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Microbes	adapt	their	metabolism	to	take	advantage	of	nutrients	in	their	environment	[1].	Upon	changes	in	nutrient	
conditions,	transcriptional	programs	adapt	pathway	expression	to	meet	the	cellular	energy	budget	[2].	Since	nutrient	
abundance	may	change	frequently,	rapid	pathway	recovery	is	just	as	important	as	fast	activation.	Yet	little	is	known	about	
the	regulatory	strategies	that	microbes	employ	to	accelerate	their	recovery	from	nutrient	depletion.	Using	the	fatty	acid	
catabolic	pathway	in	Escherichia	coli	as	a	model	system,	we	show	that	fast	recovery	can	be	achieved	by	rapid	release	of	a	
transcriptional	regulator	from	a	metabolite-sequestered	complex.	With	a	combination	of	theory	and	experiment,	we	show	
that	recovery	dynamics	depend	critically	on	the	rate	of	metabolite	consumption	and	the	duration	of	the	exposure	to	
nutrient.	We	constructed	and	compared	strains	with	re-wired	regulatory	architectures,	which	highlight	negative	
autoregulation	as	a	superior	control	strategy	over	constitutive	expression	and	positive	autoregulation.	Our	results	have	
wide-ranging	implications	for	our	understanding	of	metabolic	homeostasis	and	the	design	of	gene	control	circuits	for	
synthetic	biology	and	metabolic	engineering.	
	

Bacteria	constantly	adapt	to	changing	environments	by	coordinating	multiple	levels	of	their	intracellular	

machinery.	The	regulatory	systems	that	enable	rapid	adaptations	to	nutritional	changes	require	a	complex	

interplay	between	metabolic	genes	and	metabolites	[3],	which	shapes	cell	fitness,	bet	hedging	efficacy,	population	

survival,	as	well	as	competition	among	microbiota.		

	

Metabolite-gene	interaction	via	metabolite-responsive	transcription	factors	(MRTFs)	is	a	common	strategy	that	

microbes	employ	to	sense	nutrient	availability	and	to	autonomously	orchestrate	changes	in	gene	expression	and	

metabolic	flux	[4].	Upon	nutrient	induction,	cellular	resources	are	invested	in	expressing	enzymes	dedicated	to	

nutrient	uptake.	After	nutrient	depletion	the	uptake	enzymes	are	no	longer	required,	so	control	mechanisms	

down-regulate	their	expression	to	save	cellular	resources.	While	much	of	the	literature	has	focused	on	the	roles	of	

MRTF	control	systems	during	nutrient	induction	[4,	5],	there	is	little	understanding	of	how	these	systems	regulate	

recovery	dynamics	after	nutrient	depletion.	

		

The	MRTF-regulated	nutrient	induction	is	a	balanced	process	between	response	kinetics	and	resource	economy.	

Inducible	expression	systems	are	associated	with	a	cost	of	having	to	synthesize	the	sensing	component	(e.g.	

MRTF).	A	rapid	response	to	changing	environments	can	achieve	a	higher	cellular	fitness,	overcoming	the	invested	

cost	of	expressing	the	sensing	component	[6].	While	typical	inducible	systems	take	a	number	of	cell	cycles	for	the	

expressed	proteins	to	reach	steady	state	[7],	transcriptional	regulation	can	affect	the	response	time	during	
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induction.	For	instance,	negative	autoregulation	has	been	shown	to	speed	up	gene	expression	[4],	and	metabolic	

feedback	circuits	can	accelerate	metabolite	response	[8].	However,	how	the	control	system	exploits	both	

regulatory	architecture	and	parameters	to	shape	the	recovery	dynamics	is	not	well	understood.	Cells	that	rapidly	

shut	down	their	metabolic	pathways	during	depletion	can	avoid	waste	of	limited	resources	and	potentially	gain	

growth	benefits.		

