
1 
 

Metabolite sequestration enables rapid recovery from nutrient depletion 1 

Christopher J. Hartline1,†, Ahmad A. Mannan2,†, Di Liu1, Fuzhong Zhang1,*, Diego A. 2 

Oyarzún3,4,* 3 

1 Department of Energy, Environmental & Chemical Engineering, Washington 4 

University in St Louis, St. Louis, 63130, USA 5 

2 Warwick Integrative Synthetic Biology Centre & School of Engineering, 6 

University of Warwick, Coventry CV4 7AL, UK 7 

3 School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK 8 

4 School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK 9 

† Equal contribution 10 

* Corresponding authors: F. Zhang (fzhang@seas.wustl.edu) and D. A. Oyarzún 11 

(d.oyarzun@ed.ac.uk). 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/590943doi: bioRxiv preprint 

https://doi.org/10.1101/590943
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 1 

Microbes adapt their metabolism to take advantage of nutrients in their environment. Such 2 

adaptations control specific metabolic pathways to match energetic demands with nutrient 3 

availability. Upon depletion of nutrients, rapid pathway recovery is key to release cellular 4 

resources required for survival in the new nutritional condition. Yet little is known about the 5 

regulatory strategies that microbes employ to accelerate pathway recovery in response to nutrient 6 

depletion. Using the fatty acid catabolic pathway in Escherichia coli, here we show that fast 7 

recovery can be achieved by rapid release of a transcriptional regulator from a metabolite-8 

sequestered complex. With a combination of mathematical modelling and experiments, we show 9 

that recovery dynamics depend critically on the rate of metabolite consumption and the exposure 10 

time to nutrient. We constructed strains with re-wired transcriptional regulatory architectures that 11 

highlight the metabolic benefits of negative autoregulation over constitutive and positive 12 

autoregulation. Our results have wide-ranging implications for our understanding of metabolic 13 

adaptations, as well as guiding the design of gene circuitry for synthetic biology and metabolic 14 

engineering. 15 
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Introduction 1 

Bacteria constantly adapt to changing environments by coordinating multiple levels of their 2 

intracellular machinery. Metabolic regulation provides a control layer that adapts metabolic 3 

activity to nutritional conditions. Such regulation relies on a complex interplay between gene 4 

expression and metabolic pathways [1]. In the case of metabolic pathways, genes for nutrient 5 

uptake and consumption need to be upregulated when the specific nutrient is available in the 6 

environment. Failure to quickly increase pathway capacity may result in missed metabolic resource 7 

opportunity and a potential cost on fitness [2] and population survival [3]–[5]. Conversely, upon 8 

nutrient depletion, expression of specific metabolic enzymes can become wasteful and lead to a 9 

suboptimal use of biosynthetic resources [6], [7].  10 

Metabolite-responsive transcription factors are a widespread regulatory mechanism in 11 

microbes. Upon sensing nutrient availability, they trigger changes in enzyme expression and 12 

metabolic flux [8]. This strategy has been shown to control the dynamics of pathway upregulation 13 

in various ways [9]–[11]. For example, negative autoregulation of transcription factors can speed 14 

the response time of gene expression [12] and feedback circuits based on metabolite-responsive 15 

transcription factors have been demonstrated to accelerate metabolite responses [13]. While much 16 

of the literature has focused on the control of activation dynamics upon nutrient induction [14]–17 

[16], little is known on how these regulatory mechanisms shape pathway recovery after depletion 18 

of nutrients.  19 

Here we study a common regulatory architecture found in over a dozen bacterial nutrient 20 

uptake systems [17] (Figure 1A and Table S1). When a nutrient is absent from the environment, a 21 

metabolite-responsive transcription factor (MRTF) represses the expression of uptake and 22 

catabolic enzymes. When the nutrient is present, the nutrient is internalized and sequesters the 23 
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transcription factor via reversible binding, thus preventing gene repression. This causes an 1 

upregulation of metabolic enzyme genes and an increase in the rate of nutrient import and 2 

utilization. A common feature of these control systems is the presence of negative autoregulation 3 

of the transcription factor (Supplementary Information S1). After nutrient depletion, the MRTF 4 

