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Abstract— The periodic process of cell replication by divi-
sion, known as cell-cycle, is a natural phenomenon occurring
asynchronously in any cell population. Here, we consider the
problem of synchronising cell-cycles across a population of yeast
cells grown in a microfluidics device. Cells were engineered
to reset their cell-cycle in response to low methionine levels.
Automated syringes enable changing methionine levels (control
input) in the microfluidics device. However, the control input
resets only those cells that are in a specific phase of the cell-cycle
(G1 phase), while the others continue to cycle unperturbed. We
devised a simplified dynamical model of the cell-cycle, inferred
its parameters from experimental data and then designed
two control strategies: (i) an open-loop controller based on
the application of periodic stimuli; (ii) a closed-loop model
predictive controller (MPC) that selects the sequence of control
stimuli which maximises a synchronisation index. Both the
proposed control strategies were validated in-silico, together
with experimental validation of the open-loop strategy.

I. INTRODUCTION

Recently, applications of Control Engineering to steer
biological processes in living cells, also known as Cyberge-
netics, have been demonstrated [1]–[7]. These applications
are based on innovative technological platforms exploit-
ing microfluidics and optogenetics to implement real-time
feedback control, where the controller is implemented as a
software in the computer.

Here, we investigated the possibility to synchronise a
population of budding yeast by forcing cells to divide in a
coordinated fashion for multiple generations. During its lifes-
pan, the eukaryotic cell undergoes a sequence of cyclically
repeated steps that lead to its division via a process known
as the cell-cycle. It can be divided into four main phases as
shown in Figure 1: G1 (growth phase), S (DNA synthesis
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Fig. 1. Cell-cycle process in a budding yeast manipulated genetically to
reset the cell-cycle from the G1 phase to the S phase in the presence of an
external stimulus [8].

starts), G2 (growth phase) and M (mitosis) that includes the
actual cell division. In budding yeast, the three endogenous
genes encoding the G1 cyclins (CLN1, CLN2 and CLN3) are
expressed in the late G1 phase and promote the transition
from G1 to the S phase. Moreover, expression of just one of
these three cyclins is sufficient for the G1 to S transition to
occur.

Biologists have developed different methods to force a cell
population to divide synchronously. However, all of these
methods do not dynamically synchronise the cell population,
but essentially they just force each cell in the population
to start from the same initial condition. Therefore, after a
few generations, the population de-synchronises because of
environmental and cell specific disturbances.

To address the cell-cycle synchronisation problem from
a Control Engineering point of view, we chose a budding
yeast strain where the endogenous CLN3 gene was deleted
while the methionine-repressible promoter PMET3 was in-
serted upstream of the endogenous CLN2 gene [8]. The
resulting strain will thus not express CLN2 if grown in
a methionine-rich medium, but it will be able to cycle
nevertheless, as the endogenous CLN1 is still present in
this strain. However, by switching growth medium from
methionine-rich to methionine-depleted medium, the cell can
be forced to transition from the G1 phase to the S phase
thanks to the resulting expression of CLN2, as represented
in Figure 1. Hence the growth medium can be used as a
control input.

To track the cell-cycle progression in time, a yellow fluo-
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rescent protein (YFP) was fused to the endogenous CDC10
gene, which encodes a protein expressed in the M phase
during cell division at the edge between the mother and
daughter cell (bud neck). The intensity of the YFP represents
the system output.

We derived a simple phase-oscillator model of the cell-
cycle in this strain, following a modelling framework de-
scribed in Perrino et al. [9], whose parameters were set
by considering experiments reported by Charvin et al. [8].
We used this model both for numerical simulations and
for designing control strategies. In order to measure the
synchronisation level, we considered a performance index
based on Kuramoto order parameter. We then designed an
open-loop control strategy using a periodic external input,
as previously propose by Charvin et al. [8]. Next, we
implemented a model predictive control (MPC) strategy to
check whether a feedback control strategy could improve the
performances as compared to the open-loop strategy.

Finally, we performed a preliminary experimental valida-
tion of our control strategies exploiting a microfluidics-based
feedback control platform that we have recently developed
[7], [10].