	

In	this	paper,	we	study	a	regulatory	architecture	commonly	found	in	bacterial	metabolic	systems	[9]	(Figure	1A	and	

Table	S1).	In	absence	of	nutrient,	a	MRTF	represses	expression	of	uptake	and	catabolic	enzymes.	When	the	

nutrient	becomes	available,	the	internalized	nutrient	binds	and	sequesters	the	transcription	factor,	thus	relieving	

the	repression	of	metabolic	enzymes	and	allowing	nutrient	import	and	utilization.	In	several	instances	of	this	

control	system,	the	transcription	factor	also	represses	its	own	expression	(Table	S1).		

	

Using	the	Escherichia	coli	fatty	acid	catabolic	pathway	as	a	model	system,	we	studied	its	dynamics	in	response	to	

nutrient	(oleic	acid)	shift	between	an	ON-	and	OFF-state,	defined	as	an	environment	with	and	without	the	

presence	of	oleic	acid	(Figure	1B).	In	the	ON-state,	oleic	acid	is	imported	as	fatty	acyl-CoA	by	small	amounts	of	the	

transporter	FadD.	As	intracellular	acyl-CoA	accumulates,	it	binds	to	the	transcription	factor	FadR	and	sequesters	it	

into	a	complex.	The	sequestering	unbinds	FadR	from	DNA	[10],	which	relieves	the	repression	of	FadD	and	

accelerates	oleic	acid	import,	forming	positive	feedback	loop.	This	allows	a	rapid	transition	to	the	ON-state	[11].	

After	switching	to	the	OFF-state,	release	of	free	FadR	from	the	complex	recovers	its	inhibition	on	the	expression	of	

unnecessary	catabolic	enzymes.	

	

We	built	a	kinetic	model	based	on	four	core	components	of	the	regulatory	system:	FadD	(D),	free	FadR	(R),	acyl-

CoA	(A)	and	sequestered	FadR	(a-R),	and	parameterized	it	using	experimentally	measured	time	course	data	after	

induction	with	various	concentrations	of	oleic	acid	(details	in	Methods).	From	model	simulations,	we	defined	two	

metrics	to	quantify	the	recovery	after	the	switch	from	ON-	to	OFF-state	(Figure	1C).	First,	we	define	the	recovery	

time	(τ50)	as	the	time	taken	for	FadD	to	decrease	to	half-way	between	its	maximum	and	minimum	steady	state	

value	after	nutrient	depletion	(Figure	1C).	Second,	we	defined	the	metric	η	as	the	proportion	of	free	FadR	released	

from	the	sequestered	complex	after	one	doubling	time:	

𝜂 =
FadR!" − FadR!"!!"#

FadR!"
,	

where	FadRDT	and	FadRDT-new	are	the	concentration	of	free	FadR	and	the	concentration	of	newly	expressed	FadR	in	

the	OFF-state	after	one	doubling	time.	This	definition	allows	us	to	quantify	the	contribution	of	free	FadR	released	

from	the	sequestered	pool	to	the	recovery	dynamics.	We	simulated	the	pathway	recovery	kinetics	during	the	OFF-

state	for	varying	concentrations	of	the	acyl-CoA-consuming	enzyme	and	the	time	spent	in	the	ON	state	(t0).	These	

two	parameters	affect	the	amount	of	acyl-CoA	available	for	sequestration	and	the	amount	of	free	FadR	when	the	

nutrient	is	depleted,	respectively.	Simulation	results	(Figure	2A)	suggest	that	the	recovery	time	shortens	with	the	
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concentration	of	consuming	enzyme,	while	released	FadR	(η)	increases	with	both	the	consuming	enzyme	and	the	

time	spent	in	the	ON	state.	Further	simulations	suggest	that	when	the	ON-state	is	kept	for	longer	time,	the	pool	of	

acyl-CoA	accumulates	and	takes	a	long	time	to	be	consumed	in	the	OFF-state.	This	delays	the	release	of	FadR	from	

the	complex	and	results	in	a	longer	recovery	time	(details	in	Supplementary	Information	S3	and	Figure	S4).	Model	

simulations	also	reveal	a	strong	inverse	relation	between	τ50	and	η	(Figure	2B),	indicating	that	the	release	of	FadR	

from	sequestration	by	acyl-CoA	provides	a	mechanism	to	achieve	rapid	recovery	during	nutrient	depletion.	The	

sensitivity	of	this	inverse	relation	increases	when	cells	are	exposed	to	a	longer	ON-state,	because	this	leads	to	

larger	pools	of	sequestered	FadR.		

