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ABSTRACT: 

 

The packing of cells in epithelia exhibits striking regularities, regardless of the organism 

and organ. One of these regularities is expressed in Lewis’ law, which states that the 

average apical cell area is linearly related to the number of neighbours, such that cells with 

larger apical area have on average more neighbours. The driving forces behind the almost 

100-year old Lewis’ law have remained elusive. We now provide evidence that the observed 

apical epithelial packing minimizes surface energy at the intercellular apical adhesion 

belt.  Lewis’ law emerges because the apical cell surfaces then assume the most regular 

polygonal shapes within a contiguous lattice, thus minimising the average perimeter per 

cell, and thereby surface energy. We predict that the linear Lewis’ law generalizes to a 

quadratic law if the variability in apical areas is increased beyond what is normally found 

in epithelia. We confirm this prediction experimentally by generating heterogeneity in cell 

growth in Drosophila epithelia. Our discovery provides a link between epithelial 

organisation, cell division and growth and has implications for the general understanding of 

epithelial dynamics. 
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INTRODUCTION 

The packing of cells in epithelia exhibits striking regularities, regardless of the organism and 

organ. This suggests that there are fundamental principles to epithelial organization. Epithelial 

organization has previously been accounted for by topological constraints [1, 2], energy 

minimization [3-5], and entropy maximization [6]. While each of those theories explains certain 

aspects of epithelial organisation, a general theory that explains the wide range of epithelial 

regularities and organizational principles is missing. We will show that epithelial organization 

can be explained by a minimization of surface energy. Based on our theoretical framework, we 

explain how cell growth and division as well as mechanical constraints act together to drive 

epithelial tissue organization. 

 

In epithelia, neighbouring cells adhere tightly to their neighbours via adherence junctions (Fig 

1a). As a result, the apical surface of epithelia corresponds to a contiguous, polygonal lattice (Fig. 

1a,b, ED Fig. 1a). In epithelia, three edges typically meet in each vertex (Fig 1c). For such a 

connected planar graph, the total number of cell faces (f), cell edges (e), and cell vertices (v) in 

the lattice must be related according to Euler’s Formula as v-e+f =2, and in the limit of large 

tissues, cells must on average have six neighbours (�̅� =
𝑣

𝑓
=  6) [1, 6]. Even though the 

frequencies of the different polygon types differ widely between different epithelial tissues, all 

epithelia analysed to date indeed meet this topological constraint in that their cells have on 

average close to six neighbours (Fig. 1d,e). This particular property of epithelial organisation thus 

directly follows from topological constraints. 

 

Topological arguments have also been proposed to explain the particular frequencies of polygon 

types in the different epithelial tissues (Fig. 1e, ED Fig. 1c). According to those topological 

arguments the observed frequencies of polygon types are the result of sequential cell division 
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(Fig. 1f) [1, 2]. A key prediction from this topological model is that all epithelial tissues would 

have the same distribution of polygon type frequencies [1, 2]. The exact frequency would depend 

on the mode of cell division. However, both in case of a random positioning of the cell division 

axis (marked by a dashed line in Fig. 1e) as well as in case of cell division perpendicular to the 

longest axis (Hertwig’s rule [7]) (marked by a dotted line in Fig. 1e), about 45% of all cells would 

have six neighbours. Contrary to this prediction from the topological model, the frequencies of 

polygon types vary strongly between tissues, ranging from 30% to 80% hexagons in the different 

epithelia analysed (Fig. 1e, ED Fig. 1b). Other processes, in addition to cell division, must 

therefore determine epithelial organisation.  

 

Vertex models explain cell organisation in animal and plant epithelia based on physical 

arguments [2-5, 8]. Here, the apical surface of each cell is approximated by a polygon. 

Neighbouring cells share edges such that the epithelium is represented as a polygonal tiling (Fig. 

1g). Cells can grow and divide. The mechanical behaviour of the cells is represented either via 

forces or based on an energy functional. In each time step, the vertices of cells are moved based 

on the equations of motion until the forces balance at each vertex, which corresponds to the 

energy minimum. As the forces acting at each vertex can be derived from the energy functional, 

the two approaches are equivalent, even though implementations may differ [9].  

 

𝐸 =  ∑
𝐾𝛼

2
(𝐴𝛼 − 𝐴0)2 +𝛼 ∑

Γ

2
Π𝛼

2
𝛼 + ∑ Λ𝑖𝑗𝑙𝑖𝑗<𝑖,𝑗>      (1) 

 

represents a well-studied energy functional for epithelial dynamics [3, 5]. Here, the first term 

serves to limit the area variability in the tissue, the second term describes cell contractility, and 

the last term represents the net effect of cell adhesion and surface (line) tension [3, 5]. In the first 

term, 𝐾𝛼 ≥ 0 is a constant, the so-called area contractility, 𝐴0is the target apical area, and 𝐴𝛼is 
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the apical area of cell ; the sum goes over all cells in the tissue. In the second term, Γ is the 

contractility, and Π𝛼 is the perimeter of cell ; the sum goes over all cells in the tissue. Finally, in 

the last term, Λ𝑖𝑗 is the surface (line) tension and 𝑙𝑖𝑗 is the length of the edge between vertex i and 

j; the sum goes over all edges in the tissue. The wide range of measured polygon type frequencies 

can be reproduced by adjusting the mechanical parameters Λ𝑖𝑗 and Γ relative to 𝐾𝛼 [3]. In 

addition to the mechanical parameters, also the mode of cell division affects the polygon type 

frequencies [2]. It has therefore been argued that both topological and mechanical effects 

determine epithelial organisation in the vertex model [2]. 

 

In 1928, F.T. Lewis documented a further intriguing property of epithelia [10]: the average apical 

area, 𝐴𝑛
̅̅̅̅ , of cells with n neighbours is linearly related to the number of neighbours n, such that  

 

𝐴𝑛̅̅ ̅̅

�̅�
=

(𝑛−2)

4
.          (2) 

 

Here, 𝐴̅ refers to the average apical cell area in the tissue. All analysed epithelial tissues follow 

Lewis’ law (Fig. 1h, ED Fig. 1c) despite the different frequencies of neighbour numbers in the 

different tissues (Fig. 1e, ED Fig. 1b). Vertex models can reproduce Lewis’ law, but only for a 

small subset of the parameter space (spanned by the relative contractility, 
Γ

𝐾𝛼
, and relative line 

tension, 
Λ𝑖𝑗

𝐾𝛼
) [3, 5, 8], and it is unclear what restricts epithelia to all fall within this narrow 

parameter range. Similarly, Voronoi tessellations can give rise both to the measured range in the 

neighbour frequencies and to Lewis’ law, but again not for all Voronoi tessellation paths, and 

Voronoi tessellation paths do not necessarily recapitulate cell division planes [11]. Finally, 

entropy maximisation rather than energy minimisation has been proposed as a driving force for 

Lewis’ law [6], but this has since been ruled out [12, 13]. In conclusion, none of the current 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2019. ; https://doi.org/10.1101/590729doi: bioRxiv preprint 

https://doi.org/10.1101/590729
http://creativecommons.org/licenses/by-nc/4.0/


 6 

theories can explain the robust emergence of Lewis’ law in animal and plant epithelia analysed to 

date, suggesting that an important driving force of epithelial organisation has so far been 

overlooked. So, what is the underlying principle that drives all epithelia to organise according to 

Lewis’ law? 