must recover its repressive activity on the catabolic pathway genes to rapidly shut down pathway 5 

activity, yet it is unclear what components of the regulatory system help to accelerate the recovery 6 

dynamics.  7 

Using the Escherichia coli fatty acid catabolic pathway as our model system, we took a 8 

theoretical-experimental approach to study its recovery dynamics in response to a nutrient shift 9 

from an ON-state to an OFF-state. As illustrated in Figure 1B, these two states are defined as an 10 

environment with and without the presence of oleic acid as carbon source, respectively. In the ON-11 

state, oleic acid is imported as fatty acyl-CoA which binds to the transcription factor FadR and 12 

sequesters it into a complex. This acyl-CoA sequestration releases FadR from its cognate DNA 13 

elements [18], which relieves the repression of the uptake gene fadD and thus accelerates the 14 

import of oleic acid. We found that upon depletion of oleic acid, repression by FadR is recovered 15 

via its rapid release from the sequestered complex, which in turn is driven by consumption of acyl-16 

CoA. We further found that the architecture of FadR autoregulation affects the maintenance of a 17 

sequestered pool of FadR. In particular, negative autoregulation enables a large sequestered TF 18 

pool during the ON-state and, at the same time, a reduced biosynthetic cost in the OFF-state. Our 19 

results shed light on the regulatory mechanisms that allow cells to rapidly adapt to environmental 20 

shifts and provide insights for the design of gene circuits in synthetic biology and metabolic 21 

engineering applications, particularly where strain performance is sensitive to nutrient fluctuations 22 

and inhomogeneities typical of large-scale fermentations. 23 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/590943doi: bioRxiv preprint 

https://doi.org/10.1101/590943
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

 1 

Results 2 

Recovery dynamics in the fatty acid uptake system 3 

To study the recovery dynamics of fatty acid uptake, we built a kinetic model based on four core 4 

components of the regulatory system: FadD (D), free FadR (R), acyl-CoA (A) and sequestered 5 

FadR (aR). The model represents cells growing at a fixed growth rate with oleic acid at a fixed 6 

concentration in the media. We simulated the recovery dynamics by mimicking the three stages in 7 

our experimental setup: preculture without oleic acid, response to induction in the ON-state, and 8 

recovery in the OFF-state. During preculture we ran the model to steady state in the absence of 9 

oleic acid, then initiated simulations of the ON-state from the steady state achieved in preculture, 10 

with a fixed concentration of oleic acid for a defined exposure time. The concentrations achieved 11 

at the end of the ON-state were used as initial conditions for the OFF-state, which was simulated 12 

without oleic acid until the system recovers to the steady state in preculture (Figure 1C). 13 

 We defined two metrics to quantify the recovery dynamics after the switch from ON- to 14 

OFF-state (Figure 1C). First, we define the recovery time (τ50) as the time taken for FadD to 15 

decrease to half-way between its maximum and minimum steady state value after nutrient 16 

depletion (Figure 1C). Second, we defined the metric η as the proportion of free FadR released 17 

from the sequestered complex after one doubling time: 18 

𝜂 =
𝐹𝑎𝑑𝑅'( − 𝐹𝑎𝑑𝑅'(*+,-

𝐹𝑎𝑑𝑅'(
,	19 

where FadRDT and FadRDT-new are the concentrations of free FadR and newly expressed FadR in 20 

the OFF-state after one doubling time (DT). This definition allows us to quantify the contribution 21 

of free FadR released from the sequestered pool to the recovery dynamics.  22 
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 Since pathway recovery depends on the system state at the time of the ON to OFF switch, 1 

we used the kinetic model to study the relation between the initial conditions at the time of the 2 

switch and the recovery dynamics. To this end, we studied the impact of exposure time to oleic 3 

acid during the ON-state, as well as the amount of acyl-CoA-consuming enzyme. We simulated 4 

the OFF-state dynamics for 2500 combinations of 50 acyl-CoA-consuming enzyme concentrations 5 

and 50 exposure times, and calculated τ50 and η for each. Simulation results of the OFF-state 6 

dynamics (Figure 2A) suggest that the recovery time (τ50) decreases with increasing concentrations 7 

of consuming enzyme, while the amount of released FadR (η) increases with both the consuming 8 

enzyme and the exposure time. Further simulations suggest that when exposure time increases, the 9 

pool of acyl-CoA accumulates further which takes a longer time to be consumed in the OFF-state. 10 