	

To	verify	the	model	predictions,	we	sought	to	experimentally	increase	the	fraction	of	released	FadR	(η)	with	two	

complementary	strategies.	We	first	decreased	the	rate	of	consumption	of	acyl-CoA	by	deleting	the	fadE	gene,	

which	encodes	the	second	step	of	the	fatty	acid	β-oxidation	pathway.	This	prevents	metabolization	of	acyl-CoA	by	

β-oxidation,	and	leaves	membrane	incorporation	(catalyzed	by	enzyme	PlsB)	as	the	only	pathway	for	acyl-CoA	

consumption.	We	measured	fadD	expression	dynamics	after	switching	the	strains	from	the	ON-state	(M9G	+	1mM	

oleic	acid	media)	to	OFF-state	(M9G	media)	using	a	red	fluorescent	protein	(RFP)	reporter	fused	downstream	of	

the	fadD	promoter.	In	agreement	with	model	predictions	(Figure	2C),	the	fadE	knockout	strain	displayed	a	slower	

recovery	than	the	wild	type,	with	~60%	increase	in	recovery	time	(Figure	2D).	This	entails	an	increased	expenditure	

of	biosynthetic	resources	to	import	a	metabolite	that	is	no	longer	present	in	the	environment.	

	

Next,	we	measured	the	fadD	recovery	dynamics	after	switching	the	cultures	from	growth	in	the	ON-state	for	t0=	3,	

6,	and	9	hours	(Figure	1C).	The	resulting	recovery	times	displayed	a	good	qualitative	agreement	with	model	

simulations	(Figures	2E,F).	Recovery	time	did	not	show	significant	differences	between	6	and	9	hours,	possibly	

because	slower	recovery	is	counteracted	by	the	delay	of	having	to	consume	a	higher	level	of	accumulated	acyl-

CoA,	or	because	the	maximum	level	of	sequestered	FadR	may	already	have	been	achieved	at	6	hours.	

		

Among	the	uptake	systems	in	E.	coli	with	the	architecture	of	Figure	1A,	we	found	that	the	majority	have	a	

transcriptional	regulator	that	represses	its	own	expression,	few	have	constitutive	expression	of	the	regulator,	and	

none	display	positive	autoregulation	(see	Table	S1).	To	better	understand	the	salient	features	of	each	regulatory	

architecture	and	how	they	affect	recovery	dynamics,	we	built	variants	of	our	kinetic	model	with	FadR	under	

constitutive	expression	and	positive	or	negative	autoregulation	(details	in	Methods).	Simulations	of	the	switch	

from	the	ON-	to	OFF-state	suggest	that	these	architectures	behave	similarly	for	short	times	spent	in	the	ON-state,	

quickly	sequestering	all	the	free	FadR	(Figure	3A).	But	for	longer	times	in	the	ON-state,	we	found	important	

differences	in	the	dynamics	of	the	level	of	sequestered	FadR	between	the	various	modes	of	autoregulation.	

Negative	autoregulation	leads	to	large	accumulation	of	sequestered	FadR,	while	positive	autoregulation	leads	to	

an	overall	depletion	of	sequestered	FadR.	Constitutive	expression,	on	the	contrary,	enabled	the	total	level	of	FadR,	
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primarily	in	the	sequestered	form,	to	be	maintained	at	a	constant	level.	Analysis	of	model	equations	reveals	that	

these	are	structural	properties	of	the	model.	We	show	mathematically	(details	in	Supplementary	Information	S4)	

that	after	a	long	time	in	the	ON-state,	the	steady	state	concentration	of	total	FadR	upon	nutrient	depletion	follow	