 

In the following, we show that the observed epithelial order indeed minimises energy. The key 

aspect that had been overlooked so far is the impact of the variability in the apical cell area on 

epithelial organisation. As a result of cell growth and division, apical areas differ in epithelia. In 

that case, a tiling with a mix of polygon types (rather than hexagonal tiling) has the smallest 

combined perimeter. Lewis’ law emerges because the side lengths in the apical polygonal tiling 

are then the most similar in length, resulting in the most regular polygonal shapes within a 

contiguous lattice of cells with different apical areas. Regular polygons result in the smallest cell 

perimeter per area, and regular polygonal lattices therefore minimize the contact surface area 

between cells, and thus the contact surface energy. Interestingly, our theory predicts that the 

relationship between cell area and neighbor number follows a quadratic law, rather than the linear 

law found by Lewis. Simulations predict that this quadratic relationship can only be observed in 

the limit of much higher apical area variability than what is normally found in epithelia. We 

tested the theory by generating such higher apical area variability in the Drosophila wing disc 

epithelium, and we indeed confirm the predicted quadratic scaling law. Moreover, we predict and 

confirm experimentally that the fraction of hexagons in a tissue depends on the area variability in 

the tissue. We conclude that the observed epithelial organisation is driven by a minimisation of 

the lateral contact surface energy between epithelial cells. Epithelial organisation and Lewis’ law 

can thus be understood by considering only two variables: tension and the variability of the apical 

cell areas in the epithelial tissue. Growth and cell division affect the epithelial organisation via 

their impact on the apical cell areas.  
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RESULTS 

 

Epithelial Organisation when all apical areas are equal 

We seek to understand the observed distribution of neighbour numbers and the emergence of 

Lewis’ law in epithelia. Let us first consider a tissue with equal line tension in all edges, Λ𝑖𝑗 =  Λ, 

and equal apical areas, i.e. A𝛼 = 𝐴0. The energy E (Eq. 1) then only depends on the combined 

cell perimeter in the tissue, Π =  ∑ Π𝛼𝛼 =  2 ∑ 𝑙𝑖𝑗<𝑖,𝑗> ; the factor 2 comes in as neighbouring 

cells share edges in the vertex model. For a given area, the perimeter of a polygon depends on its 

shape and on its number of neighbours: regular polygons have the smallest perimeter per area, 

and the polygon perimeter 𝛱 declines non-linearly as the number of vertices, n, increases (Fig. 

2a),   

 

Π(n, A) =  n√
4𝐴

𝑛
tan

𝜋

𝑛
.         (3) 

 

The perimeter per area is smaller, the larger the number of vertices. However, in contiguous 

tissues with three edges per vertex, cells must respect the topological constraint �̅� = 6 (Fig. 1c, 

d), i.e. cells must have on average six neighbours [1, 6]. Therefore, if some cells have more than 

six neighbours, other cells must have less than six neighbours. As can be seen in Figure 2a, for a 

given area, cells with fewer than six vertices gain more in perimeter than what the cells with more 

than six vertices lose in perimeter. For instance, a square and an octagon, which have on average 

six vertices, have a larger combined perimeter than two hexagons (Fig. 2a,b). Given the non-

linear dependency of the perimeter on the number of vertices (Fig. 2a), hexagonal tiling always 

has a smaller combined perimeter than any mixed polygon tiling, and purely hexagonal tiling is 

then the energetically most favourable configuration. Why would tissues deviate from hexagonal 

packing and follow Lewis’ law?  
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The impact of Apical Area Variability on Epithelial Order 

The key aspect is the variability in the apical cell areas. As a consequence of growth, cell 

division, and nuclear movement during the cell cycle, apical cell areas in epithelia differ widely 

between cells. Changes in the polygon area shift the perimeter curve in a nonlinear fashion (Fig. 

2c). As a result, if we again compare the two hexagons with a square and an octagon, we notice 

that differences in cell area reduce the combined perimeter for all configurations, even though the 

combined areas of the polygons is the same as before (Fig. 2d). The strongest reduction in the 

combined perimeter is observed when the smaller polygon has fewer vertices (square) and the 

larger polygon has more vertices (octagon) (Fig. 2c,d, case ii). Given the relation between 

polygon perimeter, area, and neighbour number (Eq. 3), this observation holds not only for this 

particular example, but for any combination of polygons that has on average six vertices (Euler’s 

formula). While the smaller combined perimeter explains why smaller cells have on average less 

than six neighbours and larger cells have on average more than six neighbours, it does not yet 

explain why the linear Lewis’ law emerges. 

 

Lewis’ Law minimizes Surface Energy by driving polygons to be regular 

In our mathematical analysis, we have so far assumed that all polygons are regular, which implies 

that they are equilateral and equiangular. Regular polygons have the smallest possible perimeter 

at a given apical cell area, and energy minimisation should therefore drive polygonal lattices to 

the most regular polygonal shapes. However, to fit within a contiguous lattice, neighbouring cells 

need to have the same side lengths (Fig.  3a). If all cells had the same apical area (Fig. 3b, blue 

line), then cells with fewer vertices would have larger average side lengths (Fig. 3c, blue line). 

Cell edges would thus need to be stretched to constitute a contiguous lattice (Fig. 3a).  If the 

apical cell areas follow Lewis’ law, then the differences in side lengths are much smaller between 

different polygon types (Fig. 3c,d, black lines). In fact, equal side lengths,  
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𝑆(𝑛, 𝐴) =  
Π(n,A)

𝑛
=  √

4A𝑛

𝑛
tan

𝜋

𝑛
=   𝑐𝑜𝑛𝑠𝑡 = 𝑍,       (4) 

 

and thus regular polygons would be obtained (Fig. 3c,d, yellow lines) if  

 

 
A𝑛

�̅�
 ~ 

𝑛2

�̅�2+𝜎(𝑛)2 ~ (
𝑛

6
)

2
,           (5) 

 

where 𝜎(𝑛)2 =   𝑛2̅̅ ̅ −  �̅�2 is the variance in the cell neighbour numbers. Here, we solved Eq. 4 

for A𝑛, i.e. A𝑛 =
𝑍2

4

𝑛

tan
𝜋

𝑛

~
𝑍2

4

𝑛2

𝜋
, and estimated the average area as 

𝐴̅~
1

𝑁
∑ A𝑛

𝑁+2
𝑛=3 ~

𝑍2

4𝜋

1

𝑁
∑ 𝑛2 = 𝑁+2

𝑛=3
𝑍2

4𝜋
(�̅�2 + 𝜎(𝑛)2), where N is the highest observed cell 

neighbour number. Using Euler’s formula, �̅� = 6, we then obtain Eq. 5, which is very similar to 

Lewis’ law, except that the relative areas depend quadratically rather than linearly on the 

neighbour numbers. So, why do epithelia follow the linear Lewis’ law (Eq. 2) rather than the 

quadratic relation in Eq. 5? 

 

LBIBCell Simulations of Epithelial Tissue Dynamics predict a critical role of the apical area 

variability for Lewis’ law 

To address this question, we need to use a computational framework that permits cells to deform 

within the tissue, and we used the simulation framework LBIBCell [14] to simulate the apical 

cell dynamics in a 2D plane with high geometric resolution (Fig. 1a, Fig. S1, Movie S1). The 

opposing effects of cell-cell adhesion and lateral surface tension are represented by springs at 

cell-cell junctions, and the effect of cortical tension is represented by springs along the cell 

surface (Fig. 4a). The most quantitative data is available for the Drosophila wing disc epithelium 

(or disc), and all parameter values could be inferred from available quantitative data (see 
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Supplementary Material for details). Thus, the fraction of hexagons depends on the two 

mechanical parameters (Fig. 4b), and we adjusted the boundary tension and cell-cell junction 

strength to reproduce the frequencies of cell neighbours measured by Heller and co-workers in 

Drosophila wing discs [15] (Fig. 4c). We used the measured declining growth rate [16, 17] to 

reproduce the measured wildtype wing disc growth kinetics [18] (ED Fig. 2a,b), and we set the 

cell division threshold (Fig. 4d) such that we reproduce the measured average apical cell area 

(5.34 m2) [15] (Fig. 4e) and the fraction of mitotic cells [5] (ED Fig. 2c). Cells were divided 

perpendicular to their longest axis (Hertwig’s rule [7]), as observed in wing discs [2, 19], but 

randomised cell division angles give similar results (ED Fig. 3). A fixed cell division threshold 

(Fig. 4d) results in a much narrower area distribution (CV = std/mean = 0.21) than measured (CV 

= 0.38, Fig. 4e) and the resulting slope in the Lewis’ plot is shallower than observed (Fig. 4f). 

