs  (R0040:RFP,  R0040:YFP,  R0010:YFP)  were  repressed
during the assays.
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Figure 1. Modular assembly of plasmids. (A) Level 0 parts used for TUs assembly through Golden Gate Cloning. Each of the parts are
contained in plasmids and are flanked by a restriction site and a small sequence (color circles) that allows the ordered assembly of the parts
in an acceptor plasmid, obtaining a level 1 TU through Golden Gate Cloning. (B) Assembled TUs, four contained the protein E1010m
(RFP) and five contained the protein E0030 (YFP). The TUs were amplified through PCR, from flanking sequences called Unique Nucleo-
tide Sequences (UNSes). (C) Scheme of final plasmids. The TUs were inserted in the destination plasmid containing homologous UNSes
(cyan, green and purple rectangles) to the ones they contained, as well as the reference CFP TU (which has the J23101 promoter, B0034m
RBS, E0020 (CFP) CDS and B0015 terminator). This allowed ordered construction of TU combinations via Gibson assembly. We obtained
12 plasmids which each contained three TUs (RFP, YFP and CFP), the p15a origin of replication (orange square) and kanamycin resistance
(red arrow).

Phase space trajectories  of  plasmids reveal  non-linear
relationships between TUs

Each plasmid’s time dynamics form a trajectory through a
3-dimensional phase space,  parameterised by RFP, YFP and
CFP expression levels. To study the relative expression of RFP
and YFP TUs with respect to the CFP TU over time, we pro-
jected the phase space onto the planes RFP/CFP and YFP/CFP
(Figure 2). These phase space plots reveal non-linear relation-
ships between TU expression rates, or equivalently time varia-
tion in the relative expression rates with respect to the refer-
ence CFP TU.

To understand  this,  consider  the  expression  rate  of  a  TU
synthesizing a stable fluorescent protein as in this study. This
can be estimated from fluorescence intensity  (I) and optical
density (OD) as33, 

k=
1

OD
dI
dt

Writing the expression rates of two TUs as  k 1 and  k 2, we
have the relative expression rate,

r=
k1

k2

=
d I 1

d I 2

which is the slope of the phase space plot for I 1 and I 2, the
intensities of fluorescence for each TU. We note that this ap-
proach does not require the noise-sensitive calculation of time
derivatives of fluorescence nor normalisation by OD, giving a
robust measure of the time dynamics of gene expression rates.

Since the slopes of the phase plots vary over the trajectories
(Figure 2), we can see that relative TU expression rates are not
constant,  and so neither  are  the  individual  expression  rates.
The implication for characterisation of TUs in gene circuits is
that neither their absolute nor their relative expression rate can
be assumed to be constant over time varying cellular contexts.
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Figure 2. Normalized phase space plots of all plasmids showing non-linear trajectories. (A) RFP against CFP and (B) YFP against CFP, (C)
legend. Fluorescence intensities are measured in AU and normalized to [0,1]. All 30 replicates for each plasmid are shown.

Phase space trajectories  of plasmids follow two linear
dynamical regimes

Examining the phase space trajectories of plasmids we ob-
served that they exhibit an inflection point and can be approxi-
mated by two linear dynamics (Figure 3A).  We fitted a two
component piecewise linear model such that,

R=r xr C+m, for C<Cr

Y =r xy C+n, for C<C y

and,

R=r sr C+o, for C ≥C r

Y=r sy C+ p, for C ≥C y

where R,  Y and C are the fluorescence intensity  of RFP,
YFP and CFP. The constants  m ,n , o, p account for back-
ground  fluorescence,  initial  cell  protein  concentration,  and
other  factors  not  specific  to  the  TU.  By  differentiating  the
equations above with respect to  C , we see that  r xr,  r xy,  r sr,

r sy are the relative expression rates of the RFP TU and the
YFP TU with respect to the CFP TU in each of the two dy-
namical regimes,

r xr=
dR
dC

, for C<Cr

r xy=
dY
dC

, for C<C y

r sr=
dR
dC

, for C ≥C r

r sy=
dY
dC

, for C ≥C y

This piece-wise linear model was fitted to the phase space
trajectories  of  all  samples  containing  each  plasmid  (Figure
4A,B,D,E). Relative expression rates were fitted with standard
error 6.53+/-7.00% (mean +/- standard deviation). The dynam-
ical regimes observed are thus characterized by their constant
relative expression rates. 