the	trends	as	we	observed	in	Figure	3A	(top),	irrespective	of	model	parameters.	Simulations	indicate	that	the	

overall	relation	between	recovery	time	and	induction	time	is	similar	across	the	three	architectures	(Figure	3A	

bottom	inset).	However,	for	positive	autoregulation	we	found	recovery	to	be	significantly	slower	for	a	wide	range	

of	induction	times.	To	test	this	prediction,	we	engineered	an	E.	coli	strain	with	positively	autoregulated	FadR	

expression	by	replacing	the	native	fadR	promoter	with	one	that	activated	by	FadR	(PfadRpo,	see	Supplementary	

information	S8),	and	a	PfadD	reporter	plasmid.	The	positively	autoregulated	reporter	strain	(PA-reporter,	

Supplementary	Table	S5,6)	was	grown	in	the	ON-state	(M9G	media	+	1mM	oleic	acid)	and	then	rapidly	switched	to	

the	OFF-state	(M9G	media)	after	3,	6	and	9	hours.	We	measured	the	fadD	expression	dynamics	(Supplementary	

Information	S8,	Fig.	S7),	and	calculated	the	respective	recovery	times	(Figure	3B).	Consistent	with	model	

predictions,	recovery	times	for	the	positively	autoregulated	strain	increased	with	the	time	spent	in	the	ON-state.		

	

Model	analysis	suggests	that	both	constitutive	expression	and	negative	autoregulation	can	sequester	high	

amounts	of	FadR	for	long	times	in	the	ON-state.	We	also	found	that	for	high	concentrations	of	oleic	acid,	the	

steady	state	concentration	of	sequestered	FadR	in	the	ON-state	scales	linearly	with	fadR	promoter	strength	

(Supplementary	Information	S5).	Simulations	of	both	systems	with	increasing	promoter	strength	reveal	that	

increased	FadR	sequestration	in	the	ON-state	cause	a	decrease	in	recovery	times	(Figure	4A).	The	results	moreover	

suggest	that	fadR	promoter	strength	can	be	tuned	to	achieve	the	same	recovery	time	in	both	regulatory	

architectures.			

	

Since	release	of	sequestered	FadR	has	a	direct	impact	on	recovery	time,	we	sought	to	identify	the	benefits	that	

make	negative	autoregulation	favored	over	constitutive	expression.	Since	production	of	FadR	entails	a	biosynthetic	

cost,	we	compared	both	regulatory	architectures	in	terms	of	the	cost	of	FadR	synthesis.	From	time-course	

simulations	for	varying	fadR	promoter	strengths	(Figure	4B),	we	computed	the	total	amount	of	synthesized	FadR	in	

the	ON-	and	OFF-states.	Results	suggest	that	both	architectures	require	identical	biosynthetic	costs	in	the	ON-

state,	but	negative	autoregulation	leads	to	significant	savings	in	the	OFF-state	(Figure	4C)	as	compared	to	

constitutive	expression.	Therefore,	although	both	architectures	can	in	principle	achieve	the	same	recovery	time,	

negative	autoregulation	achieves	this	with	a	lower	cost	on	synthesis	of	the	transcription	factor.		

	

Overall,	we	find	that	rapid	release	of	free	FadR	from	acyl-CoA	sequestered	a-R	complex	shortens	the	recovery	

time.	Our	simulations	and	experiments	have	shown	that	increasing	the	amount	of	stored	FadR	during	induction	

and	increasing	consumption	of	the	sequestering	metabolite	(acyl-CoA)	expedites	free	FadR	releasing,	thus	

shortening	the	recovery	time.	Through	our	model	simulations,	we	observed	a	delayed	recovery	driven	by	the	need	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2019. ; https://doi.org/10.1101/590943doi: bioRxiv preprint 

https://doi.org/10.1101/590943
http://creativecommons.org/licenses/by-nc-nd/4.0/


to	reduced	metabolite	concentration	to	levels	required	to	release	free	TF	from	stored	complex.	During	the	delay,	

wasteful	expression	of	the	uptake	pathway	was	continued	despite	the	absence	of	nutrient.	Previous	research	has	

shown	that	upon	induction,	metabolite	dynamics	tend	to	lag	behind	slow	production	of	metabolic	enzymes	[8].	