Our results show that the results presented in our previous
work can be reached also considering cells able to cycle with
a their own dynamics.

II. MODEL DERIVATION AND IDENTIFICATION

To model the cell-cycle, we exploited the concept of phase
reduction [11], [12]. We assumed that the cell-cycle can be
described as a dynamical system of the general form:

ẋ = f(t, x, u) , (1)

where t ∈ R is time, x ∈ Rn is the state vector and u ∈ R
is the control input. If (1) has an exponentially stable limit
cycle γ ⊂ Rn with period Td, then (1) is an oscillator that,
according the phase reduction method, can be modelled as a
dynamical phase oscillator

ϑ̇ = ω , (2)

where ϑ is the phase of the oscillator on the unit circle S1
and ω = 2π

Td
is the angular frequency.

Let ϑc be the cell-cycle phase at budding, i.e. the phase
at which the G1 to S transition occurs. As the cell-cycle
is coupled to cell growth [8], the phase dynamics can be
described as:

ϑ̇ =

{
0 if V < Vc

ω if V ≥ Vc
, (3)

where V is the cell volume, and Vc is the critical vol-
ume, defined as the minimal volume necessary for cell-
cycle progression. The phase linearly increases with rate
ω, unless the cell volume is less than the critical value Vc.
To model volume dynamics, we assumed that a cell grows
exponentially only during the G1 phase, thus neglecting the
mass generated during the S-G2-M phases, most of which is

transferred to the growing bud (daughter cell) [8]:

V̇ =

{
βV if ϑ ∈ [0, ϑc[

0 if ϑ ∈ [ϑc, 2π[
, (4)

where β > 0 is the volume growth rate. Finally, we assume
that at ϑ = 2π cell division occurs and the bud detaches from
the mother (M) cell, and thus forming a new daughter (D)
cell. Let ϑM be the mother cell phase, VM its volume; ϑD
the daughter cell phase and VD its volume. At each division,
the birth of a daughter cell is modelled according to the
following rule:

if ϑM = 2π ⇒

{
ϑM 7→ 0,

ϑD 7→ 0, VD = VM [e(
2π−ϑc

2π )βT − 1]
(5)

where at division, VD is equal to the volume growth occurred
during the S-G2-M phases at bud level.

Let u ∈ {0, 1} be the external trigger input to the system
with u = 1 corresponding to methionine-depleted medium
and u = 0 to methionine-rich medium. The effect of the
input can be modelled with the following reset rule:

if ϑ ∈ [0, ϑc[ ∧ V ≥ Vc ∧ u = 1 =⇒ ϑ 7→ ϑc . (6)

According to this rule, the control input u will force the G1
to S transition only in those cells that are in the G1 phase and
have a volume V > Vc, while the other cells will continue
to cycle unperturbed. This constraint is a major limitation to
the performance of any controller.

The numerical values of the parameters of this cell-cycle
model were inferred from experimental data presented in
Charvin et al. [8]. Thus, the cell-cycle period has been set
to T = 1

ω = 71min, the volume growth rate to β =
0.0083 [a.u.]min−1, and the critical volume to Vc = 1 [a.u.].
Moreover, the cell-cycle phase at budding has been set to
ϑc =

π
2 .

III. PROBLEM STATEMENT

Let Nt = {1, . . . , N(t)} be the finite set of all cells in the
population at time t, where N(t) = |Nt| is the number of
cells in the population at time t. Note that the number of cells
may vary in time as a consequence of cell births and deaths.
However, here we consider only cell birth events, therefore
N(t) : t→ N will be at most a nondecreasing function.

Consider each cell i ∈ Nt as an individual agent whose
cell-cycle progression is mathematically described by the
model composed by (3) and (4), together with the reset rule
(6) and the division rule (5).

The control objective is to synchronise the cell-cycle
across the cell population. Synchronisation in a population of
oscillators can be quantified by means of the Kuramoto order
parameter R [12] defined as the magnitude of the complex
number:

Z(t) :=
1

N(t)

N(t)∑
i=1

eϑi(t) = R(t) eΘ(t) , (7)
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where ϑi is the phase of cell i ∈ Nt. R ∈ [0, 1] represents
the mean phase coherence, an index to evaluate the synchro-
nisation among a population of oscillators. When R is equal
to 1, all cells are synchronised onto the same phase.