Dynamical regimes of plasmids correspond to changes
in cellular context

To  determine  the  relation  between  dynamical  regime
changes  and  dynamic  changes  in  cellular context  over  the
growth cycle, we determined the time at which they occur. We

estimated  the  times  t 0 at  which  CFP fluorescence  intensity

C (t )=Cc and  C (t )=C yfor  phase  space  trajectories  of
each replicate for every plasmid (Figure 3AB). The resulting
crossing times  t 0, which corresponded to inflection points in
the fitted piecewise linear models, were mapped to growth by
examining the optical density (OD) curve at the same times
(Figure 3C). In Figure 4C,F we show the mean and standard
deviation of the crossing times where the dynamical regime of
TU expression changes showing that they clearly correspond
to the transition to stationary growth regime. Hence TU ex-
pression rates change during the transition from exponential to
stationary growth regimes, but the relative expression rate re-
mains constant in each growth regime. The dynamical regimes
observed in the phase space plots correspond to two distinct
cellular contexts  in which relative expression rates are con-
stant.

Since their relative expression rates were constant in each
cellular context, we can characterised the TU expression dy-
namics by a single parameter for each context. Equivalently,
two parameters characterized the TU expression rates over a
dynamically changing cellular context.

Figure 3. Illustration of piece-wise linear model fitting and map-
ping inflection point to crossing time and OD. Only YFP is shown
but the same procedure was applied to RFP. (A) Fitted inflection
point of YFP vs CFP, Cy used to find the crossing time t0 of the
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CFP time courses (B). The OD at this time (C) corresponds to the
transition to stationary phase. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/590299doi: bioRxiv preprint 

https://doi.org/10.1101/590299
http://creativecommons.org/licenses/by/4.0/


Figure 4. Phase plots with linear fits for YFP vs CFP (A,D), RFP vs CFP (B,E). Inflection points were mapped to time (see figure 3) and
compared to OD traces (C,F). Black lines show mean and standard deviation (dashed lines) of times of inflections, clearly corresponding to
the transition to stationary growth regime. All fluorescence measured in AU, time measured in hours.
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Figure 5: (Top row) Relative expression rates of YFP TUs in (left)
exponential and (right) stationary regime. (Bottom row) Relative
rates of RFP TUs in each growth regime. Error bars show one
standard  deviation  of  parameters  fitted  to  each  replicate  sepa-
rately.

A  two-factor  mathematical  model  can  explain  phase
space trajectories

The host cell provides a range of factors that facilitate pro-
tein expression, and transcriptional units may be more or less
sensitive to changes in these factors. Changes in cellular con-
texts are characterized by variation in many factors including
RNA polymerase  and  ribosome  levels,  central  metabolism,
and sigma factors37.  For fluorescent proteins these resources
include those required for maturation. Many alternative mod-
els of differing complexity could explain the piecewise linear
behavior of phase space trajectories. Here we propose a simple
model with two main factors affecting TU expression rates. 

Each  factor  F x and  F s represents  a  basket  of  resources
available in exponential and stationary growth regimes respec-
tively. If we approximate that these resources are exclusively
available  in  their  corresponding  cellular contexts,  and  pro-
pose a simple enzyme-substrate kinetic, the expression rate of
a given TU can be modelled as,

k (t )=
k x Fx (t ) /σ x

F x ( t ) /σ x+1
 for t<t 0

k (t )=
k s F s ( t ) /σ s

F s ( t ) /σ s+1
 for t ≥ t0

where t 0 is the time of growth regime change, k x, k s are the

maximum expression rates, and σ x, σ s are the sensitivities of
the TU to each resource factor.

In resource limiting conditions k →k x F x (t )/σ x in expo-

nential  growth  regime,  and  k →k s F s ( t ) /σ s in  stationary

regime. By the same definition, the expression rate of the CFP

TU  is  given  by  k c → k xc Fx (t ) /σ xc during  exponential

growth,  and  k c → ksc Fs (t ) /σ sc during  stationary  growth.