Interestingly,	here	we	find	that	after	inducer	depletion,	the	recovery	of	protein	production	can	be	limited	by	the	

metabolite	dynamics.	This	has	important	implications	for	designing	synthetic	control	circuits	that	utilize	non-

metabolizable	inducers,	such	as	IPTG.	With	no	consumption	of	the	inducer,	post-induction	recovery	response	will	

be	slow	and	cause	a	dramatic	drain	of	cellular	resources.	

	

Further	theoretical	analysis	revealed	principles	that	explain	how	autoregulation	shapes	the	recovery	time.	We	

found	that	negative	autoregulation	of	the	transcription	factor	provides	a	resource-saving	strategy	for	the	recovery	

dynamics.	We	found	that	MRTFs	in	13	out	of	18	nutrient	uptake	systems	(see	Table	SF1)	have	negative	

autoregulation,	suggesting	an	evolutionary	pressure	for	a	resource-saving	control	strategy.	Past	studies	in	the	

literature	have	found	that	expression	under	negative	autoregulation	can	decrease	response	times	in	gene	

expression	[7],	linearize	dose-response	in	responsive	systems	[12],	and	even	speed	up	metabolic	dynamics	[8].	In	

addition	to	these	properties,	we	find	that	negative	autoregulation	enables	faster	and	more	resource-saving	

metabolic	recovery	to	nutrient	depletion.	

	

Recent	efforts	in	synthetic	biology	focus	on	engineering	gene	control	circuits	to	manipulate	microbial	metabolism.	

In	large	fermentations,	microbial	hosts	face	highly	heterogeneous	and	dynamic	environments.	Our	results	provide	

core	design	principles	for	synthetic	gene	circuits.	These	design	rules	can	help	to	achieve	rapid	recovery	and	to	

mitigate	against	deleterious	nutrient	fluctuations,	and	are	useful	in	applications	at	the	interface	of	synthetic	

biology	and	metabolic	engineering.	
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Materials	and	Methods	

Materials.	Phusion	DNA	polymerase,	T4	DNA	ligase,	restriction	enzymes,	and	Teknova	5x	M9	minimal	salts	were	

purchased	from	Thermo	Fisher	Scientific	(Waltham,	MA,	USA).	Gel	purification	and	plasmid	miniprep	kits	were	

purchased	from	iNtRON	Biotechnology	(Lynnwood,	WA,	USA.).	Oligonucleotides	were	synthesized	by	Integrated	

DNA	Technologies	(Coralville,	IA,	USA).	All	other	reagents	were	purchased	from	Sigma-Aldrich	(St.	Louis,	MO,	USA.)	

		

Plasmids,	strains,	and	genome	modifications.	A	list	of	plasmids	used	along	with	promoter	sequences	in	this	study	

is	provided	in	Supplementary	Information	S7	(Tables	S4	and	S5).	E.	coli	DH10β	was	used	for	plasmid	construction.	

The	plasmid	pSfadDk-rfp	was	constructed	by	cloning	the	fadD	promoter	(500	bp	upstream	of	its	translation	start	

site)	into	the	5’	of	a	rfp	gene	in	a	BglBrick	vector,	pBbSk-rfp	[13]	using	Golden	Gate	DNA	Assembly	[14].	The	

positively	autoregulated	fadR	strain	was	engineered	by	replacing	fadR’s	native	promoter	with	a	FadR-activated	

promoter	PfadRpo	via	CRISPR-Cas9	genome	editing	[15].	Detailed	engineering	methods	and	the	characterization	of	

the	PfadRpo	promoter	are	described	in	Supplementary	Information	S8.		

