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Abstract 1 

Scalar diffusion tensor imaging (DTI) measures, such as fractional anisotropy (FA) and mean 2 

diffusivity (MD), are increasingly being used to evaluate longitudinal changes in brain tissue 3 

microstructure. In this study, we aimed at optimizing the normalization approach of longitudinal 4 

DTI data in humans to improve registration in gray matter and reduce artifacts associated with 5 

multisession registrations. For this purpose, we examined the impact of different normalization 6 

features on the across-session test-retest reproducibility error of FA and MD maps from 7 

multiple scanning sessions. Diffusion data were pre-processed, fit to a tensor model to obtain 8 

FA and MD scalar maps and registered to standard stereotaxic space using different 9 

approaches that only differed in the features used in the normalization process, namely: 1) 10 

registration algorithm (FSL vs ANTs), 2) target image template (FMRIB58 FA vs MNI152 T1), 11 

3) moving image (FA, MD, b0), and 4) normalization strategy (direct vs using an intermediate 12 

template). We found that a normalization approach using ANTs as the registration algorithm, 13 

MNI152 T1 template as the target image, FA as the moving image, and an intermediate FA 14 

template yielded the highest test-retest reproducibility in registering longitudinal DTI maps for 15 

both gray matter and white matter. Our optimized normalization pipeline opens a window to 16 

quantify longitudinal changes in microstructure at the cortical level.  17 

 18 

Keywords 19 

Diffusion weighted imaging; Diffusion tensor imaging; Registration; Normalization; 20 
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1. Introduction 1 

Scalar DTI measures, such as fractional anisotropy (FA) and mean diffusivity (MD), are 2 

increasingly being used in humans to evaluate longitudinal changes in tissue microstructure 3 

induced by learning (Landi et al., 2011), development (Krogsrud et al., 2016) or 4 

neurodegenerative disease (Keihaninejad et al., 2013). FA quantifies the directional diffusion 5 

preference of water molecules, primarily reflecting the alignment of fibers in white matter 6 

(Beaulieu, 2002). Hence, it has been a useful marker to assess the evolution of several 7 

neurological diseases such as multiple sclerosis, amyotrophic lateral sclerosis and 8 

Alzheimer’s disease (Bodini and Ciccarelli, 2014). In healthy individuals, FA has been used to 9 

characterize plasticity induced by learning. For example, one week of visuomotor adaptation 10 

leads to an increase in FA in pyramidal tracts that correlates with the speed of learning (Landi 11 

et al., 2011), whereas 3 weeks of training on a juggling task increases FA in the posterior 12 

parietal cortex (Jan Scholz et al., 2009). Recent studies conducted in rats suggest that these 13 

macroscopic changes may reflect augmented myelination (Hughes et al., 2018; Sampaio-14 

Baptista et al., 2013; Swire and ffrench-Constant, 2018).  15 

In contrast, MD is a direction-independent measure of the average diffusivity, reflecting 16 

water motility, and thus, may be used to estimate microstructural changes both in gray matter 17 

(GM) and white matter (WM). MD too has long been a marker to probe tissue microstructure 18 

in neurological patients. For example, tissue cellularity in brain tumors is well correlated with 19 

MD (Gauvain et al., 2001), whereas cell-swelling in acute cerebral ischemia is characterized 20 

by a short-term decrease in MD in the affected region (Benveniste et al., 1992; Davis et al., 21 

1994; Mintorovitch et al., 1991). In addition, this measure has been recently shown to have 22 

great potential to detect changes in gray matter induced by learning. Specifically, training on 23 

a spatial memory task reduces MD in the hippocampus 30 minutes post learning (Sagi et al., 24 

2012). This decrease is associated at the microscopic level with glial hypertrophy, likely 25 

induced by LTP-like plasticity (Blumenfeld-Katzir et al., 2011; Sagi et al., 2012). Based on 26 

these findings it has been hypothesized that a learning-related reduction in cortical MD would 27 

be compatible with a drop in the interstitial volume associated with astrocyte hypertrophy. 28 

In sum, both FA and MD may provide relevant information regarding learning-related 29 

alterations in brain microstructure that are physiologically sound. Yet, there are at least two 30 

caveats when it comes to using DTI to detect longitudinal changes in plasticity. One concerns 31 

the tissue of interest, namely whether it is white or gray matter. To date, there is no single 32 

volumetric normalization approach that serves to detect learning-related changes in both gray 33 

and white matter using DTI. In fact, most analytical tools including Tract-Based Spatial 34 

Statistics (TBSS, Smith et al., 2007, 2006) are optimized to detect differences in white matter 35 

microstructure but not in gray matter. The other caveat concerns the artifacts resulting from 36 

registering DTI images acquired from multiple sessions to the standard stereotaxic space. 37 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/590521doi: bioRxiv preprint 

https://doi.org/10.1101/590521
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 4 of 33 
 

Normal interindividual anatomical variability in fiber tracts can produce residual misalignment 1 

when registered to standard space (Smith et al., 2006). Longitudinal approaches are even 2 

more susceptible to normalization artifacts due to the potential misalignment between images 3 

acquired from the same subject in multiple magnetic resonance imaging (MRI) sessions. 4 

Voxel-based morphometry is, in fact, highly sensitive to errors in the normalization process 5 

which can yield to false positives (Bookstein, 2001; Schwarz et al., 2014). Yet, to date, there 6 

is no consensus regarding the optimal normalization method to process longitudinal DTI data 7 

(Papinutto et al., 2013). An optimized normalization pipeline that allows drawing valid 8 

conclusions from voxel-wise analysis conducted on multisession FA and MD maps is therefore 9 

indispensable.  10 

In this study, we seek to optimize the normalization approach of longitudinal DTI data 11 

with the aim of improving registration in gray matter and reducing artifacts associated with 12 

multiple session registration. For this purpose, we compared the across-session test-retest 13 

reproducibility error of DTI images (MD and FA) using four −non-exclusive− normalization 14 

approaches. The first approach assessed the Registration algorithm. In the widely-used TBSS 15 

pipeline from FSL (Smith et al., 2007, 2006, 2004), scalar maps resulting from DTI analyses 16 

are normalized to the standard space using FSL’s linear and non-linear registration algorithms 17 

(FLIRT and FNIRT, respectively; Smith et al., 2004). However, in recent years one registration 18 

tool has gained substantial attention: ANTs (Klein et al., 2009; Avants et al., 2011). Schwarz 19 

and collaborators (2014) have shown that the algorithm used by ANTs is more sensitive than 20 

TBSS for detecting white matter FA changes and leads to lower type I error rates (2014). Here, 21 

we aim to estimate the reproducibility of ANTs to detect longitudinal changes in gray matter, 22 

in both MD and FA.  23 

The second normalization approach we evaluated in this study was centered on the 24 