To evaluate the performance of the control algorithms
in synchronising the cell population, we introduce the cost
function:

J =
1

tf

∫ tf

0

R2(τ)dτ . (8)

Thus, when J equals one then all cells are synchronised over
the whole time interval.

As newborn cells may have an initial volume smaller than
Vc, it follows from (3) that their phases will remain equal to
0 for a certain time interval. Moreover, at this stage, these
cells will not respond to the control input, hence taking into
account their phases in (7) may result in misleading values
of the control performance. To overcome this problem, we
redefined Z(t) and J(t) by omitting non-cycling cells in
their evaluation. Let Kt = {i ∈ Nt : Vi(t) ≥ Vc} be the
subset of cells whose volume is greater than the critical one
at time t. Then, the Kuramoto order parameter associated to
the cycling cells is defined as:

Zcyc(t) :=
1

K(t)

∑
i∈Kt

eϑi(t) = Rcyc(t) e
Θcyc(t) , (9)

where K(t) is the cardinality of the set Kt at time t. Rcyc ∈
[0, 1] is the mean phase coherence of the cycling cells. In
the same way, we introduce the cost function associated to
the synchronisation of the cycling cells, defined as:

Jcyc =
1

tf

∫ tf

0

R2
cyc(τ)dτ . (10)

We will test control strategies in two different scenarios:
(1) constant population where all cells are mother cells (i.e.
Vi(0) ≥ Vc) and daughter cells are not considered so that
the number of the cells is constant for all t. Obviously, in
this case, since every cell is a cycling mother we have that
Kt ≡ Nt for all t and therefore Jcyc = J ; (2) time-varying
population in which we also consider birth events of daughter
cells. Thus two control problems can be formulated:

Problem 1: Given a constant population of N cells,
whose dynamics is described by (3)-(4) with the phase reset
law (6), compute the control input u that maximises Jcyc.

Problem 2: Given a time-varying population, with an
initial number of N(0) = N0 cells, whose dynamics is
described by equations (3)-(5) with the phase reset law (6),
compute the control input u that maximises Jcyc.

A. Numerical simulations

All in-silico simulations were performed using the MAT-
LAB ode15s solver with event detection routines to accu-
rately detect cell division at ϑi = 2π and the critical volume
Vi = Vc for cells with initial volume Vi < Vc.

For the constant population (Problem 1), we considered
N = 100 mother cells, with an initial volume Vi(0) for all
the cells equals to the critical value Vc. Instead, the initial

phases ϑi(0) of individual cells were uniformly spaced in
the interval [0, 2π[.

For the time-varying population (Problem 2), we consid-
ered an initial number of N0 = 1 cell having initial volume
V1(0) = Vc and phase ϑ1(0) = ϑc.

All simulations were run with the numerical parameters
reported in Section II, for a time interval lasting tf = 15T .
Since we considered the same numerical parameters for
each cell agent, the cell-to-cell variability across the cell
population inherently arises from the cell division events.

IV. OPEN-LOOP CONTROL

We designed a simple open-loop control strategy which
consists in forcing the cells with a periodic control input of
constant period τ . This strategy relies on the phase-locking
phenomenon observed to occur in yeast when forced with
a periodic external stimulus [8]. Numerical simulations for
the control problems 1 and 2 (refer to Section III-A) were
performed for different values of forcing period τ from 1
min to 142 min (that is two times the nominal period T )
with increments of 1 min. As an example, we report in
Figure 2 the response of the time-varying cell population,
with initial number N0 = 1, to a control input of period τ =
64min. In this case, the population exhibits an intermediate
level of synchronisation as indicated by the evolution of the
performance index Rcyc(t). In Figure 5, we report the value
of the cost indices J and Jcyc as a function of the forcing
period τ for both control problems.

It is apparent that the open-loop control strategy has
a satisfactory performance for the constant population but
clearly fails in the case of the time-varying population, as
shown in Figure 3(b).