Three	reporter	strains	were	created	to	measure	expression	kinetics	from	the	fadD	promoter.	These	strains	

were	created	by	transforming	plasmid	pSfadDk-rfp	into	either	the	wild-type	DH1	strain,	DH1(ΔfadE),	or	an	

engineered	strain	with	positively	autoregulated	fadR,	resulting	in	WT-reporter,	ΔfadE-reporter,	and	PA-reporter,	

respectively.	

	

Media	conditions.	All	strains	were	grown	from	single	colonies	and	cultivated	overnight	in	Luria-Bertani	(LB)	media	

before	experiments.	For	OFF-State	culture	conditions,	cells	were	grown	in	M9	minimal	media	[16]	supplemented	

with	1%	glycerol	and	0.5%	Tergitol	Solution	Type	NP-40	(M9G).	For	ON-state	culture	conditions,	cells	were	grown	
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in	M9G	+	1	mM	oleic	acid	(M9G+OA).	All	cultures	were	supplemented	with	appropriate	antibiotic	selection	(50	

mg/L	Kanamycin,	100	mg/L	Ampicillin).	

		

Assays	of	fadD	expression	kinetics.		To	measure	the	recovery	dynamics,	reporter	strains	were	grown	in	3	mL	

M9G+OA	for	24-48	hours	at	exponential	growing	state.	To	rapidly	switch	nutrient,	cells	were	centrifuged	(5500	rcf,	

2	minutes)	and	washed	twice	in	M9G.	Cultures	were	then	diluted	in	M9G	medium	to	OD600	=	0.08	and	transferred	

to	a	Falcon	96-Well	Imaging	Microplate	(Corning,	NY,	USA).	The	microplate	was	then	incubated	in	an	Infinite	

F200PRO	plate	reader	(TECAN,	Männedorf,	Switzerland)	at	37°C	with	constant	shaking.	To	maintain	exponential	

growth	during	measurement,	cultures	were	diluted	by	a	factor	of	5	for	three	times	during	incubation.		Kinetic	

measurements	of	cell	density	(absorbance	at	600	nm)	and	RFP	fluorescence	(excitation:	584	±	9	nm,	emission:	620	

±	20	nm)	were	taken	every	900	seconds	until	all	diluted	cultures	reached	stationary	phase.	Fluorescence	from	

water	in	the	same	96-well	plate	was	used	as	the	background	and	was	subtracted	from	all	fluorescence	

measurements.	The	background-corrected	fluorescence	was	later	normalized	by	cell	density.	To	calculate	the	

recovery	time,	the	average	of	three	biological	replicates	were	fitted	to	an	exponential	curve:	

𝐹 = 𝑎 × 𝑒!!∗! + 𝑐	

where	F	is	the	background-corrected,	cell-density-normalized	fluorescence.	The	recovery	time	was	calculated	as	

τ50=log(2)/b.		

For	switches	after	defined	times	in	the	ON-state,	cultures	were	first	grown	in	exponential	growth	phase	

for	24-28	hours	in	M9G.	Samples	from	these	cultures	were	then	centrifuged	(5500	rcf,	2	minutes)	and	suspended	

in	M9G+OA	with	an	initial	OD600	of	0.08	and	cultivated	in	96-well	plates	for	various	amount	of	time	as	indicated.		

	

Kinetic	model	of	fatty	acid	uptake.	To	study	the	system	dynamic	response	to	induction	(ON-state)	and	its	post-

induction	recovery	(OFF-state)	(Fig.	1C),	we	built	a	kinetic	model	for	fatty	acid	uptake.	We	define	the	kinetic	model	

as	a	system	of	ODEs	describing	the	rate	of	change	of	each	system	component:	

	 ,	 (6)	

	 ,	 (7)	

	
,	

(8)	

	 ,	 (9)	

where	R,	D,	A	and	aR	represent	the	concentrations	of	transcription	factor	FadR,	uptake	enzyme	FadD,	internalized	

fatty	acid	acyl-CoA,	and	sequestered	complex	acyl-CoA-FadR,	respectively	(Fig.1B).	The	reversible	sequestering	of	

one	FadR	dimer	by	two	acyl-CoA	molecules	(stoichiometry	as	defined	in	[17])	is	modeled	as	mass-action	kinetics	in	
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the	term	 .	The	term	 	represents	the	expression	and	autoregulation	of	the	fadR	promoter.	