Higher area CV values can result from less precise cell division thresholds, asymmetric cell 

division, and/or cell deformation, i.e. changes in apical area without change in cell volume as 

occurs in apical constriction. We randomised the critical size for cell division (Fig. 4g, ED Fig. 4, 

Supplementary Material) to reproduce the measured apical area distribution (Fig. 4h). For the 

measured apical area CV, Lewis’ law emerges in the simulations (Fig. 4i), thereby confirming the 

key importance of the apical area variability for epithelial packing. When we further increased the 

apical area variability (Fig. 4j,k), the simulations diverted from Lewis’ law (Fig. 4l, black line) 

and matched the predicted quadratic curve (Eq. 4) (Fig. 4l, yellow line). The simulations show 

and thus predict that the optimal average area for each polygon type is obtained only with wider 

apical cell area variability than normally observed in epithelia.  

 

Experimental Test: higher apical area variability results in the predicted quadratic law 

We sought to test this prediction by artificially creating epithelia with wider apical cell area 

distributions. To this end, we induced the expression of an RNAi targeting the growth regulator 

gigas/TSC2 [20] in cell patches randomly located within Drosophila wing discs. gigas attenuation 
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results in larger cells because cells repeat S phase without entering M phase [20]. Indeed, in 

mosaic gigas/TCS-RNAi wing discs we observe cells with substantially larger apical areas than in 

the control, scattered throughout the epithelium (Fig. 5a). Importantly, most gigas/TSC2 cells still 

have an apical area in the wt range, but the largest apical areas are substantially larger than in the 

control such that the area distribution is considerably wider (Fig. 5b).  

 

Based on our theory, we make two predictions: first, that the largest cells will on average have 

more neighbours than any of the wt cells – and indeed in the gigas/TCS-RNAi wing discs the 

polygon distribution is wider and cells with more than 10 neighbours are observed (Fig. 5c). 

Consistent with theoretical considerations (Fig. 2c,d) and our simulations (ED Fig. 4c), not only 

the polygon distribution is wider, but also the hexagon frequency is lower (Fig. 5c). The second 

prediction from the model and the simulations is that the tissue with the wider area distribution 

will follow a quadratic relationship rather than the linear Lewis’ law (Fig. 5d). Indeed, the 

average apical cell area for each neighbour number now corresponds to the predicted optimum 

(Eq. 4) – that is, a quadratic relationship, rather than the Lewis’ law (Fig. 5d).  

 

The apical area distribution defines the hexagon fraction 

Finally, based on our theory, we can predict and experimentally test a novel relationship. Lewis’ 

law (Eq. 2; Fig. 6a, black) and the quadratic law (Eq. 5; Fig. 6a, yellow) relate the apical area to a 

polygon type (Fig. 6a, dotted lines). Based on these laws, we expect that the wider the area 

distribution, the smaller the fraction of cells that falls within the area range that is predicted to 

form hexagons (Fig. 6b, shaded green). This trend is indeed observed in our experiments in the 

Drosophila wing disc (Fig. 5b,c). We can make this relationship more precise and quantitatively 

test it with the available data.   
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To predict how the fraction of hexagons depends on the width of the area distribution, we 

approximate the normalised area distributions either by a Gaussian distribution with variance 𝜎2, 

 

𝑓(𝐴/𝐴̅; 1, 𝜎) =  
1

√2𝜋𝜎2
𝑒−((𝐴/�̅�−1)2/(2𝜎2)),      (6) 

 

or by a Weibull distribution, which is positive for positive values of 𝐴/𝐴̅, but is zero otherwise, 

  

 

𝑓(𝐴/𝐴̅; 𝜆, 𝑘) =  
𝑘

𝜆
(

𝐴/�̅�

𝜆
)

𝑘−1

𝑒−((𝐴/�̅� 𝜆⁄ )𝑘) for 𝐴 ≥ 0.     (7) 

 

Here, 𝜆 is the scale parameter that predominantly affects the position of the maximum, and 𝑘 > 1 

is the shape parameter of the Weibull distribution that predominantly affects the width of the 

distribution; as k increases, the distribution sharpens (ED Figure 5). The expected fraction of 

hexagons can then be derived by first assigning each polygon type n to a part of the normalised 

area distribution such that the average area for each polygon type n is closest to 
A𝑛

�̅�
 (Fig. 6b, white 

lines), and by subsequently calculating the value of the cumulative distribution function for 

hexagons (Fig. 6b, shaded green). The predicted fraction of hexagons for the different Weibull 

shape parameters k and for different area CV values (Gaussian distribution) (Fig. 6c,d, lines) fit 

the data (Fig. 6c,d, dots) very well, both when we use the linear Lewis’ law (Eq. 2, black line) or 

the quadratic law (Eq. 3, yellow line). A hexagon fraction below these predicted values arises 

when cells seek to maximise rather than to minimise their lateral cell-cell contact surface, as is 

the case when the adhesion strength is increased in the LBIBCell simulations (ED Figure 6).  

 

In summary, the theory, computational modelling, and experimentation indicate that the 

minimisation of surface energy drives the emergence of Lewis’ law, and that a generalization of 
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this law, that applies in the limit of a broader variability in apical cell areas than normally found, 

is described as a quadratic relationship between average cells area and neighbour number.  

 

 

DISCUSSION 

 

Different theories have been proposed to explain epithelial order [1-6, 11]. We have now shown 

that epithelial organisation can be understood in terms of energy minimisation (Fig. 7). Lewis’ 

law emerges in all epithelial tissues studied to date because of the particular role played by apical 

cell area variability, which we describe here. Growth, cell division, and nuclear migration affect 

epithelial order indirectly via their impact on the variability in the apical cell area. 

 

We derived Lewis’ law as the configuration that minimises the overall cell perimeter in a 

contiguous tissue. Cells in a contiguous tissue seek to minimise their perimeter when the effects 

of cell contractility and lateral surface tension dominate the effects of cell-cell adhesion. In a 

tissue with equal apical areas, hexagonal tiling results in the smallest combined perimeter (Fig. 

2a,b) and is therefore the configuration with the lowest energy (Fig. 7, left column). This 

configuration has previously been referred to as ground state [3]. In real tissue, apical areas differ 

as a result of growth, cell division, and interkinetic nuclear movements. If the variability is 

sufficiently high, cell lattices composed of mixed polygon types have a smaller combined 

perimeter if the smaller polygon has fewer than six and the larger polygon has more than six 

neighbours (Fig. 2c,d). Overall, the average number of neighbours must be six due to topological 

constraints (Euler’s formula) [1, 6]. Lewis’ law (Eq. 2) emerges because cells then have a more 

similar side length (Fig. 7, middle column), and regular, equilateral polygons have the smallest 

perimeter at a given area. Equal side lengths of all cells require a quadratic (Eq. 5) rather than a 

linear (Eq. 2) Lewis’ law. We predict and confirm experimentally that such quadratic law only 
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emerges at higher apical area variability than previously observed in epithelia (Fig. 7, right 

column).  