Target image, i.e., the template used to register DTI images to standard stereotaxic space. 25 

The FMRIB58 template is widely used in DTI analyses. It is constructed out of the FA maps 26 

from 58 subjects normalized to MNI152 standard stereotaxic space. Yet, it is substantially 27 

smaller than the MNI152 T1 template due to erosion of the boundaries of the raw individual 28 

images to include values of FA larger than 0.2. This threshold, aimed at improving alignment 29 

where FA values are too low, gets rid of a significant amount of gray matter (Smith et al., 30 

2006), rendering it inadequate to detect DTI changes in the cortex. Here, we examined how 31 

using the MNI152 T1 image as the standard normalization template impacts on the 32 

reproducibility of the DTI normalization process both for MD and FA.  33 

The third normalization approach we evaluated in this study assessed the Moving 34 

image, i.e., the DTI image warped to the standard stereotaxic space. Traditional normalization 35 

pipelines for DTI (such as TBSS), perform an FA-FA registration so that the moving image (FA 36 

scalar map) and the final template (FMRIB58) are of the same modality (Smith et al., 2007, 37 
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2006). Yet, if the target image is the MNI152 T1, it is not obvious that FA would be the most 1 

adequate moving image when one is also interested in measuring MD in the cortex. Therefore, 2 

in this study, we compared the reproducibility of normalization using five different moving 3 

images: FA, MD, an image in which no diffusion gradient was applied and provides T2-4 

weighted structural information (hereafter called as b0), the combination of FA and b0 images, 5 

and the combination of MD and b0 images. 6 

Finally, the fourth normalization approach we examined in this study focused on the 7 

Normalization strategy. In cross-sectional studies, registration of DTI images is usually 8 

performed directly to a standard stereotaxic template. Although this approach seems 9 

appropriate for unrelated images it may not be optimal for MRI data obtained in repeated 10 

acquisitions. Longitudinal studies have the advantage that images acquired from the same 11 

subject share common structural information. Thus, the creation of a template for each 12 

individual using these images as inputs may reduce bias in registration by treating all of the 13 

time points for one given subject similarly. The normalization process will require aligning all 14 

of the acquired time points to the individual template and then registering each individual 15 

template to the one in standard stereotaxic space. Using an intermediate template for each 16 

individual has been recommended over pairwise registration (Klein et al., 2010; Reuter et al., 17 

2012; Tustison et al., 2014) and it is more suitable for datasets with several acquisitions. On 18 

the other hand, using a group template as an intermediate step in the normalization process 19 

can also help avoiding biases in registration (Klein et al., 2010; Tustison et al., 2014). Here, 20 

we compared the direct normalization approach to that achieved using an intermediate 21 

individual or group template.  22 

 23 

  24 
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2. Methods 1 

2.1. Participants 2 

Twenty-one healthy subjects between 18 and 31 years old (11 female; ages: mean ± SD = 3 

23.6 ± 3.1) participated in the study. All subjects were healthy volunteers with no self-reported 4 

history of psychiatric, neurological or cognitive impairment. Subjects provided written consent 5 

and were compensated for their participation. The experimental procedure was approved by 6 

the local Ethics Committee and performed according to the Declaration of Helsinki.  7 

 8 

2.2. Image acquisition 9 

The MRI dataset used in this study was acquired as part of an ongoing international 10 

collaborative project between the Quebec Brain Imaging Network (QBIN) and the Latin 11 

American Brain Mapping Network (LABMAN) aimed at studying plasticity induced by learning. 12 

Participants trained on three different tasks: visuomotor adaptation, motor sequence learning, 13 

and a control task involving no learning. Each task condition required subjects to be scanned 14 

before, 30 minutes and 24 hours after training. Hence, each individual was scanned nine times 15 

in total with different MRI modalities including diffusion-weighted images (DWI), T1-weighted, 16 

T2-weighted and EPI-BOLD images. Here, we report the acquisition parameters 17 

corresponding only to the DWI protocol.  18 

Magnetic resonance images were acquired with a 3T Siemens Tim TRIO scanner 19 

using a 12-channel head RF receive coil (Instituto Angel Roffo, University of Buenos Aires, 20 

Argentina). Each subject’s head was positioned inside the head coil using the same 21 

anatomical landmarks as reference in all sessions. DWI were acquired using the multiband-22 

accelerated sequence implemented by the Center for Magnetic Resonance Research (CMRR; 23 

Ugurbil et al., 2013; Xu et al., 2013). The following protocol was used for acquisition: voxel 24 

size=2x2x2 mm3; field of view (FOV)=240x240 mm2; 30 monopolar gradient directions 25 

uniformly distributed (Jones, 2004; Jones et al., 1999); 70 axial slices; repetition time 26 

(TR)=5208 ms; echo time (TE)=89 ms; acquisition time (TA)=3 minutes and 34 seconds; 27 

bandwidth (BW)=1488 Hz/Px; multiband (MB) acceleration factor=2, SENSE1 coil-combine 28 

mode, pure axial slice orientation with interleaved slice acquisition, anterior-posterior (A-P) 29 

phase encoding direction, with a b-value=1000 s/mm2. Phase encoding in the anterior-30 

posterior direction was chosen to preserve hemispheric symmetry (Smith et al., 2007). Eight 31 

b0 volumes were acquired using an A-P phase encoding direction: two were acquired at the 32 

beginning of the sequence, one at the end and the rest interleaved every five b-1000 volumes. 33 

This configuration optimizes the signal-to-noise ratio of scalar images resulting from the fit of 34 

a diffusion tensor model (Jones et al., 1999). In addition, one b0 volume was acquired with 35 

posterior-anterior (P-A) phase encoding direction to correct for susceptibility-induced 36 

geometric distortions (Andersson et al., 2003). 37 
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2.3. Image pre-processing 1 

DWI DICOM images were converted to NIFTI format using the dcm2nii software (Li et al., 2 

2016). Pre-processing steps for DWI were conducted for each of the nine scanning sessions 3 

separately, and included: i) correction of susceptibility-induced distortions using FSL's topup 4 

tool with b0 volumes acquired with opposite phase encoding direction (Andersson et al., 2003), 5 

ii) correction of eddy currents-induced distortions, head motion correction and b-vector rotation 6 

using FSL's eddy tool (version 5.0.9; Andersson and Sotiropoulos, 2016). Next, DTIfit (FSL, 7 

Smith et al., 2004) was used to fit a diffusion tensor model to produce the scalar measures of 8 

interest: fractional anisotropy (FA) and mean diffusivity (MD). The “halo” of bright voxels that 9 

typically surrounds FA images due to eddy currents-induced distortions in cerebrospinal fluid 10 

(CSF; Bastin, 1999; Jones and Cercignani, 2010) was removed by eroding it with a spherical 11 

kernel of 6 mm radius (Smith et al., 2007, 2006). A brain mask generated out of the eroded 12 