Hence the relative expression rate of a TU with respect to the
reference CFP TU is given by,

r x=
k
kc

=
k x /σ x

k xc /σ xc

 for t<t 0

r s=
k
kc

=
k s /σ s

k sc /σ sc

 for t ≥ t0

So  that  for  resource  limiting  conditions,  the  potentially
noisy time variation in resources is eliminated and the TU rel-
ative expression rates are constant in each  cellular context,
depending only on intrinsic properties of the TUs. Note that
limiting resources is the case when all resources are actively
involved in gene expression, primarily from the genome. Simi-

larly for resource rich conditions ( F→∞ ) we find that
expression rates depend only on the intrinsic maximum rate of
the  TU.  This  result  then  suggests  that  relative  sensitivities
σ x/σ xc,  σ s /σ sc and/or  relative  maximum expression  rates

k x /k xc,  k s /k sc may  change  as  cells  transition  between
growth regimes or cellular contexts. 

TU relative expression rates are dependent on composi-
tional context 

For independent TUs their relative expression rates in each
growth regime should not depend on adjacent TUs. That is, in
any plasmid the relative expression of a given TU should be
the same, irrespective of the adjacent TU relative expression
rate. Competition for resources can be a significant factor in
compositional context dependence of TUs. We measured the
correlation between mean RFP and YFP relative  expression
rates in the same plasmid, and found no relation in exponential
(Pearson correlation coefficient 0.115) nor stationary (Pearson
correlation coefficient  0.208) growth regimes.  This suggests
that competition for resources was not a major factor in varia-
tion in relative expression rates of TUs.

Using our set of 12 plasmids we then compared the relative
expression rates of the same TU with different adjacent TUs,
or different compositional contexts. To examine the variance
between contexts, we fitted the piece-wise linear model sepa-
rately to every replicate of all plasmids (30 each, see Supple-
mentary methods,  figure S6-17 for  full  data).  The combina-
tions of RFP and YFP TU and their mean relative expression
rates fitted to each replicate in each growth phase (r x and r s)
are shown in figure 6. Figure 5 shows the mean and standard
deviation of these parameter estimates. 

To determine the effect of compositional context on these
TUs,  we  performed  a  Kruskal-Wallis  test38 on  each  TU
grouped by  compositional context  (see table 1). The results
show that all TUs were affected by compositional context in at
least one of their relative expression rates. However we note
that while significant, these effects were modest in most cases.
We calculated pairwise fold-changes in mean relative expres-
sion rates between compositional contexts for each TU (figure
7).  The results  showed that 92% of context changes caused
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less than 3-fold change in relative expression rate, and 74%
caused less than 2-fold change. We also note that the piece-
wise linear  form of  TU relative expression rates  was main-
tained across compositional contexts. This means that in each
combination of cellular and compositional context there was
a different characteristic parameter of TU gene expression dy-
namics. For most TUs this characteristic parameter differed by
less than 2-fold across compositional contexts.

Figure 6. Combinations of TUs contained in the 12 plasmids con-
sidered in this study. (Top row) Relative expression rates of the
YFP TU in exponential and stationary growth regimes (left, right)
respectively. (Bottom row) Relative expression rates of the RFP
TU during exponential and stationary growth (left, right). Values
shown are for the mean parameters of piece-wise linear models
fitted separately to all replicates for each plasmid.

Table 1. Kruskal-Wallis p-values for TU relative expression
rates in exponential and stationary phase in different com-
positional  contexts,  significant  differences  (p<0.05)  are
marked in red.

TU name p-value,  r x p-value, r s
No. of contexts

pLux76:RFP 1.96 x 10-12 1.29 x 10-13 3

R0040:RFP 8.03 x 10-15 2.78 x 10-18 4

J23106:RFP 5.38 x 10-5 3.46 x 10-14 4

J23101:YFP 0.579 7.11 x 10-11 3

R0010:YFP 1.84 x 10-4 7.60 x 10-2 2

J23107:YFP 1.83 x 10-9 3.60 x 10-3 3

pLas81:YFP 5.43 x 10-15 6.59 x 10-18 3
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Figure 7. Log base 2 fold changes in mean relative expression rates (exponential and stationary phase) for each TU present in more than
one compositional context. Each heatmap shows the fold change for pairwise comparisons between TU relative expression rates in the
given compositional contexts (rows and columns of each heatmap). 