 

The role of apical area variability and the regularity of polygons is also observed in other 

simulation frameworks. Thus, Voronoi tessellations result in epithelia-like packing [11, 21] if the 

employed algorithm produces nearly equilateral polygons. In vertex models, Lewis’ law has 

previously been observed only when the mechanical parameters are sufficiently high compared to 

the area contractility [3]. This can now be understood in terms of our results: a small area 

contractility corresponds to a weak constraint on the area variability (Eq. 1), which allows a 

sufficiently wide area distribution for Lewis’ law to emerge. If the mechanical parameter values 

are further increased compared to the area contractility, then the linear Lewis’ law disappears in 

the vertex models [3]. Based on our analysis, we expect that a quadratic relationship should be 

observed in the vertex model when the area contractility is sufficiently small compared to the 

mechanical parameters.  

 

According to Lewis’ law and the quadratic law, the area distribution determines the width of the 

neighbour number distribution and thus the fraction of hexagons (Fig. 6). So how do the 

mechanical properties of cells affect epithelial organisation? The critical aspect here is that in Eq. 

1 the line tension term is linear while the contractility term is quadratic in the perimeter. If both 

constants are positive, then cells will always seek to minimise their combined perimeter, and the 

area distribution will determine epithelial packing independent of the exact value of the 

mechanical parameters. Likewise, if both constants are negative, cells will seek to maximise their 

combined perimeter and will assume deformed cell shapes; these latter tissues are predicted not to 

follow Lewis’ law. Here, we note that, despite their shape, puzzle cells in plants do not fall into 

the latter category. This is because puzzle cells do not emerge to maximise their cell perimeter, 

but to minimize stress in large cells [22]. Importantly, the puzzle shape emerges only after cells 
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have stopped dividing and a contiguous lattice with defined neighbour numbers has already 

formed, which can no longer change because of rigid cell walls [22]. Accordingly, puzzle cells in 

plants still follow Lewis’ law [23]. 

 

Epithelial organisation reflects the mechanical properties of cells only if the line tension constant, 

Λ𝑖𝑗, and contractility, Γ, have different signs. The line tension constant will typically be negative 

because the effects of cell-cell adhesion can be expected to be stronger than those of lateral 

surface tension; contractility will be positive due to the effects of the acto-myosin ring. Given that 

the linear term is then negative and the quadratic term is positive, a minimal cell perimeter will 

minimise the energy (Eq. 1) only for those cells that have a cell perimeter above a critical value, 

and this critical value depends on the relative value of the negative line (surface) tension constant, 

Λ𝑖𝑗, and the positive contractility, Γ. Accordingly, an increase in the cell-cell adhesion strength 

relative to cell contractility results in deformed cells (ED Fig. 6a-d), a smaller fraction of 

hexagons (ED Fig. 6e), and a deviation from Lewis’ law (ED Fig. 6f). Likewise, external forces 

that stretch the entire tissue result in a deviation from Lewis’ law (ED Fig. 3d). As a practical 

consequence, relative forces (and thus stresses) in an epithelium can be inferred from the 

observed cell shapes [24, 25]. 

 

We conclude that Lewis’ law emerges as cells seek to minimize the overall cell perimeter in a 

tissue, which is the case when contractility and surface tension dominate the effects of cell-cell 

adhesion. The mechanical properties of the cells determine to what extent cells seek to minimise 

their perimeter – and thus to what extent Lewis’ law applies in a tissue. The fact that Lewis’ law 

is observed throughout epithelia shows that the combined effects of contractility and surface 

tension typically dominate the effects of cell-cell adhesion and cells thus seek to minimise their 

perimeter while forming a contiguous lattice. Whether the linear (Eq. 2) or quadratic (Eq. 5) 
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Lewis’ law is observed, depends on the area variability.   

 

Epithelial cells interact not only at the apical side, but also along the apical-basal axis. 

Accordingly, similar physical constraints are likely to apply. Further quantitative studies are 

required to elucidate the 3D organisation of epithelia.  

 

 

METHODS  

Imaging of Tissue Samples 

Drosophila (wild type Oregon-R strain) eye discs and wing discs were dissected from third instar 

larvae or pupae. Eye discs were staged according to their number of ommatidial rows (as this 

number increases as development proceeds). Pupal wing discs were dissected at 30 and 48 hours 

post puparium formation. Staining and confocal imaging was carried out as described[26]. 

Primary antibodies used were mouse anti-Dlg (4F3 Hybridoma bank, 1:500; eye discs) and rabbit 

anti-aPKC (Abcam, AB5813, 1:500; pupal wing discs).  

 

Mosaic induction of gigas RNAi[27, 28] in wing discs was achieved using the flip-out 

system[29]. Larvae from crossing flip122; tub>stop>GAL4, UAS-GFP females to either the wild 

type strain Or-R (“wild type”) or UAS-gigasRNAi (“gigas”; VDRC stock# 103417) males were 

heat-shocked at 37ºC for 30min at 72-96 hours after egg laying (AEL). Wing discs from crawling 

third larval stage (≈120h AEL) were dissected, fixed and stained with mouse anti-Armadillo 

antibody (N27A1, Developmental Studies Hybridoma Bank, University of Iowa; 1/100), which 

labels the subapical region of epithelial cells, and rabbit anti-GFP (A11122, Molecular Probes; 

1/1000). Alexa Fluor 488 and 568 (Molecular Probes) secondary antibodies were used at 1/500. 

Samples were imaged on a Leica SPE confocal setup, with an oil-immersion 40X objective 

(N.A.=1,15), as z-stacks of 12 bits, 1024X1024 pixel images, with z-step= 0.3 microns.  
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Image Analysis 

3D image stacks used in morphometric analyses were first pre-processed using Fiji [30]. We 

selected image planes that only contained apical cell boundaries as marked by the anti-armadillo 

antibody staining, removed frames containing non-apical and non-pouch signal, used a maximum 

intensity projection to project all substacks to 2D, and enhanced their contrast using the Contrast 

Limited Adaptive Histogram Equalization (CLAHE) [31]. Using Ilastik [32], we then built a 

random forest classifier that was used for discriminating cell boundaries from background and 

noise in problematic image regions. The resulting probability maps were binarised and used to 

build a Voronoi diagram using Fiji. All diagrams (masks) were manually curated using Tissue 

Analyzer [33] until they exactly mapped to all apical cell boundaries. Pertinent morphometric 

measurements were derived and exported by using the EpiTools [15] plugin for Icy [34]. The 

parameters of the Weibull distribution were fitted using the R package fitdistrplus [35] . All 

plotting was done using several R packages, including ggplot2, gdata, gtools, and data.table [36-

42]. 

 

 

Set-Up of the LBIBCell simulations 

The details of how the LBIBCell simulations were set up are provided in the Supplementary 

Text.  
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FIGURES:  

 

Figure 1: Introduction to Epithelial Packing  

a, A cartoon of epithelial organisation. For details see text. b, A typical epithelial tissue from the 

Drosophila larval eye disc peripodial epithelium (dPE), coloured according to the number of 

neighbours per cell. The original image with a segmentation mask is shown in ED Fig. 1a. c, The 

apical surface can be represented as a finite, connected, planar graph with f faces, v vertices, and e 

edges without edge intersection. Three edges are incident to each vertex, i.e. the degree of each 

vertex is three. d, The measured average number of cell neighbours is close to the topological 

requirement [1, 6], �̅� = 6, in all tissues; see panel e for the colour code. e, Tissues differ widely 

in the relative frequency of neighbour numbers. Topological models only explain a single (dashed 

and dotted lines) of these many distributions (shaded range). The dashed line marks the hexagon 

fraction for randomly positioned cell division axes, the dotted line marks the hexagon fraction 

when cells are divided perpendicular to their longest axis. The legend provides the measured 

average number of cell neighbours for each tissue and the references to the primary data [1, 3, 11, 

15, 43-45]. Data points for n<3 were removed as they must present segmentation artefacts. See 

ED Fig. 1 for standard deviations and full tissue names. f, Topological changes upon cell division 

have been suggested to result in the measured relative frequency of neighbour numbers. 