FA image was subsequently applied to the associated MD and b0 images. The resulting 13 

eroded FA, MD and b0 images were then used to evaluate different normalization approaches. 14 

 15 

2.4. Normalization approaches 16 

After pre-processing, the DTI scalar maps were normalized using four non-exclusive 17 

approaches that varied only in the registration features chosen to bring them into stereotaxic 18 

space. Only DWI data acquired during the baseline and the 24h session of the control 19 

condition, from now on referred to as test and retest images, were used to compute the across-20 

session test-retest reproducibility error. Given the short time interval between these sessions 21 

and the absence of a learning manipulation, we assumed that the across-session variability of 22 

tissue microstructure metrics would mostly reflect reproducibility errors related to the MRI 23 

acquisition protocol and the analysis pipelines. 24 

 The following features were assessed in each normalization approach: 1) the 25 

registration algorithm used to compute and apply the transformations for image normalization 26 

(FSL vs ANTs), 2) the target image, i.e. the image in standard stereotaxic space used as the 27 

reference in the normalization process (FMRIB58 vs MNI152 templates), 3) the moving image, 28 

i.e. the image warped to standard space (MD, FA or b0), and 4) the normalization strategy, 29 

i.e., whether they were directly warped to the stereotaxic space or through an intermediate 30 

template. These normalization approaches were assessed sequentially, taking the feature of 31 

the most reproducible pipeline as the default of the subsequent approach. These pipelines, 32 

with the respective manipulated variables and fixed parameters are outlined in Table 1 and 33 

described in detail as follows. 34 

 35 

 36 

 37 
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Table 1. Outline of the four brain spatial normalization approaches evaluated in this diffusion 1 
MRI study. For each approach, we show the parameters that were fixed and the tissues in 2 
which test-retest reproducibility errors were assessed. Acronyms: fractional anisotropy (FA), 3 
mean diffusivity (MD), mean unwweighted difusion volume (b0), white matter (WM), gray 4 
matter (GM). 5 

 6 

Human brain spatial 
normalization 

approach 
Pipeline Fixed parameters 

Tissue in which test-
retest reproducibility 

error (%) was 
evaluated 

1) Registration 
algorithm 

FSL 

ANTs 

Target template: 
FA FMRIB58 

Moving image: 
FA 

Normalization 
strategy: Direct 

Tissue: WM, from 
template mask  

Error metrics: FA, 
MD 

2) Target image 
template 

T1 MNI152 

FA FMRIB58 

Registration 
algorithm: ANTs 

Moving image: 
FA 

Normalization 
strategy: Direct 

Tissue: WM, from 
template masks 

Error metrics: FA, 
MD 

3) Moving image FA 

MD 

b0 

FA+b0 

MD+b0 

Registration 
algorithm: ANTs 

Target  template: 
T1 MNI152 

Normalization 
strategy: Direct 

Tissue: WM and 
GM, from template 
mask 

Error metrics: FA, 
MD 

4) Normalization 
strategy 

Direct (no 
intermediate 
template) 

Intermediate 
individual FA 
template 

Intermediate group 
FA template 

Registration 
algorithm: ANTs 

Target  template: 
T1 MNI152 

Moving image: 
FA 

Tissue: WM and 
GM, from template 
mask 

Error metrics: FA, 
MD 

 7 

2.4.1. Registration algorithm 8 

Some of the most common pipelines for DTI analyses involve the use of normalization 9 

algorithms from FSL (Smith et al., 2007, 2006, 2004). However, recently ANTs’ non-linear 10 

normalization algorithm (Avants et al., 2011) has been shown to outperform FSL’s on various 11 
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metrics (Klein et al., 2009; Schwarz et al., 2014). To assess the reproducibility of the DTI 1 

normalization approach from FSL versus the one from ANTs, we contrasted the following: 2 

 3 

i. A normalization pipeline based on FSL’s FLIRT and FNIRT registration algorithms. 4 

ii. A normalization pipeline based on ANTs' linear and non-linear registration algorithms. 5 

 6 

Given that FNIRT from FSL is optimized to warp images of the same modality 7 

(Andersson et al., 2007; Smith et al., 2004), FA images from the test and retest sessions were 8 

registered to the FMRIB58 FA template for both pipelines. Because a large portion of the 9 

cortex is missing from the FMRIB58 template, reproducibility was evaluated only for the WM 10 

tissue (see section 2.5. for details on the mask). 11 

For linear registration using FSL's FLIRT tool (FSL version 5.0.9), the default cost 12 

function (correlation ratio) was used, which normally allows the robust registration of all images 13 

including those with different contrasts. For non-linear registration using FNIRT, the only cost-14 

function presently implemented is the "sum-of-squared differences" (Smith et al., 2004). We 15 

used the configuration file provided in FSL's toolbox for registration of FA images to FMRIB58 16 

FA template (FA_2_FMRIB58_1mm.cnf). Linear and non-linear transformations were 17 

concatenated and applied to FA and MD maps using a single interpolation step with the tri-18 

linear (default) method. 19 

For linear registration using ANTs (version 2.2.0), translation, rigid and affine 20 

transformations were consecutively calculated using the following parameters: mutual 21 

information similarity metric, convergence threshold = 1x10-6, convergence window size = 20, 22 

gradient step = 0.1. For the non-linear transformation the symmetric normalization (SyN) 23 

algorithm (antsRegistration command) was used with the following parameters: mutual 24 

information similarity metric, 100x100x50 iterations in three resolution levels with shrink 25 

factors = 3x2x1 and smoothing sigmas = 4x2x1, convergence window size = 5, gradient step 26 

= 0.2, update field variance in voxel space = 3, total field variance in voxel space = 0. Linear 27 

and non-linear transformations were concatenated and applied to FA and MD maps using a 28 

single linear interpolation step.  29 

Given that ANTs yielded better reproducibility than FSL we used ANTs’ algorithm for 30 

the remaining normalization approaches. 31 

 32 

2.4.2. Target image 33 

If one is interested in analyzing diffusion parameters in the neocortex, the template traditionally 34 

used in DTI studies (FMRIB58) may be suboptimal (Fig. 1). This is due to the fact that the 35 

outermost edges of the cortex, containing voxels that are primarily GM or CSF were excluded 36 
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from the template. Thus, we propose the use of the MNI152 T1-based template as target of 1 

registration.  2 

 3 

 4 

Figure 1. The choice of normalization template matters: comparison of the two adult human 5 
brain templates commonly used as targets for spatial normalization in group studies. The 6 
FMRIB58 FA template (in red) is shown overlaid on MNI152 T1 template. Note the substantial 7 
amount of the cortex excluded from the FA template with respect to the T1 template. 8 
 9 

The reproducibility associated with normalizing FA and MD images to two widely-used 10 

templates of different modalities was contrasted using the following pipelines: 11 