Accounting for  cellular and compositional  contexts  in
gene circuit design 

We characterized gene circuits from the trajectories of 12
multi-fluorescent plasmids through a phase space parameter-
ized by reporter expression levels. We considered the full cul-
ture growth cycle, and hence we observed dynamically chang-
ing cellular context which could be separated into two distinct
linear dynamical regimes. In each dynamical regime the rela-
tive expression rates of  TUs were constant.  Fitting a piece-
wise linear model and mapping the inflection point of phase
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trajectories to time showed that the dynamical regimes corre-
sponded closely to exponential and stationary growth regimes.
Therefore the relative TU expression rates changed during the
transition from exponential  to stationary growth regime, but
were constant during each regime or cellular context. 

We present a two-factor mathematical model for cellular re-
sources that accounts for this behaviour. This model is based
on a simple transition of available resources for TU expression
between cellular contexts. With resource levels that are mutu-
ally exclusive to their respective cellular contexts and present
at  rate-limiting  or  saturating  levels this  model  predicted  a
piecewise linear dynamic as observed. In this model the char-
acteristic slopes of the phase plots were due to differing rela-
tive sensitivities to resources, or to the ratio of maximum pos-
sible expression rates.  Both of these quantities might be af-
fected by the compositional context in which the TU is mea-
sured. 

Comparing  TU  expression  in  different  plasmids,  we  ob-
served that relative expression rates were significantly affected
by their neighbouring TUs, hence compositional context had
an effect on circuit behaviour. While mostly less than 2-fold
changes, these context effects could affect circuit functionality
considerably, for example in the design of a balanced toggle
switch.  However,  piecewise  linear  dynamics  were  observed
for TUs in all compositional and cellular contexts. Hence the
dynamics of TUs in a given context was dependent on a single
unknown parameter, the relative expression rate with respect
the reference TU. 

Our results  give the following equation to predict  the ex-
pression rate of a TU in a gene circuit:

kw(t )=rw(t )k c(t )  

where  kc ,w(t ) is  the  expression rate  of  the  reference

TU  in  the  context of  interest  w .  For  bulk  culture

kc ,w(t )=
1

OD
dC
dt

, where C is the expression level

of the reference TU in the given context. For constitutive TUs

we showed that rw(t )  was a constant in both exponential
and stationary growth regimes, but varied with compositional

context. Hence the context w must incorporate both com-
positional and cellular context.

For TUs regulated by either chemical inducers or other TUs,
this characteristic slope will be given by a time-varying regu-
latory function. Consider the case of an RFP TU repressed by
a protein  P.  A simple Hill  function model of the regulatory
function would be,

rw(t )=
dR
dC

=
1

k cw( t)

k b ,w(t )P(t )n
/mn

+kmax ,w (t )

1+P (t )n
/mn

rw(t )=
rb ,w P(t )n

/mn
+r max ,w

1+P(t )n
/mn

where m, n are  constants.  The  functions
kb ,w , kmax , w are the basal and maximal expression rates,,

and rb ,w ,r max ,w are  the  basal  and  maximal  relative  ex-

pression rates in the context w . 

Since repressed TUs followed piecewise linear dynamics in

our experiments rb ,w ,r max ,w would be constant in a given

context.  For  fixed  driving  protein  concentrations,  rw

would also be constant leading to a time-invariant regulatory
function. Computing the slope of  the phase space trajectory
hence allows estimation of the parameters of regulatory func-
tions that is independent of time variation in expression rates.

Summary

This work highlights the importance of accounting for con-
text in the characterization of gene circuits. Our approach pro-
vides a framework for  design of  gene circuits  composed of
TUs. A common standard reference TU may be chosen and
measured in the cellular contexts of interest. Each TU in the
design toolkit would be characterized by its phase space slopes
in  each  context.  During  exponential  and  stationary  growth
regimes, the dynamics of each TU in any circuit may then be
predicted by the output of the reference TU scaled by a single
characteristic parameter, and regulatory functions can be ex-
pressed in terms of this characteristic. For other dynamically
changing cellular contexts more complex models may be re-
quired, which could similarly be parameterized from the phase
space trajectory slopes. It remains for future studies to charac-
terize a broader range of such models. 