However, topological models only explain a single (panel e, dashed and dotted lines) of these 

many distributions (panel e, shaded range). g, Vertex models are based on finite, connected, 

planar graphs with vertices i, j cell area A (grey), edge length lij (blue) and cell perimeter 

 (blue).  h, The relative average cell area, 
𝐴𝑛̅̅ ̅̅

�̅�
, is linearly related to the number of neighbours, n, 

and follows Lewis’ law [6] (Eq. 1, black line) in all reported tissues [15, 44]. The colour code is 

as in (c), but data is available only for a subset of those tissues. Few cells with more than 8 

neighbours have been measured and estimates of the mean areas are therefore unreliable (shaded 
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part).   

 

 

Figure 2: The impact of apical area variability on Epithelial Order    

a, The perimeter Π of regular polygons declines non-linearly with increasing vertex number, n. b,  

In contiguous lattices composed of polygons with three edges per vertex, the average number of 

vertices must be six. The combined perimeter of non-hexagonal polygons with on average six 

vertices, i.e. a square and an octagon, is larger than that of two hexagons. c, The perimeter of 

regular polygons dependent on the vertex number, n, for different areas, A = 0.1, 1, 1.9. d, The 

impact of area variability. Two hexagons that differ in their area (𝐴 = 0.1 and 𝐴 = 1.9) have a 

lower combined perimeter than two hexagons that have the same area (𝐴 = 1). Similarly, the 

combined perimeter of the square and the octagon is smaller when the two polygons differ in their 

area (A = 0.1 and A = 1.9 instead of A = 1 for both polygons). However, the square and the 

octagon have a smaller combined perimeter than the two unequally sized hexagons only if the 

smaller polygon (A=0.1) has fewer vertices (square) and the larger polygon (A=1.9) has more 

vertices (octagon) (case ii). The combined areas are identical in all cases; the combined perimeter 

is normalised with the combined perimeter of two hexagons that have the same area. 

 

 

Figure 3: Lewis’ law reduces variability in side length 

a, To fit into a contiguous lattice, cells must have equal side lengths or be stretched. b,c If all 

cells have the same apical area (b, blue line), then the edge length changes with the polygon type 

(c, blue line).  If the cell areas follow Lewis’ law (Eq. 2), then the change in edge length is much 

smaller (black lines). All edges have the same length, if the polygon type-dependency of the 

apical areas follows Eq. 4 (yellow curves). 
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Figure 4: Simulations in LBIBCell confirm the impact of the cell size distribution on 

epithelial packing 

a, Representation of tissue and cells in LBIBCell [14]. Cortical tension and cell-cell 

adhesion are incorporated via springs (red). b, The fraction of hexagons increases with higher 

membrane tension and stronger cell adhesion in the simulations. c, The measured hexagon 

frequency in the wing disc [15] (blue line) can be reproduced. d-f, Cell division at a fixed cell 

size (d) results in a narrow cell size distribution (e), and fails to recapitulate Lewis’ law (Eq. 2, 

black line) (f). g-i, With a normally distributed cell division threshold (with mean  and standard 

deviation ) (g) the simulations (red) recapitulate the measured (blue) cell size distribution [15] 

(h) and Lewis’ law (black line) (i). The blue symbols in f,i represent three independent 

measurements [15].  j-l, With an even wider distribution of cell division thresholds (j) the cell 

size distribution widens further (k) and the simulations deviate from Lewis’ law (black line) and 

approach the curve for which all side lengths are equal (yellow line, Fig. 3b) (l).  

 

 

Figure 5: Experimental Confirmation of the generalised Lewis’ law 

a, Representative epithelial tissue from a wing disc with gigas RNAi clones.  b, The apical cell 

area distribution, c, the relative frequency of neighbour numbers, and d, the relative average 

apical area, 
𝐴𝑛̅̅ ̅̅

�̅�
, for different neighbour numbers in control (blue) and mutant (“gigas”, black) 

wing discs. The black line in panel d represents Lewis’ law (Eq. 2); the yellow line the quadratic 

relation (Eq. 5).  

 

 

Figure 6: The apical area distribution defines the hexagon fraction 
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a, Lewis’ law (Eq. 2, black line) and the quadratic law (Eq. 5, yellow line) relate the relative 

apical area to a polygon type n (dotted lines). b, Weibull distribution (Eq. 6) with 𝜆 = 1.12, 𝑘 =

2 to approximate the normalised area distribution. The white lines indicate the limits of the 

polygon types, such that the average area for each polygon type n is closest to 
A𝑛

�̅�
. The area 

shaded in green indicates the part of the area distribution that would correspond to hexagons. c,d, 

The fraction of hexagons for (c) different Weibull shape parameters k, and (d) different area CV 

values (Gaussian distribution) as predicted by the linear Lewis’ law (Eq. 2, black line) or the 

quadratic law (Eq. 3, yellow line) and for the data (dots). The abbreviations are as in ED Figure 1. 

dMWL refers to the wing disc with gigas RNAi clones from Figure 5. 

 

 

Figure 7: Summary Figure 

(Left column) If all cells have the same apical area, then hexagonal packing results in the 

smallest average perimeter per cell, and thus in the lowest possible surface energy. (middle 

column) For an intermediate width of the apical area distribution, lowest surface energy is 

achieved for non-hexagonal packing and if the average areas per polygon type follow Lewis’ law 

(Eq. 2). (right column) For wide apical area distributions, the lowest surface energy is achieved 

for non-hexagonal packing and if the average areas per polygon type follow a quadratic 

dependency on the number of neighbours (polygon type) (Eq. 4). In this case, the side lengths of 

all polygons are the most similar, and cells thus do not need to be stretched to fit into a 

contiguous lattice.  
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EXTENDED DATA FIGURE  

 

ED Figure 1: Epithelial Packing in different tissues.   

a, A typical epithelial tissue from the eye disc peripodial epithelium with segmentation mask. b, 

Tissues differ widely in the relative frequency of neighbour numbers. Topological models only 

explain a single (dashed lines) of these many distributions (shaded range). The average number of 

cell neighbours is close to the topological requirement [1, 6], �̅� = 6, in all tissues; the legend 

provides the exact values for each tissue and the references to the primary data. The tissue 

samples are: Chick neural tube epithelium (cNT) [44],  Drosophila eye disc (EYE) [44],  

Drosophila peripodal membrane from the larval eye disc (dPE), Drosophila larval wing disc 

(dWL) [1, 3, 5, 15, 43-45], Drosophila pre-pupal wing disc (dWP) [43, 44], Drosophila mutant 

wing pre-pupa (dMWP: the expression of myosin II was reduced in the wing disc epithelium by 

expressing an UAS-zipper-RNAi using the C765-Gal4 line) [44], and Drosophila pupal wing disc 

(dPW) [43]. In case of the Drosophila peripodal membrane from the larval eye disc (dPE), the 

numbers indicate the developmental age as the number of ommatidial rows that have formed. In 

case of the Drosophila pupal wing disc (dPW) [44], TPx indicates subsequent, but not further 

specified pupal time points [43]. Our own measurements of pupal wing discs were at 30 and 48 

hours post puparium formation. The datasets dPW and dPE were generated as described in the 

Methods section; the other datasets were obtained from the specified publications [1, 3, 5, 15, 43-

45]. We note that we excluded reported cells with n < 3 from the analysis as they must represent 

segmentation artefacts. c, The relative average cell area, 
𝐴𝑛̅̅ ̅̅

�̅�
, is linearly related to the number of 

neighbours, n, and follows Lewis’ law[6] (Eq. 2, black line) in all reported tissues[15, 44]. The 

colour code is as in (b), but data is available only for a subset of those tissues. Few cells with 

more than 8 neighbours have been measured and estimates of the mean areas are therefore 

unreliable (shaded part).  
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ED Figure 2: The LBIBCell simulations reproduce the growth dynamics in the Drosophila 

wing disc 

a, Simulations with (red) and without (blue) cell division reproduce the measured (black) area 

growth kinetics[18]. b, The small deviation between simulations and measurements is due to 

numerical leakage (see Supplementary Text for details). c, The simulations with cell division 

(red) reproduce the measured [5] (black) mitotic frequencies in the Drosophila larval wing disc.  