 12 

i. A normalization pipeline using FMRIB58 FA template as the target image 13 

ii. A normalization pipeline using MNI152 T1 template as the target image 14 

 15 

Test and retest FA images were registered to either the FA template or the T1 template 16 

by concatenating linear and non-linear transformations using ANTs. The same parameters 17 

used for the Registration algorithm approach described in the previous section were chosen 18 

here. Transformations calculated for FA images were also applied to the corresponding MD 19 

images. We were only able to contrast the reproducibility for the pipelines at the level of white 20 

matter due to the lack of cortical gray matter information in the FMRIB58 template.  21 

Given that using the MNI152 T1 template as target of normalization showed higher 22 

reproducibility for MD and FA than the FMRIB58 template, we chose it as the target image for 23 

the remaining normalization approaches.  24 

 25 

2.4.3. Moving image  26 

When the moving image and the target of normalization are of different modalities, as it is 27 

here, the choice of the DTI map to be warped to the standard stereotaxic space is not obvious. 28 

We compared the reproducibility for the normalization to the MNI152 template using five 29 

pipelines that differed only in the moving image: 30 
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i. A normalization pipeline using FA as moving image 1 

ii. A normalization pipeline using MD as moving image 2 

iii. A normalization pipeline using the b0 as moving image 3 

iv. A normalization pipeline combining information from FA and b0 images (FA+b0) as 4 

moving image 5 

v. A normalization pipeline combining information from MD and b0 images (MD+b0) as 6 

moving image 7 

 8 

In pipelines i) and ii), we assessed if the reproducibility of FA or MD is optimized when 9 

using the scalar image of interest as moving image for the normalization process. Using 10 

multiple modalities can improve pairwise registrations by providing complementary contrasts 11 

(Avants et al., 2011). Given that ANTs allows the use of one or more modalities to drive 12 

registration, in pipelines iii) through v) we examined if adding T2-weighted structural 13 

information from the b0 image leads to a better registration of all tissues. 14 

For each subject's test and retest sessions, the moving image in pipelines i) through 15 

v) were registered to the MNI152 T1 template by concatenating linear and non-linear 16 

transformations using ANTs (parameters for registration with ANTs used in the Registration 17 

algorithm approach were maintained). Then, these transformations were applied to the FA 18 

and MD maps for the same subject and session. Given that the MNI152 T1 template contains 19 

information from gray matter and white matter, we were able to compare the reproducibility 20 

error of FA and MD in both types of tissue. To this end, we created voxel-wise reproducibility 21 

error maps, and obtained the mean for gray and white matter within each corresponding mask 22 

(see section 2.5. for details). 23 

Given that FA was the moving image yielding the best reproducibility both for MD and 24 

FA, we used this moving image for the last normalization approach.  25 

 26 

2.4.4. Normalization strategy 27 

The first three normalization approaches proposed in this work were based on pipelines in 28 

which registration of the moving image to the target was performed in a direct fashion. The 29 

direct approach does not differ from what is often used in cross-sectional studies, but it may 30 

not be the best normalization strategy to make the most out of longitudinal data. One of the 31 

benefits of having a longitudinal data set is that within-subject variability may be reduced by 32 

taking advantage of the images acquired at different time points to create an intermediate 33 

template for normalization. It has been shown that the use of an intermediate template 34 

improves alignment over direct pairwise registration (Klein et al., 2010; Reuter et al., 2012; 35 

Tustison et al., 2014). Therefore, we evaluated two pipelines using different intermediate 36 

templates created with ANTs: 37 
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i. A normalization pipeline using an individual FA template as intermediate template 1 

ii. A normalization pipeline using a group FA template as an intermediate template 2 

 3 

When having two time points for the same subject, a common strategy to create an 4 

individual template is to refer both images to their halfway point or mid-space (Thomas et al., 5 

2009). In contrast, when the number of time points is larger, as in this case in which 9 images 6 

were obtained per subject, creating a mid-space for all time points is cumbersome. ANTs 7 

provides a tool that allows for the construction of an unbiased multivariate template using 8 

images from many sessions (and modalities) from the same subject (Avants et al., 2011, 9 

2010). The intermediate templates proposed in pipelines i) and ii) were created using this tool: 10 

antsMultivariateTemplateConstruction (Avants et al., 2011, 2010).  11 

DWI images from all nine sessions were used as input for the construction of each 12 

individual FA template. For the creation of the group FA template, individual FA templates 13 

from all subjects (twenty-one) were used as input. The following parameters were chosen for 14 

the template construction: rigid-body registration of inputs for the creation of an initial template 15 

used as seed, gradient step size=0.2, cross-correlation similarity metric, Greedy-SyN 16 

transformation model used for registration. Once the intermediate FA templates were 17 

produced (one individual template per subject, and one group template), they were registered 18 

to the MNI152 T1 using ANTs’ linear and non-linear transformations. 19 

The template construction tool automatically provides the transformations that map 20 

each one of the input images to the output template of choice. Hence, for the normalization of 21 

images in pipeline i), the transformations that map the test and retest FA images to the 22 

individual template were concatenated to those that map the individual template to MNI152 23 

space. Similarly, for pipeline ii), the transformations that map the test and retest FA images to 24 

the individual template, the corresponding individual template to the group template and the 25 

group template to MNI152 space were concatenated. Then, transformations were applied to 26 

the FA and MD maps in subject space to align them to the MNI152 standard space in a single 27 

interpolation step. 28 

To evaluate if adding an intermediate template to the normalization process improved 29 

reproducibility in comparison with a direct normalization approach, we contrasted the 30 

reproducibility from pipelines i) and ii) with that obtained for the pipeline in which normalization 31 

was performed directly to the MNI152 T1 template. 32 

 33 

2.5. Data analysis  34 

For all normalization approaches, the performance of the different pipelines was established 35 

based on the across-session test-retest reproducibility error using binary masks for each 36 

tissue type, namely gray and white matter. Furthermore, to assess the effect of applying the 37 
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optimal normalization pipeline on the integrity of the DTI images, we calculated the signal-to-1 

noise ratio (SNR) of MD and FA on gray and white matter tissue.  2 

 3 

2.5.1. Across-session test-retest reproducibility error  4 

Across-session test-retest reproducibility errors (RE) of FA and MD were computed in a voxel-5 

wise fashion for each subject and each normalization approach as the absolute difference 6 

between the test and the retest DTI measure, divided by the mean value of both sessions, and 7 

multiplied by 100 to express it as percent change (Papinutto et al., 2013). 8 

 9 

𝑅𝐸 =
100 ∗ |𝑇𝐸𝑆𝑇 − 𝑅𝐸𝑇𝐸𝑆𝑇|

0.5 ∗ (𝑇𝐸𝑆𝑇 + 𝑅𝐸𝑇𝐸𝑆𝑇)
 (Eq.1) 