V. FEEDBACK CONTROL

Although being very simple, the previous open-loop con-
trol strategy requires precise tuning of the control parameter
τ and has the drawback of not being robust to uncertainties
and variation of the parameters of the cell-cycle model. To
overcome these limitations, we devised a model predictive
control algorithm, that is a feedback control strategy that can
guarantee better performances in synchronising cell-cycle
phases [9].

A. Model Predictive Control

The MPC algorithm consists in solving an open-loop
optimal control problem repeatedly over a receding horizon
[13]. This means that at each iteration of the algorithm, the
solution to the optimal open-loop control problem gives an
optimal control input that minimises (or eventually max-
imises) a cost function over a finite prediction horizon Tp.
The optimal control input is applied only over a finite control
horizon Tc ≤ Tp. Then, the optimisation is repeated again.

To address the problem of synchronising the cell-cycle
phases, we chose as cost function the performance index
Jcyc, by setting tf = Tp in equation (10). Since cell-
cycle phases are synchronised when Jcyc is equal to one,
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Fig. 2. Example of an open-loop control simulation. Upper panel, time
evolution of ϑi(t), as well as their average value over the whole population,
are reported respectively in orange and purple colours. Middle panel, time
evolution of R(t) and Rcyc(t) are reported respectively in yellow and green
colours. Bottom panel, the corresponding control signal u(t), generated by
the open-loop control assuming a forcing period τ = 64min, is reported
in red colour.

in this case we have to solve a maximisation optimal control
problem.

To reduce the computational complexity of the optimal
control problem, the control input u ∈ U is assumed to be a
finite sequence of triggers. Defining P ∈ N as the maximum
number of triggers that may be applied in a finite prediction
horizon (t, t+Tp], then the time interval occurring between
two consecutive triggers is Tp

P . The feasible set U is defined
as the set of all admissible control sequences. Considering
only the finite prediction horizon Tp, the set U is composed
by 2P possible combinations of triggers. Thus, the optimal
control problem is solved by maximising the performance
index Jcyc over the prediction horizon Tp. The optimisation
is achieved by exploring all the possible combinations of
sequence of triggers.

For the numerical analysis, we set the length of both the
prediction horizon Tp and the control horizon Tc equal to the
nominal cell-cycle duration T , and the number of triggers P
spanning in the range [1, 6]. Figure 4 shows the response of
the time-varying cell population, with an initial cell number
N0 = 1, to the control input generated by the MPC algorithm
with control parameter P = 5.

In Figure 5 we report the value of the cost functions J
and Jcyc for the parameter P ranging from 1 to 6. The best
performance are obtained for P equal to 5 and 6 in both
fixed and time-varying population scenarios.

With respect to the synchronisation indices obtained with
the open-loop control reported in Figure 3, the MPC has
clearly better performances in both constant population sce-
nario and especially in the time-varying population scenarios.
Moreover, the MPC is obviously more robust to uncertainties

(a) Fixed population (N = 100).

(b) Time-varying population (N0 = 1).

Fig. 3. Open-loop control: synchronisation index as a function of the
forcing period τ . J is the synchronisation index associated to the whole
population, whereas Jcyc is the synchronisation index computed considering
only the cycling cells. τ varies from 1min to 142min (that is equal to 2T )
with increments of 1min.

in the model parameters since it does not require any tuning
of parameters as in the open-loop controller. However, the
performance of the MPC is strongly dependent on the
particular choice of admissible control sequences U that have
to be carefully selected.