Measurements were reported for mid 3rd larval instar (72-120h AEL). Accordingly, we added the 

measurements from 84-104h AEL as a black line plus standard deviation in grey.  

 

 

ED Figure 3: Impact of the Cell Division Axis in LBIBCell  

a, Cartoon of different cell division axes and of the application of forces to stretch the tissue. 

According to Hertwig’s rule [7] (red), cells divide perpendicular to their longest axis. For 

comparison, we simulated a random position of the cell division axis (grey). Moreover, we 

explored the impact of stretching the tissue in one direction (right hand side). As a result of 

anisotropic stretching, the cells become elongated and therefore develop a more pronounced 

longest axis. b-e, Impact of the cell division axis (according to Hertwig’s rule (colored) or 

randomised (grey)) on the cell area distribution (b, c), frequency of neighbour numbers (d), and 

Lewis’ law (e) in isotropic growing tissue or in anisotropically stretched growing tissue as 

indicated. Experimental data [15] (light blue) is provided in panel d for comparison. 

 

 

ED Figure 4: Impact of cell area variability on cell arrangement in LBIBCell 
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a, Representative simulated tissue with high area variability, coloured according to the number of 

neighbours per cell as indicated.  b, The cell area distribution and calculated CV value, c, the 

relative frequency of neighbour numbers, and  d,  the relative average apical area, 
𝐴𝑛̅̅ ̅̅

�̅�
, for different 

neighbour numbers n, in simulations with different standard deviations in the cell division 

threshold (=2m2 - light red,  =4m2 - red,  =6m2 - dark red); the mean cell division 

threshold was equal in all simulations (=6.7m2). The black line in panel d represents Lewis’ 

law (Eq. 2); the yellow line the quadratic relation (Eq. 4). Consistent with the theory (Fig. 2c,d), 

the increase in the cell area variability (panel b) results in a lower fraction of hexagons (panel c).   

 

 

ED Figure 5: Apical area distribution in epithelial tissues 

Weibull (Eq. 6) scale parameter 𝜆 of the normalized area distribution versus Weibull shape 

parameter k in epithelial tissues. The abbreviations are as in ED Figure 1. dMWL refers to the 

wing disc with gigas RNAi clones from Figure 5. 

 

 

ED Figure 6: Impact of the relative strength of adhesion strength and membrane tension on 

Lewis’ law in LBIBCell 

a-c, Snapshots of the cell lattice in LBIBCell for different adhesion constants, i.e. (a) cjK = 0.1, 

(b) cjK = 1.0, (c) cjK = 2.0. d, Impact of the adhesion constant on cell stretching as 

quantified by determining the average ratio of the long and short axes of ellipses that 

were fitted to the cells in a simulated tissue for different adhesion constants. e, The fraction 

of hexagons relative to area CV for different adhesion constants. f, The relative average cell 

area, 
𝐴𝑛̅̅ ̅̅

�̅�
, dependent on the number of neighbours, n, according to Lewis’ law [6] (Eq. 2, black 
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line) and for LBIBCell simulations for different adhesion constants, i.e. cjK = 0.1 (red, 

standard value as in Figure 4i), cjK = 1.0 (light grey), cjK = 2.0 (dark grey). All other parameter 

values are as in Figure 4i.  
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1 Supplementary Methods

1.1 LBIBCell: Setup of Epithelial Tissue Simulations

We used the software LBIBCell [1] to simulate the detailed epithelial tissue dynamics (Movie S1).
LBIBCell simulates a 2D plane of the epithelial tissue, and thus allows us to simulate the apical cell
dynamics, or more precisely the plane where cells adhere laterally (Fig. S1). LBIBCell represents
the extracellular and cytoplasmic spaces of the tissue as Newtonian fluids and incorporates the
fluid-structure interaction with the elastic cell boundaries via an immersed boundary method [2].
The Navier-Stokes equation for the fluid dynamics is solved using the Lattice Boltzmann method,
i.e. the fluid and its motion are realized by particle ensembles which stream and collide on a 2D
regular lattice [3]. Cell boundaries are geometrically highly resolved and cell boundaries and cell-
cell junctions are modelled with elastic springs (Fig. S1).

Figure S1: Representation of the apical epithelial surface as a 2D simulation plane in
LBIBCell. The cartoon shows a cubical section of a simple columnar pseudostratified epithelium.
LBIBCell simulates the tissue mechanics and morphodynamics of the 2D plane (indicated in pink)
that goes through the adherens junctions (marked in green), which are located below the apical
surface. Cell boundaries are geometrically highly resolved and cell boundaries and cell-cell junctions
are modelled with elastic springs.

In LBIBCell, cellular processes, i.e. cell growth, cell division and cell-cell interactions, are real-
ized by a set of functions, which are implemented in so-called BioSolvers. To simulate the epithelial
dynamics, we made use of five BioSolvers (Table S1). The Cell Growth BioSolver expands the
cellular domain according to a specified growth rate by adding mass to the intracellular lattice points
at each time step i. Since the fluid is quasi-incompressible and the density is thus constant, any in-
tracellular mass increase results in an expansion of the cellular domain and thus in cell growth. The
Cell Division BioSolver divides cells once these exceed a specified cell area, Acell division

LB , and the

2
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Cell Extrusion BioSolver removes cells that fall below a specified critical cell area, Acell removal
LB .

The remaining two solvers, the Membrane Tension BioSolver and the Cell Junction BioSolver

represent the elastic properties of the tissue. The Membrane Tension BioSolver describes the cor-
tical tension that is mediated by the acto-myosin ring, while the Cell Junction BioSolver models
adhesive interactions in the cell-cell-junctions. Both realise linear elastic restoring forces (Hookean
springs) between cellular membrane points.

The five BioSolvers have a total of 18 parameters (Table S1). Eight of these parameters only
affect numerical aspects, and these parameters were set such that an accurate solution was obtained
with the least computational effort (Table S1, shaded in grey). The remaining parameters were
set based on experimental data. Since the most quantitative data is available for the epithelium
in the Drosophila larval wing disc pouch, we adjusted the parameter values of the BioSolvers to
reproduce these measured values. In the following, we describe in detail how the numerical and
biological parameter values were set and how their choice was validated.

1.1.1 Numerical Parameters

The numerical parameters do not alter the simulation outcome as long as they lie within a nu-
merically stable range. We therefore chose the numerical parameter values that minimise the
computational runtime without affecting the simulation outcome (Fig. S2, Fig. S3).

Relaxation time in the Lattice-Boltzmann method LBIBCell uses the standard Lattice
Boltzmann scheme (with the single-relaxation-time Bhatnagar-Gross-Krook collision operator) for
the fluid [1]. The Boltzmann equation is discretized on a D2Q9 lattice. The only adjustable
parameter is the relaxation time τfluid ∈ (0.5, 2]. The lower bound τfluid > 0.5 ensures that the
kinematic viscosity is larger than zero, i.e ν = c2

s

(
τfluid − 1

2

)
> 0. For isothermal flows, the speed

Figure S2: Relaxation time in the Lattice-Boltzmann method. a, Growth simulations of a
single cell with a constant growth rate g(t) = 0.5/T and τfluid = 1 (black line) or τfluid = 2 (red
line). Here, t ∈ [0, T ] is time and T is the total time; A/A(0) monitors the relative area increase.
In LB time units i ∈ [0, I], we have g(i) = τfluid · TI · g(t), because ∆t = τfluid · TI ·∆i. Given the
difference in time discretisation, growth per LB time step is double as fast for τfluid = 2 compared
to τfluid = 1. b, CPU time in hours for a twofold increase in area A with τfluid = 1 or τfluid = 2.