 10 

To assess differences in RE for each tissue type, we computed the average RE for 11 

each DTI measure over the voxels within a GM and a WM mask. Masks were created by 12 

segmenting the MNI152 T1 template into three tissues (GM, WM and CSF) using FSL’s FAST 13 

tool (Zhang et al., 2001). The GM component obtained from the segmentation was used to 14 

create an atlas GM mask. An additional subcortical mask was created using the Harvard-15 

Oxford subcortical structural atlas (Smith et al., 2004; thresholded=60% probability) to include 16 

a series of structures of interest that were missing from the automatically generated GM 17 

component. This included the right and left pallidum, putamen, caudate and thalamus. Cortical 18 

and subcortical GM masks were combined and binarized into a unique GM mask. On the other 19 

hand, the WM mask was created based on the intersection of the components automatically 20 

generated by segmenting WM tissues from the MNI152 template and the FMRIB58 template 21 

(the FMRIB58 is substantially smaller due to thresholding). This allowed comparing RE in WM 22 

for images normalized with either template.  23 

 24 

2.5.2. Signal-to-noise ratio (SNR) assessment 25 

To obtain the SNR, we computed the mean across each normalized test DTI map and divided 26 

it by its standard deviation (Farrell et al., 2007). Thus, for each subject we generated one SNR 27 

value per DTI measure (one for MD and one for FA) and tissue type (GM and WM masks).  28 

 29 

2.5.3. Statistical analysis  30 

Statistical analysis was performed using SPSS (IBM SPSS Statistics for Windows, version 31 

25.0). RE and SNR values were statistically compared using a repeated measures analysis of 32 

variance (ANOVA), with pipeline, DTI measure and tissue type as within-subject factors. 33 

Normality of the data was checked using Shapiro-Wilk's test. For analyses involving 34 

comparisons between more than two pipelines, sphericity of the data was tested using 35 
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Mauchly's test. In the cases in which the sphericity assumption was not met, a Greenhouse-1 

Geisser degrees of freedom correction was performed. One subject consistently appeared as 2 

an outlier in the Moving image approach. Consequently, it was removed from all the analyses. 3 

Post-hoc Tukey tests were used to examine specific differences between pipelines. Bonferroni 4 

correction was used to adjust the significance threshold for multiple comparisons. 5 

 6 

2.6. Data and code availability statement 7 

The source-code of the optimized pipeline proposed for longitudinal DTI normalization is 8 

publicly available in GitHub (see section 3.4 for the link). The dataset used for this work is 9 

available upon request. 10 

  11 
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3. Results 1 

DWI data were pre-processed, fit to a tensor model to obtain FA and MD scalar maps and 2 

registered to standard stereotaxic space using four approaches that only differed in the 3 

features used in the normalization process, namely: 1) registration algorithm, 2) target image, 4 

3) moving image and 4) normalization strategy.  5 

 6 

3.1. Registration algorithm: ANTs yields lower reproducibility error than FSL 7 

With the aim of finding the optimal registration algorithm we first inspected the quality of 8 

registration visually by overlaying registered FA maps (red edges) on the FMRIB58 FA 9 

template (background image). Visual inspection of normalized FA images yielded overall 10 

better anatomical alignment to the standard template for ANTs than for FSL. Figure 2 11 

illustrates this observation for one representative image. 12 

 13 

 14 

Figure 2. The choice of non-linear registration tool matters: comparison of registration to the 15 
FMRIB58 FA template (background image) from a sample subject using two different 16 
registration tools, ANTs (top row) and FSL (bottom row). Registered FA maps are displayed 17 
using red edges. Notice the suboptimal warping of FSL’s tools in frontal, temporal and 18 
posterior regions (marked with arrows). 19 
 20 

Next, we compared the RE obtained from a normalization pipeline using either FSL 21 

(Smith et al., 2007, 2006, 2004) or ANTs (Avants et al., 2011). Given that FSL’s most used 22 

algorithm for non-linear registration (FLIRT) is optimized to warp images of the same modality, 23 
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FA images were registered to the FMRIB58 FA template for both pipelines. Thus, 1 

reproducibility was evaluated only for the WM tissue. 2 

Quantitative assessment of the algorithm’s reproducibility is shown in Figure 3. The 3 

upper row shows the distributions of reproducibility errors on the white matter mask of the 4 

FMRIB58 FA template, for MD (left) and FA (right). For both metrics we found that ANTs 5 

yielded lower percent reproducibility errors: MD (MeanSE: RE=7.750.18% for FSL vs. 6 

RE=6.240.11% for ANTs; F(1,19)=126.41, p<0.0001) and FA (RE=17.110.28% for FSL vs 7 

RE=10.160.11% for ANTs; F(1,19)=1103.83, p<0.0001). The lower row of Figure 3 shows 8 

the color coded (% errors) voxel-wise spatial map of mean RE computed across the WM mask 9 

(FMRIB58 FA template). Note that the reproducibility errors were higher for FA than for MD in 10 

both normalization pipelines (main effect of DTI measure F(1,19)=6095.44, p<0.0001, with 11 

mean RE=13.640.19 for FA vs RE=6.990.13 for MD). More details can be found in 12 

Supplementary Table 1. 13 

 14 

 15 

Figure 3. The choice of non-linear registration tool (FSL or ANTs) used with the FMRIB58 FA 16 
template affects test-retest reproducibility of diffusion scalars in white matter. ANTs yields 17 
significantly lower reproducibility errors than FSL (*p<0.0001).The upper plots show the mean 18 
percent test-retest reproducibility error for MD (left) and FA (right). The lower row shows the 19 
color-coded anatomical distribution of percent reproducibility errors in the white matter mask 20 
of the FA template; axial slice coordinate: z=19 mm. Acronyms: mean diffusivity (MD), 21 
fractional anisotropy (FA), test-retest reproducibility error (RE).  22 

 23 

3.2. Target image: MNI152 T1 template yields lower reproducibility error in WM than 24 

FMRIB58 FA template 25 

With the aim of optimizing the normalization process to include the cortex, we compared the 26 