Our  results  also  show that  compositional  context  within
gene circuits significantly affected component TU expression
rates, but mostly less than 3-fold variation (92%). Competition
for resources between TUs was not a major factor in this varia-
tion. We also found that the functional form of variation in rel-
ative expression rates with respect to the reference TU was un-
affected by changes in compositional context. Compositional
context arises from many complex mechanisms making it un-
likely that simple models can capture their effects. This means
that TUs should be characterized in their  compositional con-
text of interest, or free parameters that account for their effects
must  be  incorporated  into  models.  In  our  experiments  this
would require an unknown scaling constant in each discrete
cellular context. Since the compositional context effects ap-
pear to be limited in scale, their effects could be assessed by
simulating gene circuits with a range of values for these free
parameters.

Our approach of phase space characterization will thus aid
in genetic circuit design by providing simple models with few
parameters to incorporate into the design-build-test cycle. As
well as enabling fitting to data, these models will allow more
accurate  simulation8 of gene circuit  dynamics for  parameter
sweeps, for example to assess the probability of circuit design
success. They will also allow the definition of contextual con-
straints on circuit operation1. The use of a common standard
reference TU will enable comparable and sharable characteri-
zation of gene circuits and their component TUs. This dynami-
cal characterization will therefore enable more reliable design
of synthetic gene circuits as well as understanding of naturally
occurring genetic systems.

Methods

Strains

For  plasmid  selection  and  stock,  the  strain  used  was  Es-
cherichia coli TOP10  (Invitrogen). For making the growth as-
says the strain used was Escherichia coli  MG1655Z1 malE,
which  has  constitutive  levels  of  LacI  and  TetR  repres-
sors39 (Addgene).
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Modular system for DNA assembly

Golden Gate Cloning

Transcriptional Units  (TU) were built  using level 0 DNA
parts, consisting of seven Promoters, two Ribosome Binding
Sites (RBS), two Coding Sequences (CDS), two terminators
and  two  acceptor  plasmids  (see  details  in  Supplementary
methods). They were assembled in order using Golden Gate
Cloning, obtaining a level 1 TU40,41. For each Golden Gate re-
action 1µl of T4 DNA Ligase Buffer 10X (NEB), 1µl of T4
DNA Ligase 20U/µl (NEB) and 1 µl of BsaI 10 U/µl (NEB)
were added to 7 µl of a mixture of the DNA parts used for
each TU, with a final volume of 10 µl in 0,2 ml tubes. The
thermocycler program used was 2 minutes at 37°C and 3 min-
utes at 16°C during 20 cycles, then 5 minutes at 50°C and 10
minutes at 80°C (for details see the Supplementary methods).

Gibson Assembly

For building the three fluorescent reporters plasmids, a des-
tination vector was built first using Gibson Assembly, named
1X_p15a_Cyan.  For  this,  linear  DNA pieces  were  obtained
through PCR with Phusion Polymerase (Invitrogen) from tem-
plate  plasmids  (for  details  see  the  Supplementary material).
For one Gibson reaction 4.5 µl of Gibson Master Mix were
added to 1.5 µl of a mixture of the DNA pieces in a 0,2 ml
tubes and incubated at 50°C in a thermocycler for one hour42.

For building the three fluorescent reporters plasmids, each
TU was amplified by PCR in the same way as for the destina-
tion vector and were introduced in different combinations in
the destination vector using Gibson Assembly, but in this case
with the help of Unique Nucleotide Sequences (UNSes43). In
each plasmid there was a TU containing RFP and UNSes U1
and U2, and other containing YFP and UNSes U2 and UX, and
the destination vector had the UNSes U1 and UX, which led to
an ordered assembly, obtaining 12 plasmids (for details see the
Supplementary methods).

Primer design

The following features were considered for primers design:
length less than 60 base pairs; Tm ≤ 60°C; less than four C or
G at the ends, specially at the 3’ end and 45% ≤ CG% ≤ 60%.