3
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of sound is defined as cs = c√
3

using the lattice speed c = ∆x/∆t. The relaxation time τfluid thus

determines the time discretisation in the Lattice Boltzmann method [1]. For τfluid = 1, the lattice
spacing and the time step are ∆x = ∆t = 1, and are then consistent with the lattice. The upper
bound of τfluid results from the stability requirement of the LB-method; in the case of the D2Q9
scheme, τfluid ≤ 2 [4]. We used the highest possible value, τfluid = 2, for maximal computational
efficiency (Fig. S2).

Lattice resolution The fluid lattice is regular, and the distance between two lattice points
corresponds to 1 LB Length Unit, in short 1LLB. The resolution of the lattice needs to be sufficiently
high to avoid numerical artefacts (cf. [1] supplementary and 1.1.3), but otherwise does not affect
the simulation outcome. In previous simulations, an absolute minimum of about 100 lattice points
per cell was determined [1]. As cells grow and divide in the simulation, we chose the resolution
such that even the smallest cells possess at least 100 lattice points. This was realised by setting
the area threshold for cell removal (extrusion) to Acell removal

LB = 100L2
LB. All other area-dependent

parameter values were set relative to this number (see below).

Figure S3: LBIBCell: Numerical parameters for simulations with random cell division
threshold. Computational runtime in hours for different choices of the numerical parameters as
specified on the the horizontal axes. Numerical parameter values that result in valid tissues without
defects, i.e. gaps, overlaps of immersed boundaries or complete disintegration, are depicted by a
green filled circle (•). Numerical parameter values that result in invalid tissues, aborted simulations,
or insufficient cell numbers in case of the cell division frequency are depicted by a red open circle
(o). Of the numerical parameter sets that result in valid tissue configurations, the one with the
least computational effort was chosen (Table S1).

4
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Search radius for new junctions The search radius R for new junctions needs to be in a range
that only local, but not distant cell-cell junctions are possible. In particular, the search radius
needs to be large enough that new junctions can be established after cell division. During cell
division, the mother cell is divided along the cell division axis, and two new membrane segments
are introduced as boundaries of the two daughter cells. These have a default distance of 0.5LLB,
which is deliberately larger than the resting length of cell-cell junctions (see below). For too small
search radii, gap formation within the tissue occurs. Accordingly, the search radius needs to be
at least 0.5LLB. To avoid connections between distant cells across tissue boundaries, the search
radius should be as small as possible. In case of a fixed area threshold for cell division (cf. section
on cell division (area) threshold), we can use R = 0.5LLB. In case of a normally distributed area
threshold for cell division (cf. section on cell division (area) threshold), larger search radii must be
used (Fig. S3a). The exact value depends on the variability in the cell division area threshold; to
reproduce the data measured by Heller and co-workers [5], we needed to use at least R = 0.6LLB
(Table S1); for consistency, we used R = 0.6LLB also in case of a constant cell division area
threshold (Fig. 4d-f in the main manuscript).

Frequency of applying the BioSolvers Five of the eight numerical parameters concern the
frequency with which the five BioSolvers are applied. The Cell Growth BioSolver achieves
growth of the domain by adding a specified mass to each lattice point within a cell. Greatest
numerical stability is achieved if mass is added in each iteration step (Fig. S3b), and the frequency
is thus 1:1 (Table S1). The Membrane Tension BioSolver and the Cell Junction BioSolver

control the forces which act on the cell boundary points (Geometry Nodes) and interact with the
fluid via the immersed boundary method. To avoid numerical inaccuracies from delayed updates,
these solvers have to be called at least every 10th time step (Fig. S3c,d), i.e. 1:10 (Table S1). The
Cell Extrusion and the Cell Division BioSolver remove or divide cells, respectively. Simulation
output did not change as long as the Cell Extrusion BioSolver was called in every 100th LB
step (Fig. S3e). In case of a fixed cell division area threshold (cf. section on cell division (area)
threshold), simulation output did not change as long as the Cell Division BioSolver was called
in every 1000th LB step. In case of a randomly distributed cell division area threshold, it is
important to not call the Cell Division BioSolver too frequently (cf. section on cell division
(area) threshold). We therefore called the Cell Division BioSolver in every 1000th LB step in
all simulations (Fig. S3f).

1.1.2 Biological Parameters

The biological parameter values had to be adapted such that the simulated tissue matches the
properties of the Drosophila larval wing disc pouch epithelium.

Conversion between LB units and SI units LB units can be converted to metric units based
on the simulated developmental time periods and the measured cell areas. Thus, in the simulations,
time is discretised as i/I ∈ [0, 1], where i refers to the iteration step and I to the total number of
iterations. Each iteration step i thus corresponds to ∆t = τfluid · T/I hours, where T is the total
simulated developmental time. For restrictions on the choice of I, see the section on Numerical
Leakage at the Fluid-Structure Interface.

The smallest measured apical cell area is Acell
SI = 0.80µm2, the largest measured apical area of

non-dividing cells is AcellSI = 14.13µm2, and the average apical cell area is ĀSI = 5.34µm2 [5]. As
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we set the threshold for cell removal to Acell
LB = 100L2

LB, the conversion factor between metric units
and LB units follows as

cLB
SI =

√
Acell

LB

Acell
SI

=

√
100

0.796

[
LLB

µm

]
∼ 11.2

[
LLB

µm

]
, or cSI

LB =

√
Acell

SI

Acell
LB

∼ 0.09

[
µm

LLB

]
. (S1)

Elastic Tissue Properties The Membrane Tension BioSolver and the Cell Junction BioSolver

describe the elastic properties of the tissue. The membrane tension (Fig. S4a) represents the cor-
tical tension mediated by the acto-myosin ring and was realised by adjusting the magnitude ϕm

of a constant contracting force, Fm
i , between pairs of cell boundary points with position vectors x

(Fig. S4a), i.e.

Fm
i = Fi−1 + Fi+1 = ϕm

(
xi−1 − xi
|xi−1 − xi|

+
xi+1 − xi
|xi+1 − xi|

)
. (S2)

In the case of the cell-cell junctions (Fig. S4b), a Hookean force F cj
i with a spring constant kj

and resting length l0 acts between intercellular cell boundary points i and j,

F cj
i = kj

xj − xi
|xj − xi|

(|xj − xi| − l0) . (S3)

The resting length l0 was set to the length of cadherin junctions, which has been reported as
26-39nm, depending on the type of the bond [6]. We used 0.3LLB, which corresponds to 27nm.
This value is deliberately smaller than the default distance between sister cells after cell division
of 0.5LLB= 45nm (see above), which is on the high end of distances between boundaries of neigh-
bouring epithelial cells.

The choice of spring constants determines the neighbour frequencies in the simulated tissue,
i.e. larger spring constants lead to an increase in the fraction of hexagons (Fig. 4b in the main
manuscript). For very large spring constants, cells become rounded, while for very small values,
cells adapt an angular shape and, in combination with a low cell junction spring constant, the cell
boundaries become curled. We adjusted the spring constants ϕm and kj to reproduce the measured
neighbour frequencies [5] (Table S1).

Figure S4: Hookean springs to model Elastic Tissue Properties. a Membrane tension: the
superposition of Hookean spring forces Fi−1, Fi+1 on a cell boundary point i results in a contracting
force Fm

i . b Cell-cell junctions: the force F cj
i depends on the spring constant kj and the deviation

of the distance between the two cell boundary points xi and xj from the resting length l0.
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Figure S5: Inference of the apical area growth rate from published area growth data
from the Drosophila larval wing disc. a, Fit (red line) of the apical area growth data (black
dots) from the Drosophila larval wing disc [7] with Gompertz function (Eq. S4). b, Area growth
rate g(t) according to equation S5 with the parameters of the fit in panel a.