RE associated with registering MD and FA maps to the FMRIB58 FA template with that 27 
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obtained from registering them to the MNI152 T1 template. RE was evaluated on the WM 1 

mask. We used ANTs for the registration given the improved reproducibility performance 2 

shown in Figure 3.  3 

We found that reproducibility errors were significantly lower when using MNI152 as 4 

target image (Fig. 4) both for MD (RE=5.580.13% when normalized to MNI152 vs 5 

RE=6.240.11% when using FMRIB58 as target; F(1,19)=108.15; p<0.0001) and FA 6 

(RE=9.250.20% when normalized to MNI152 vs RE=10.160.11% when using FMRIB58 as 7 

target; F(1,19)=58.76; p<0.0001). In line with the previous normalization approach, RE was 8 

higher for FA than MD for both pipelines (main effect of DTI measure F(1,19)=2993.47, 9 

p<0.0001, with mean RE=9.700.15 for FA vs RE=5.910.12 for MD). More details can be 10 

found in Supplementary Table 2. 11 

 12 

 13 

Figure 4. The choice of target template affects reproducibility errors in white matter MD and 14 
FA. MNI152 T1 template produced significantly lower reproducibility error than FMRIB58 FA 15 
template (*p<0.0001). Similarly to Fig. 3, the upper row shows the group % error distributions 16 
and the lower row the voxel-wise % error maps for each diffusion metric (MD and FA) and 17 
each target template (MNI152 T1 and FMRIB58 FA). Acronyms: mean diffusivity (MD), 18 
fractional anisotropy (FA), test-retest reproducibility error (RE).  19 

 20 

3.3. Moving image: Using FA as moving image reduces reproducibility error both in GM and 21 

WM 22 

Given that so far the optimal normalization approach is based on the MNI152 T1 template as 23 

target of normalization the choice of moving image is not obvious. Here, we contrasted the RE 24 

obtained from five normalization pipelines differing only in the moving image: i) FA, ii) MD, iii) 25 
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b0, iv) FA+b0, and v) MD+b0. In this case, we were able to assess the RE both in white matter 1 

and gray matter using corresponding tissue masks.  2 

The assessment of RE in white-matter tissue yielded a significant effect of moving 3 

image both for MD (F(1.909,36.272)=9.483; p<0.001) and FA (F(2.406,45.714)=199.158; 4 

p<0.0001). A post-hoc test conducted on the MD measure, revealed that the “b0” pipeline 5 

yielded higher RE than the other four pipelines (p<0.01), while the rest of the pipelines did not 6 

differ from one another (Fig. 5, top left). On the other hand, a post-hoc test conducted on the 7 

FA measure, showed that “FA+b0” and “FA” pipelines yielded the lowest RE, and that these 8 

pipelines differed from the rest (p<0.0001). Combining FA and b0 images did not significantly 9 

improve reproducibility over using FA alone (p=0.107). These results are depicted in Figure 5 10 

(top, right). 11 

The assessment of RE in gray-matter tissue yielded a significant effect of moving 12 

image on RE both for MD (F(2.413,45.838)=39.856; p<0.0001) and FA 13 

(F(2.395,45.500)=1078.86; p<0.0001). A post-hoc test conducted on the MD measure (Fig. 5, 14 

bottom left), showed that both the “FA+b0” and the “FA” pipelines yielded the lowest RE 15 

(p<0.05), both being equally reliable (p=0.177). A post-hoc test conducted on the FA measure 16 

(Fig. 5, bottom right), showed that the “FA” pipeline yielded the lowest RE (p<0.001). Voxel-17 

wise distribution of RE is depicted at the bottom of Figure 5. Refer to Supplementary Tables 18 

3 and 4 for additional information regarding differences between these pipelines and post-hoc 19 

comparisons. 20 

 21 
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 1 

Figure 5. The choice of moving image warped to the MNI152 T1 template affects test-retest 2 
reproducibility error. Using FA as moving image reduces reproducibility error significantly in 3 
both brain tissues (GM and WM), for both FA and MD (p<0.001). Shown are the mean RE 4 
(top), and the color-coded anatomical distribution of RE for MD (left) and FA (right) in white 5 
and gray matter. Letters above the horizontal axis represent the compact display of all pair-6 
wise comparisons using Tukey’s test. Different letters express differences between pipelines 7 
with an adjusted p-value<0.05. Same letters indicate no statistical differences. As indicated in 8 
Eq. (1) RE is expressed as percent change. Acronyms: mean diffusivity (MD), fractional 9 
anisotropy (FA), test-retest reproducibility error (RE), gray matter (GM), white matter (WM), 10 
mean diffusion unweighted volume (b0).  11 

 12 

In conclusion, regardless of the measure (MD or FA) and the tissue (WM or GM), FA 13 

is the most reliable moving image to use in the registration to the MNI152 T1 template. 14 
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Consistent with results from the previous sections, the reproducibility error associated with FA 1 

was higher than MD for all pipelines and across tissues (main effect of DTI measure 2 

F(1,19)=6799.91, p<0.0001, with mean RE=17.760.21% for FA vs RE=6.840.3% for MD). 3 

Note that reproducibility errors were higher in GM than in WM, regardless of diffusion metric 4 

(main effect of tissue type F(1,19)=6151.91, p<0.0001, with mean RE=15.790.18 for GM vs 5 

RE=8.810.14 for WM).  6 

 7 

3.4. Normalization strategy: Using an intermediate individual FA template for normalization 8 

reduces reproducibility error in GM and WM.  9 

So far, our results indicate that using ANTs for registration, the MNI152 T1 template as target 10 

image and the FA map as moving image yield the optimal normalization approach for 11 

longitudinal DTI images. However, normalization steps in previous sections were performed 12 

in a direct fashion, that is, the moving image was aligned to the target image with no 13 

intermediate registration steps. Here we examined the reproducibility error associated with 14 

pipelines involving two different intermediate templates: an individual FA template and a group 15 

FA template. We compared reproducibility results from these two pipelines with those from 16 

the direct pipeline using “FA” as moving image, which yielded the lowest RE for FA and MD 17 

in both tissues, as shown in the previous section. 18 

Reproducibility error in white matter differed significantly both for MD (F(2,38)=10.188; 19 

p<0.0001) and FA (F(1.510,28.684)=98.573; p<0.0001). A post-hoc test showed that using an 20 

individual FA template as an intermediate step in the normalization process yielded the lowest 21 

RE (Fig. 6, top panel), and differed from the rest of the pipelines for both MD (p<0.03) and FA 22 

(p<0.0001).  23 

Reproducibility error in gray matter also differed significantly both for MD 24 

(F(1.447,27.498)=3.950; p=0.043) and FA (F(1.393,26.472)=230.70; p<0.0001). A post-hoc 25 

test revealed that using an intermediate individual FA template yielded the lowest RE (Fig. 6, 26 

bottom panel), and differed from the rest of the pipelines for FA (p<0.02). For MD, using the 27 

individual FA template as an intermediate step produced lower RE than using the direct 28 

registration strategy (p=0.001) but it did not differ from using the group FA template (p=0.2). 29 