DNA pieces purification from agarose gel

The linear pieces obtained from PCR reactions for Gibson
Assembly were run in 2% w/v agarose gel. The bands were
purified using the Wizard® Plus SV Gel and PCR Clean-Up
System kit (Promega), using the Quick Protocol specified by
the manufacturer.  The quality and concentration of the parts
were quantified using the Synergy HTX plate reader (BioTek)
and Gen5 software with the Take3 plate (BioTek). The pieces
were stored at -20°C.

Bacteria transformation

For  plasmid  cloning,  CCMB80  chemocompetent  Es-
cherichia  coli TOP10  were  prepared  and  transformed.  For
Gibson  Assembly  the  complete  content  of  the  reaction  was
added to the cells (i.e. 6 µl), while for Golden Gate Cloning
only 5 µl were added. The cells were then subjected to a heat
shock at 42°C for 1 minute in a thermoregulated bath. Then
250 µl of liquid LB media were added to the cells and incu-
bated at 37°C for one hour. In solid LB media with antibiotic,
100  µl  of  the  cells  were  plated  and  incubated  overnight  at
37°C.  For  growth  assays,  the  same protocol  was used  with
MG1655Z1 malE cells with plasmids already verified, except
that in this case 50 µl were plated in solid LB media with an-
tibiotic.

Selection and storage of positive colonies

Two to three colonies of TOP10 transformed cells were se-
lected to verify through PCR with GoTaq DNA Polymerase
(Promega)  if  the  plasmids  they  contained  were  the  desired
constructions.  Primers  for  specific  regions  of  the  plasmids
were used (for details see the Supplementary methods). The
PCR products were run in 2% w/v agarose gels. Once a colony
was verified to contain the correct plasmid, a liquid culture in
LB media was left growing overnight. From this culture, 500
µl were used for storage at -80°C, adding 500 µl of 50% v/v
glycerol in a cryotube. For MG1655Z1 malE cells, liquid cul-
tures were left growing and stored the same way (for details
see the Supplementary methods).

Plasmid extraction and purification

Liquid cultures of the transformed cells were used for plas-
mid extraction and purification using the Wizard® Plus SV
Minipreps DNA Purification System kit (Promega). The plas-
mids quality and concentration were quantified using the Syn-
ergy HTX plate reader (BioTek) and Gen5 software (BioTek).
The plasmids were stored at -20°C.

Growth assays

For growth assays M9 media was used with 0.4% w/v Glu-
cose and 0.2% casamino acids. Optical density of the colonies
that contained the different plasmids and fluorescence of RFP,
YFP and CFP were measured for 24 hours, every 15 minutes,
at  37°C  with  constant  shaking  in  96  well  black  plates
(Thermo). Each growth assay contained 10 replicates and was
repeated on 3 different days. The measurements were taken
with a Synergy HTX plate reader (BioTek) with Gen5 soft-
ware (BioTek) (for details see the Supplementary methods).

Data analysis

Data from growth assays were stored in a custom database
(data files and code available at github.com/SynBioUC/flap-
jack). The analysis was performed using Python and packages
Numpy44,  Scipy45,  Matplotlib46,  Pandas47,  SQLAlchemy
(www.sqlalchemy.org),  and  Jupyter  (jupyter.org).  Piecewise
linear models were fitted using the Scipy  curve_fit function,
which implements the Trust Region Reflective algorithm. To
avoid initial noisy data points and focus on the period at which
the inflection point occurred, as well as remove data bias from
long stationary phase, we fitted to data from time point 20 (ap-
proximately  5  hours)  to  time  point  40  (approximately  10
hours).  Stated  standard  deviations  of  parameters  from com-
plete data were those returned in the covariance matrix by the
curve_fit function. Figure S6-17 shows all the phase space tra-
jectories and linear model fits for each replicate of each plas-
mid. Standard deviations stated were the population standard
deviation of all replicates. To determine the influence of com-

positional  context  upon  rx  and  rs  variation,  a
Kruskal-Wallis test38 was performed for each TU, grouped by
plasmid, using the scipy function kruskal.
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