VI. PRELIMINARY IN VIVO VALIDATION

To investigate the cell-cycle synchronisation problem ex-
perimentally, we performed a preliminary validation of the
open-loop control strategy described in Section IV. To this
end, we took advantage of a microfluidics-based experimen-
tal platform that was already used to control gene expression
levels on living yeast cells [7], [10], [14]. We performed
two experiments: (i) a calibration experiment where yeast
cells were grown in methionine-rich growth medium (control
input u = 0); (ii) an open-loop control experiment in
which the growth medium is periodically switched between
methionine-rich and methionine-poor with a period τ =
60min (control input), i.e. close to the optimal 54 min period
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Fig. 4. Example of a feedback control simulation using MPC. Upper
panel, time evolution of ϑi(t), as well as their average value over the whole
population, are reported respectively in orange and purple colours. Middle
panel, time evolution of R(t) and Rcyc(t) are reported respectively in
yellow and green colours. Bottom panel, the corresponding control signal
u(t), generated by the MPC with control parameter P = 5, is reported in
red colour.

found with the numerical simulations (Figure 3). In this
latter experiment, differently from the numerical simulations
where the control input consisted of instantaneous pulses, the
control input u is a square wave with a period τ = 60min
and a duty cycle D = 33% , that is methionine-poor
medium was applied to the cell population for a duration
of 20 min, that is one-third of the forcing period τ used
in this experiment. This is necessary, as a shorter stimulus
will not be sensed by the cell [8]. Both experiments lasted
14 hours, that are almost 12 times the nominal period of
the cell-cycle of our yeast strain. The results of these two
experiments are reported in Figure 6, where the output of
each cell, i.e. the yellow fluorescence signal, is shown.
Cells in the unforced experiment (Figure 6(a)) appear to
be poorly synchronised when compared to those subjected
to periodic stimuli (Figure 6(b)). Indeed, in the open-loop
control experiment cells appear to be phase-locked with the
external periodic stimulus (ratio 2:1). Nevertheless, not all of
the cells appear to respond to every external stimuli. Further
experiments, including closed-loop feedback control will
need to be performed to validate the numerical simulations.

VII. CONCLUSIONS

In this work, we have addressed the cell-cycle synchroni-
sation problem in budding yeast considering a real biological
scenario. We considered a budding yeast strain whose cell-
cycle can be reset from the G1 phase to the S phase in the
presence of a proper external stimulus, that is the absence
of methionine in the growth medium supplied to the cells.
We characterised the biological system deriving a phase-
oscillator model to describe the cell-cycle phase and volume
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Fig. 5. Model Predictive Control: synchronisation index as a function
of the maximum number of triggers P that may be applied in a finite
prediction horizon Tp. J is the synchronisation index associated to the whole
population, whereas Jcyc is the synchronisation index computed considering
only the cycling cells.

growth dynamics. Building on the experimental work of
Charvin et al., we devised an open-loop control strategy
that relies on the concept of phase-locking and, supported
by our preliminary experiments, demonstrated its efficacy
in synchronising the cell-cycle across a population of cells.
However, open-loop control strategy faces several hurdles
in a practical setting and relies on the proper choice of
the forcing period. To overcome such limitations, we de-
vised a feedback control strategy based on Model Predictive
Control, which has been already successfully applied to
biological control problems. Through numerical analysis, we
demonstrated the feasibility of using MPC to synchronise
the cell-cycle phases, obtaining better performance when
compared to the open-loop strategy. Nevertheless, several
issues remain open both in terms of control performance and
experimental implementation. Indeed, model uncertainty and
parametric variability could affect the control performance,
thus adaptive and robust control strategies may be required.
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(a) Unforced experiment.

(b) Open-loop experiment with forcing period τ = 60min.

Fig. 6. Open-loop experiments: single-cell traces of the yellow fluorescence
reporter measured at single-cell level during two time-lapse open-loop
experiments. Each single-cell trace was normalised between the maximum
and minimum levels of fluorescence measured during the cell time-course.
Then, all the single-cell traces were sorted with a single-linkage clustering
algorithm. The duration of each signal is different as cells are being born
and pushed out of the field of view during the course of the experiments. (a)
Open-loop experiment in which no external stimulus was provided to the
yeast cells. (b) Open-loop control experiment in which a periodic stimulus
was provided to the yeast cells. In the latter case, the forcing period τ
was equal to 60 min. Bud formation is highlighted in the heat maps by
high values of the fluorescence signal, that is when the colours are close to
yellow. Grey bars denote the external stimuli.

Moreover, estimation of the cell-cycle phase from the YFP
fluorescence signal is non-trivial and requires improvement
in image segmentation algorithms.
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