Voxel-wise maps for the mean RE across subjects are shown in Figure 6 to illustrate RE 30 

distribution. Refer to Supplementary Tables 5 and 6 for additional information regarding 31 

differences between these pipelines and post-hoc comparisons. 32 

 33 
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 1 

Figure 6. The intermediate individual FA template reduces reproducibility error in GM and 2 
WM. Shown are the mean RE (top), and the color-coded anatomical distribution of RE for MD 3 
(left) and FA (right) for white and gray matter. As indicated in Eq. (1) RE is expressed as 4 
percent change. Direct: direct normalization, Group T: normalization via group FA template 5 
(created out of 21 individual templates), and Indiv. T: normalization via individual FA template 6 
(created out of 9 scans per subject). Letters above the horizontal axis represent the compact 7 
display of all pair-wise comparisons using Tukey’s test. Different letters express differences 8 
between pipelines with an adjusted p-value<0.05. Same letters indicate no statistical 9 
differences. Acronyms: mean diffusivity (MD), fractional anisotropy (FA), test-retest 10 
reproducibility error (RE), gray matter (GM), white matter (WM). 11 

 12 

Consistent with results from the previous sections, the reproducibility error associated 13 

with FA was higher than MD for all pipelines and across tissues (main effect of DTI measure 14 

F(1,19)=2866.98, p<0.0001, with mean RE=13.200.18% for FA vs RE=6.460.11% for MD). 15 

Note that reproducibility errors were higher in GM than in WM, regardless of pipeline and 16 

diffusion metric (main effect of tissue type F(1,19)=3590.21, p<0.0001, with mean 17 

RE=12.180.16 for GM vs RE=7.480.12 for WM).  18 
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So far we have focused on the test-retest percent reproducibility error as index to 1 

evaluate normalization approaches. Yet, an optimal approach in terms of RE may also impact 2 

on the integrity of the image, hindering the signal-to-noise ratio (SNR). Figure 7 depicts the 3 

mean SNR computed for FA and MD in WM and GM for the Normalization strategy approach. 4 

 5 

 6 

Figure 7. The choice of an intermediate template for brain spatial normalization strategy 7 
affects the global signal-to-noise ratio (SNR) in MD and FA maps. Note that different scales 8 
are used for panels showing MD and FA results. Direct: direct normalization, Group T: 9 
normalization via group FA template (created out of 21 individual templates), and Indiv. T: 10 
normalization via individual FA template (created out of 9 scans per subject). Letters above 11 
the horizontal axis represent the compact display of all pair-wise comparisons using Tukey’s 12 
test. Different letters express differences between pipelines with an adjusted p-value<0.05. 13 
Same letters indicate no statistical differences. Acronyms: mean diffusivity (MD), fractional 14 
anisotropy (FA). 15 

 16 
Statistical assessment of SNR in white matter identified a significant effect of 17 

normalization strategy for MD (F(1.460,27.737)=167.543; p<0.0001) and FA (F(2,38)=19.056; 18 

p<0.0001). A post-hoc test conducted on MD revealed that using a group FA template as an 19 

intermediate step for normalization pipeline yielded the highest SNR (p<0.001). On the other 20 

hand, a post-hoc test conducted on FA showed that the direct normalization using FA as 21 

moving image yielded the highest SNR (p<0.005).  22 
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Statistical assessment of SNR in gray matter also identified a significant effect of 1 

normalization strategy both for MD (F(1.440,27.358)=22.518; p<0.0001) and FA 2 

(F(1.521,28.904)=168.093; p<0.0001). A post-hoc assessment on MD showed that 3 

normalization pipelines using an intermediate template (individual FA template or group FA 4 

template) yielded the highest SNR (p<0.0001), with no difference between them. Post-hoc 5 

assessment on FA showed that the direct pipeline produced the highest SNR (p<0.0001). 6 

Refer to Supplementary Tables 7 and 8 for additional information regarding differences 7 

between these pipelines and post-hoc comparisons. 8 

In sum, using an intermediate individual FA template yields the lowest RE for both MD 9 

and FA across tissues. This approach was associated with high SNR for MD both in GM and 10 

WM. In contrast, using a direct normalization strategy, i.e. registering FA directly to MNI152 11 

template, yielded the highest SNR for FA in both tissues. In agreement with the previous 12 

approaches, RE was higher for FA than MD, and the SNR was higher for MD than for FA. 13 

The codes for the optimal normalization pipeline are publicly available at: 14 

https://github.com/florjaco/DWIReproducibleNormalization.  15 

 16 

  17 
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4. Discussion 1 

Brain diffusion MRI scalar maps like fractional anisotropy and mean diffusivity provide an 2 

increasingly valuable noninvasive tool to quantify structural plasticity (Keihaninejad et al., 3 

2013; Krogsrud et al., 2016; Lam et al., 2014; Landi et al., 2011; Sagi et al., 2012; Scholz et 4 

al., 2009; Sexton et al., 2014). Yet, longitudinal changes in gray matter are usually overlooked 5 

in traditional pipelines of DTI analysis, which mostly focus on white matter tissue. Here we 6 

seek to optimize current spatial normalization approaches to detect longitudinal changes in 7 

diffusion scalar maps both at the level of the cortex and the white matter. To this end, we 8 

explored the impact of varying different features of the spatial normalization process on the 9 

across-session test-retest reproducibility error of FA and MD maps produced from multiple 10 

scanning sessions. We found that the most reliable approach, both for MD and FA in gray and 11 

white matter tissues, consisted on a spatial normalization pipeline using ANTs as the 12 

registration algorithm, MNI152 T1 template as the target image, FA as the moving image, and 13 

an individual FA template as an intermediate step. 14 

The impact of the normalization parameters on the reproducibility of DTI registration 15 

has previously been explored by a few laboratories. For example, Liu and collaborators (2014) 16 

showed that traditional linear and non-linear algorithms such as FLIRT and FNIRT (FSL) or 17 

tensor-based algorithms were equally reliable. This was attributed to the high accuracy of DTI 18 

measures extracted from images acquired with more than 30 encoding directions. Around the 19 

same time, however, Schwarz and collaborators (2014) showed that the reproducibility of the 20 

spatial normalization process may in fact be improved further by using the non-linear algorithm 21 

from ANTs (SyN). Using a simulation approach, the authors showed that ANTs was more 22 

sensitive to detect true changes, yielding a lower rate of false positives than FSL. The ANTs 23 

registration algorithm was later also found to outperform FSL in terms of the alignment of white 24 

matter tracts, as assessed through quantification of fiber similarity (mean-square error) and 25 