To	model	FadR	negative	autoregulation	for	the	wild-type	strain,	we	use	

	 .	 (10)	

Further	details	of	the	model	are	given	in	Supplementary	Information	S2,	and	descriptions	of	parameters	in	Table	

S2.	We	parameterized	the	model	with	time	course	data	of	RFP	expressed	from	a	fadD	promoter	induced	at	

different	oleic	acid	concentrations,	and	fitted	values	can	be	found	in	Table	S3.	Details	of	the	experimental	strain,	

the	data	used	and	the	fitting	process	are	given	in	Supplementary	Information	S2.	For	the	models	with	constitutive	

expression	and	positive	autoregulation	of	FadR,	we	use		

	 ,	 (2)	

	 .	 (3)	

	

Model	simulations.	The	kinetic	model	of	the	fatty	acid	uptake	control	system	(Fig.	1A)	was	solved	in	MATLAB	

R2018a,	using	the	ODE	solver	suite.	To	simulate	the	ON-state,	simulations	were	initialized	using	the	steady	state	

values	achieved	from	running	simulations	in	absence	of	oleic	acid	(OA	=	0	µM).	A	constant	level	of	oleic	acid	was	

set	at	t	=	0,	with	OA	=	1000	µM	in	Eq.(8),	and	simulations	were	run	to	steady	state,	or	a	defined	time	(to	emulate	

time	spent	in	ON-state).	To	simulate	the	OFF-state,	the	system	was	initialized	using	either	the	steady	state	or	end-

point	values	achieved	in	the	ON-state,	but	now	with	OA	=	0	µM	in	Eq.(8).	Simulations	of	the	OFF-state	were	run	to	

steady	state,	and	recovery	times	were	calculated	from	a	measure	of	the	time	from	the	start	of	the	OFF-state	till	

when	FadD	reached	half-way	between	its	initial	(max)	value	and	minimum	steady	state	value.		

In	Figure	3,	for	fair	comparison	model	parameters	are	set	such	that	the	steady	state	concentration	of	FadR	is	the	

same	for	all	three	architectures	prior	to	switching	to	the	ON-state.	Likewise,	in	Figure	4B-C	for	fair	comparison,	

fadR	promoter	strengths	for	both	architectures	were	set	to	achieve	same	concentration	of	sequestered	FadR	in	the	

ON-state	(and	thus	equal	recovery	times).	
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Figures	

	
Figure	1.	General	architecture	of	a	bacterial	nutrient	uptake	system.	(A)	Regulation	of	nutrient	uptake	by	a	

metabolite-responsive	transcription	factor	(MRTF),	a	ubiquitously	observed	control	system	in	bacteria	(see	

Supplementary	Information,	Table	S1).	(B)	We	use	the	Escherichia	coli	fatty	acid	uptake	as	a	model	system.	The	

ON-state	is	defined	by	induction	at	a	constant	level	of	oleic	acid,	which	is	imported	as	acyl-CoA	by	uptake	enzyme	

FadD.	Acyl-CoA	sequesters	the	transcription	factor	FadR,	which	de-represses	expression	of	the	uptake	enzyme.	The	

OFF-state	is	defined	by	the	wash	out	of	oleic	acid	after	some	time	t0	in	the	ON-state.	Release	of	sequestered	FadR	

recovers	its	repression	on	FadD	synthesis.	FadR	is	also	subject	to	negative	autoregulation.	(C)	Schematic	of	the	

experiments	and	simulations	in	this	work,	with	temporary	induction	by	oleic	acid	(green	line).	To	quantify	the	

recovery	of	FadD	levels	in	the	OFF-state,	we	define	the	recovery	time	(τ50)	as	the	time	it	takes	to	drop	to	half	way	

between	maximum	and	minimum	concentrations.	
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Figure	2.	Speed	of	metabolite	consumption	in	OFF-state	and	time	spent	in	ON-state	shape	recovery	time.	(A)	