Growth Rate We sought to reproduce the measured area growth rate in the Drosophila larval
wing disc pouch [7]. As shown before [8, 9], the area growth data is fitted well (R2 = 0.98) by
Gompertz growth kinetics of the form

A(t) = a · exp

(
− b · exp

(
− t

τG

))
. (S4)

with a = 3.327 · 106 µm2, b = 11.331, τG = 143.777 hours (Fig. S5a). The corresponding growth
rate that was used in the simulations is thus an exponentially declining function (Fig. S5b),

g(t) =
1

A

dA

dt
=

b

τG
exp

(
− t

τG

)
. (S5)

In LB units, we then have

g(i) = τfluid ·
b

τ · I
exp

(
−1

τ
· i
I

)
, with τ =

τG
T
. (S6)

Cell division threshold The Cell Division BioSolver uses the cell area as a threshold for
the initiation of cell division. We implemented two different cell division thresholds. In the first
case (shown in Fig. 4d-f in the main manuscript), all cells were divided when reaching a fixed
critical cell size. The critical cell size was set to Acell divisionSI = 6.67µm2 such that the measured
average cell area of 5.34µm2 [5] was reproduced. In LB units, 6.67µm2 correspond to Acell divisionLB =

6.67µm2 × 125.6
L2

LB
µm2 = 837L2

LB. In the other cases, the cell division threshold followed a normal

distribution with mean µcell divisionLB = Acell divisionLB = 837L2
LB and standard deviation as specified
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in the respective panels, i.e. see Fig. 4g,j and ED Fig. 4 in the main manuscript. In particular,
to reproduce the data by Heller and co-workers [5], we used as standard deviation σcell divisionLB =

2µm2 × 125.6
L2

LB
µm2 = 256L2

LB. To pick cells randomly according to these distributions, we used a

pseudorandom number generator based on the Mersenne Twister algorithm [10]). In addition to
the cells that exceeded the randomly picked cell division threshold also those cells were divided
whose area exceeded the largest measured apical cell area in the wing disc (14.13µm2) [5], i.e.

AmaxLB = 14.13µm2 × 125.6
L2

LB
µm2 = 1771L2

LB. As before, the Cell Division BioSolver was applied

in every 1000th simulation, but only to 33% of the cells to enable some cells to grow to a larger
size before being divided.

Cell division plane According to Hertwig’s rule, cells divide perpendicular to their longest
axis [11,12,13]. Accordingly, in the Cell Division BioSolver, cells were divided perpendicular to
the longest axis of the cell. We also explored the effect of a random orientation of the cell division
axis, but the effects were found to be minor, even when cells are stretched (ED Fig. 3).

Initial Conditions Drosophila larval wing discs are derived from 22-34 precursor cells (> 95%
confidence interval) that give rise to about 30000 cells at the end of the larval stage [14]. Thus,
when simulating the entire developmental phase of the larval wing disc pouch (ED Fig. 2a), we
start our simulations with a tissue patch of n = 25 = 32 cells. According to the fit to the lar-
val wing disc area growth data [7], the initial larval wing disc area at 0 hours after egg lay (h
AEL) is Astart

SI = 39.91µm2 (Fig. S5a). According to Eq. S1, Astart
SI = 39.91µm2 corresponds to

Astart
LB = 5013.82L2

LB in LB units.

Most experimental studies of the epithelial organisation of Drosophila larval wing discs focus on
a subset of the mid-third larval instar pouch tissue, and the study we use reported 102-103 cells per
tissue sample [5]. When comparing our simulations to this data (Fig. 4 in the main manuscript),
we simulated a patch growing to a similar final size in LBIBCell. To this end, we started with a
tissue patch of n = 32 cells. The total initial area was set to 225.40µm2, corresponding to the fit
to the data [7] at 24 h AEL. According to Eq. S1, Astart

SI = 225.40µm2 ∼ Astart
LB = 28316.74L2

LB.
We then simulated the growth process from t = 24 h AEL until t = 96 h AEL, representing the
time period from early first to mid-third larval instar. All results reported in Fig. 4 and ED Fig.
4 in the main manuscript were quantified at the end of this simulation period.

1.1.3 Numerical Leakage at the Fluid-Structure Interface

Due to the discretized nature of both the fluid and the immersed boundaries, fluid leaking at the
fluid-structure interface can occur [2]. This numerical leaking, or lack of volume conservation, is
caused by a combination of excessive forces acting on the immersed boundary points and the inter-
polation method of the fluid velocity close to the moving immersed boundary, and is a well-known
limitation of the discrete immersed boundary method [1].

The relative leakage rate was calculated as the relative error δA between the fitted measured
values and the simulation values of subsequent timesteps with a stepping size of 100 iterations:

δA =
∣∣∣1− Asim

Afit

∣∣∣ .
Contributing factors are both the fluid source strength, i.e. the growth rate g(i) in each itera-

tion step i, and the tension at the immersed boundary. The absolute value of the growth rate g(i)
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depends on the total number of iterations I, and we used I = 150000 to minimize leakage for our
specific biological parameters (Fig. S6). For higher values of I simulations aborted.

Figure S6: Impact of the total number of iterations I on numerical leaking. a, Growth
rate g(i) according to Eq. S6, b, area growth, and c, leakage rates for I = 50000 (light grey),
I = 100000 (dark grey), and I = 150000 (black). The red line in panel b represents the fit to the
experimental data [7] (dots) as in Fig. S5a. d, CPU times for the different I.
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2 Supplementary Tables

Table 1: Default parameter values. Parameters in grey-highlighted rows only affect the numer-
ical accuracy of the simulations. The other parameter values are specific to the biological problem
of interest, and were determined based on published quantitative data for the Drosophila larval
wing disc pouch. Here, the parameter values resulting in the best match to the data are provided;
the corresponding simulation results are shown in Fig. 4g-i in the main manuscript. Deviations
from these default parameter values are indicated in the respective figure legends.
LBSolver Parameter Description Value [LB units] Value [SI units] Determination / Literature

τfluid - relaxation time 2 N/A Fig. S2, [4]

BioSolver Parameter Description Value [LB units] Value [SI units] Determination / Literature
Cell Growth frequency of applying BioSolver 1:1 N/A Fig. S3b

I - total number of iterations 64300 / 150000 24-96h AEL / 0-168h AEL Fig. S6
b - Gompertz constant 11.331 11.331 Fig. S5a / [7]
τ - Gompertz constant 0.8555 143.7773h/168h Fig. S5a / [7]

Membrane Tension frequency of applying BioSolver 1:10 N/A Fig. S3c
Hookean spring constant 0.01 N/A Fig. 4b / [5]

Cell Junction frequency of applying BioSolver 1:10 N/A Fig. S3d
search radius for junction building 0.6 N/A Fig. S3a
length of intercellular cell junction 0.3 27nm 16-39nm [15]
Hookean spring constant 0.1 N/A Fig. 4b / [5]

Cell Division frequency of applying BioSolver 1:1000 N/A Fig. S3f
maximal cell area 1771 14.1µm2 [5]
mean cell division threshold 837 7µm2 Fig. 4g / [5]
std cell division threshold 256 2µm2 Fig. 4g / [5]
orientation of cell division plane ⊥ to longest axis ⊥ to longest axis Hertwig’s rule, [12]

Cell Extrusion frequency of applying BioSolver 1:100 N/A Fig. S3e
minimal cell area 100 0.8µm2 [1, 5]
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3 Supplementary Video Legends

Movie S1: LBIBCell - Cell shape dynamics in a growing tissue. The movie shows
an example of a simulated tissue. The different polygon types are marked by colour; polygons
with more than nine neighbours and polygons that are not entirely surrounded by other cells, i.e.
boundary cells, are marked in black.
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