FA profiles (Wang et al., 2017). Using an alternative approach to assess normalization 26 

reproducibility, in the present study we demonstrated that ANTs’ registration algorithm yielded 27 

better reproducibility than FSL’s. Thus, altogether, both Schwarz’s and our study point to a 28 

better performance of ANTs for non-linear registration of DTI maps.  29 

A unique contribution of our work is the application of ANTs to detect longitudinal 30 

changes of FA and MD in gray matter tissue. Estimating the reproducibility of these maps in 31 

both types of tissue was possible because we used a T1 stereotaxic template as the target 32 

image of normalization. Unlike DTI-based templates (e.g., Cabeen et al., 2017; Schwarz et 33 

al., 2014; Van Hecke et al., 2011; Zhang and Arfanakis, 2018), the MNI152 preserves the 34 

integrity of the cortex. To our knowledge, this is the first study to examine the direct registration 35 

of DTI maps to a T1 stereotaxic template. Interestingly, using the MNI152 T1 template not only 36 

improved reproducibility over the FMRIB58 in gray matter but also in white matter. Therefore, 37 
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using a T1-based standard as target image appears to be advantageous over DTI-based 1 

templates to improve detection of longitudinal changes in microstructure in both types of 2 

tissues.  3 

Most studies aimed at detecting longitudinal changes in FA have used the FA map as 4 

the moving image to register to stereotaxic space. This is likely due to the fact that these maps 5 

provide better white matter contrast (although see Bach et al., 2014 and Park et al., 2003 for 6 

tensor-based registration). Yet, one would expect the choice of moving image to be measure 7 

dependent, with MD yielding better reproducibility to examine changes in gray matter, and FA 8 

in white matter. Given that not all DTI measures have good tissue contrast, we also examined 9 

the impact of including the b0 on the reproducibility error. We found that using FA as moving 10 

image yielded the best reproducibility for both DTI measures in both tissues, whereas using 11 

MD deteriorated reproducibility in general, even when the b0 was included to improve tissue 12 

contrast. Tustison and colleagues (2014) have pointed out that conducting the statistics on 13 

the same DTI measure that was used as moving image could bias the analysis, raising the 14 

rate of false positives. This does not hold, however, when the similarity metric used in the 15 

registration is based on mutual information, the quantity of choice in our study. Why using FA 16 

as moving image yields better reproducibility than MD? One possible explanation may lie on 17 

the anatomical correspondence between moving image and template. FA quantifies the 18 

diffusion of water molecules along axons, thereby providing relatively good resolution of white 19 

matter tracks. Thus, an accurate spatial matching between white matter in FA images and in 20 

the MNI152 T1 would show the best results. On the contrary, MD maps offer little tissue 21 

contrast, probably hampering good correspondence to the T1 template.  22 

Another relevant issue to consider at the time of normalizing longitudinal data is the 23 

use of an intermediate step (either a group or an individual template) in the registration 24 

process. The use of a group template has been shown to reduce normalization bias (Tustison 25 

et al., 2014), increase accuracy of the DTI analysis and preserve the underlying diffusion 26 

information in voxel-based analysis (Van Hecke et al., 2008). This approach may be optimal 27 

when dealing with different population samples such as patients and healthy subjects, whose 28 

brains may differ critically from the standard. Yet, when dealing with a longitudinal study, 29 

obtaining a good alignment of multiple scans from each subject is a critical step. The use of 30 

an individual template has been implemented successfully in TBSS (FSL) to improve 31 

registration to the skeleton (Madhyastha et al., 2014). Here, we found that preregistration to 32 

an individual FA template reduced reproducibility error both in gray matter and white matter 33 

for FA as well as MD. This approach outperformed the direct normalization to the standard 34 

space. Using an individual template was also better than using a group template, constructed 35 

based on all individual templates, as the intermediate step. Our results suggest that, for 36 

longitudinal studies of a uniform population of subjects (e.g., healthy volunteers), where intra-37 
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individual correspondence is crucial, warping images to a group template may hinder 1 

reproducibility. This may be due to the high inter-subject variability in some white matter tracts 2 

(Smith et al., 2006).  3 

To examine if the transformations imposed by the normalization pipelines 4 

compromised the integrity of the DTI images, we assessed their impact on the signal-to-noise 5 

ratio. Even though we found some differences between the three normalization strategies, the 6 

SNR was overall preserved. Given that in longitudinal studies intra-individual reproducibility is 7 

critical, we suggest that at acceptable SNR values priority is given to the normalization strategy 8 

that minimizes reproducibility error. 9 

One systematic bias we observed across all normalization approaches was the 10 

magnitude of whole-brain reproducibility errors, which was higher, almost two-fold, for FA than 11 

for MD regardless of the feature examined and type of tissue. These findings are in agreement 12 

with previous 1.5T and 3T studies, which showed that FA has a higher spatial variability of 13 

reproducibility errors across brain regions than MD (Farrell et al., 2007; Liu et al., 2014; 14 

Marenco et al., 2006). Moreover, both FA and MD were more reproducible in white matter 15 

than in gray matter. This tissue dependent difference in reproducibility errors has been 16 

reported previously for FA in white and deep gray matter (Farrell et al., 2007) and for both FA 17 

and MD in gray and white matter (Marenco et al., 2006). Cortical voxels can be affected by 18 

partial-volume effects in the gray matter/CSF interface, which could explain why areas of gray 19 

matter in the cortex show higher reproducibility errors (for example, see voxel-wise maps of 20 

RE in Figure 5). 21 

Despite its strengths, our work presents limitations. First, the reproducibility error was 22 

assessed at the level of tissue. Although this approach facilitates extracting conclusions on 23 

the global impact of the contrasted features, it overlooks any spatial variations. A voxel-wise 24 

approach would allow estimating the influence of other factors such as anatomical variability, 25 

signal-to-noise ratio and image inhomogeneities. Second, the reproducibility error provides 26 

only one way to measure the reproducibility of a spatial normalization approach. Other aspects 27 

such as the specificity and sensitivity of the method in question would allow establishing the 28 

false positive rate, false negative rate and the minimum detectable difference of the DTI 29 

measure of interest. The specificity and sensitivity of different normalization approaches have 30 

been addressed for FA maps in white matter (Schwarz et al., 2014; Zhang and Arfanakis, 31 

2018), and may be extended to other DTI maps. Lastly, and rather beyond this study, a more 32 

fundamental challenge is related to the interpretation of FA or MD changes in relation to the 33 

specificity of tissue microstructure properties and limitations of the diffusion tensor model 34 

(Jones et al., 2013; Jones and Cercignani, 2010; Zatorre et al., 2012). Alternative diffusion 35 

scalar metrics have been proposed, for example using higher-order information derived by 36 

fiber orientation distribution estimations (Raffelt et al., 2012; Riffert et al., 2014). The sensitivity 37 
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of those metrics for plasticity effects in gray and white matter remains to be seen, and spatial 1 

normalization optimization approaches for them may follow the strategy proposed in this study.  2 

In summary, our work explored different normalization approaches with the aim of 3 

optimizing the detection of subtle changes in microstructure both in gray and white matter 4 

tissue. We showed that using ANTs’ non-linear algorithm to warp FA images to MNI152 T1 5 

through an individual template yielded the best reproducibility. This pipeline outperformed 6 

traditional algorithms currently used to assess microstructure in white matter tracts. 7 

Furthermore, it allowed exploring changes in gray matter, opening a window to quantify 8 

plasticity at the cortical level.  9 
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