Predicted	recovery	time	(τ50)	and	proportion	of	free	FadR	released	from	sequestration	after	one	doubling	time	(η)	

for	variations	in	the	amount	of	consuming	enzyme	and	time	spent	in	the	ON-state.	(B)	Inverse	relation	between	

the	proportion	of	released	FadR	(η)	and	predicted	recovery	time.	(C)	Simulated	time	course	of	FadD	concentration	

in	OFF-state	and	predicted	recovery	times	for	increasing	concentration	of	acyl-CoA	consuming	enzyme.	Model	

predicts	shorter	recovery	times	for	enzyme	abundance.	(D)	Measured	time	course	of	fadD	expression	when	

switching	from	ON-	to	OFF-state	for	strains	with	low	(ΔfadE-reporter)	and	high	(WT-reporter)	concentration	of	

acyl-CoA	consuming	enzyme.	Strains	were	switched	from	M9G+1mM	oleic	acid	to	M9G	media	at	time	zero.	Error	

bars	represent	standard	error	of	the	mean	(SEM)	from	biological	triplicates	(n=3).	Recovery	times	were	calculated	

from	exponential	fits	to	each	of	the	triplicate	time	course	data	(inset).	Error	bars	represent	SEM	from	biological	
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triplicates	(n=3).	(E)	Time	course	simulations	of	FadD	induction	and	recovery	dynamics	and	predicted	recovery	

times	for	variations	increasing	times	spent	in	the	ON-state.	(F)	Measured	time	course	of	fadD	expression	in	WT-

reporter	grown	in	ON-state	(M9G+1mM	oleic	acid)	for	3,	6	and	9	hours,	and	then	switched	to	OFF-state	(M9G).	

Error	bars	represent	SEM	from	biological	triplicates	(n=3).	Recovery	times	were	calculated	from	exponential	fits	to	

each	of	the	triplicate	data,	based	on	all	data	points	from	the	time	of	switch.	Error	bars	represent	SEM	of	fitted	

recovery	times	(n=3).	
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Figure	3.	Impact	of	regulatory	architecture	on	the	recovery	time	after	nutrient	depletion.	(A,	top)	Simulated	

steady	state	concentrations	of	sequestered	(thick	line)	and	total	FadR	(thin	line)	for	varying	times	spent	in	the	ON-

state	for	three	regulatory	architectures	of	FadR;	constitutive	expression	(black	line)	is	represented	by	a	blunt	line.	

(A,	bottom)	Predicted	recovery	times	for	each	architecture.	(B)	Measured	recovery	times	in	the	WT	(WT-reporter)	

and	positively	autoregulated	strain	(PA-reporter,	Supplementary	Table	6)	for	3,	6	and	9	hours	spent	in	ON-state.	

Recovery	times	were	calculated	from	exponential	fits	to	each	of	the	triplicate	time	course	data	(data	in	

Supplementary	Information	S8)	and	error	bars	represent	SEM	of	the	calculated	values	(n=3).	(C)	Schematics	of	

negative	and	positive	autoregulation	affect	the	build-up	of	sequestered	FadR	in	the	ON-state.	
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Figure	4.	Comparison	of	recovery	dynamics	in	constitutive	expression	and	negative	autoregulation.	(A)	Simulated	

recovery	time	for	variations	in	the	promoter	strength;	both	architectures	can	achieve	similar	recovery	times.	(B)	

Time	course	simulations	of	FadR	synthesis	rates	during	ON-state	(1mM	oleic	acid)	and	OFF-state,	for	increasing	

promoter	strengths;	yellow	curve	is	for	the	promoter	strength	fitted	from	data	(Table	S3).	(C)	Cost	of	FadR	

synthesis	for	increasing	concentrations	of	sequestered	FadR,	modified	by	changes	to	fadR	promoter	strength.	

Circles	correspond	to	costs	associated	to	simulations	shown	in	(B).	Details	of	simulations	in	Methods.	
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