This delays the release of FadR from the complex and results in a longer recovery time (details in 11 

Supplementary Information S3 and Figure S2). Model simulations also reveal a strong inverse 12 

relation between τ50 and η (Figure 2B), indicating that the release of FadR from sequestration by 13 

acyl-CoA provides a mechanism for cells to achieve rapid recovery during nutrient depletion. 14 

Further, the sensitivity of this inverse relation increases when cells are exposed to a longer ON-15 

state. Simulations show that longer cell exposure times to oleic acid increase the pool of 16 

sequestered FadR (Figure S2). Consequently, in the OFF-state, more FadR can be released from 17 

sequestration compared to new FadR synthesis, thus increasing the sensitivity of τ50 changes in the 18 

amount of released FadR (η). 19 

To verify the model predictions, we sought to experimentally perturb the fraction of released 20 

FadR (η) through two complementary strategies: i) by engineering strains with different amounts 21 

of acyl-CoA consuming enzymes, and ii) by manipulating the exposure time to oleic acid. We first 22 

constructed a reporter strain with a decreased consumption rate of acyl-CoA, strain ΔfadE-reporter 23 
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(see Supplementary Information S4 and Table S5), where we deleted the fadE gene encoding the 1 

second step of the fatty acid β-oxidation pathway. This prevents metabolization of acyl-CoA by β-2 

oxidation, and leaves membrane incorporation (catalyzed by enzyme PlsB) as the only pathway 3 

for acyl-CoA consumption. We measured fadD expression dynamics after switching the strains 4 

from the ON-state (M9G + 1mM oleic acid media) to OFF-state (M9G media) using a red 5 

fluorescent protein (RFP) reporter fused downstream of the fadD promoter. The fadE knockout 6 

strain displayed a slower recovery than the wild type, with ~60% increase in recovery time (Figure 7 

2D), confirming our theoretical prediction in Figure 2C. The measured increase in recovery time 8 

entails an increased expenditure of biosynthetic resources to import a metabolite that is no longer 9 

present in the environment. 10 

Next, we measured the fadD recovery dynamics after switching the cultures from growth with 11 

3, 6, and 9 hours of exposure time in the ON-state. As predicted from the model in (Figure 2E), 12 

measured recovery time decreased for an increase in exposure time (Figure 2F). However, we 13 

observe that recovery time is not decreased further beyond 6 hours of exposure to oleic acid. We 14 

speculate that faster recovery is counteracted by the delay of having to consume a higher level of 15 

accumulated acyl-CoA, or because the maximum level of sequestered FadR may already have 16 

been achieved at 6 hours. 17 

  18 

Impact of autoregulatory architecture on recovery dynamics  19 

Among the uptake systems in E. coli with the architecture of Figure 1A, we found that the majority 20 

have a transcriptional regulator that represses its own expression, few have constitutive expression 21 

of the regulator, and none display positive autoregulation (see Table S1). To better understand the 22 

salient features of each regulatory architecture and how they affect recovery dynamics, we built 23 
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variants of our kinetic model with FadR under constitutive expression and positive or negative 1 

autoregulation (details in Methods). Simulations of the recovery dynamics in the OFF-state for 2 

varying exposure times in the ON-state suggest that these architectures behave similarly for short 3 

exposure times (< 1 hour), quickly sequestering all the free FadR (Figure 3A, top). For longer 4 

exposure times (>1 hour), model simulations suggest important differences in the dynamics of 5 

sequestered FadR among the various modes of autoregulation. Negative autoregulation shows an 6 

accumulation of sequestered FadR, while positive autoregulation leads to an overall depletion of 7 

sequestered FadR. Constitutive expression causes the total level of sequestered FadR to be 8 

maintained at a constant level (Figure 3A).  9 

To elucidate whether these predicted trends are a consequence of the model parameters or 10 

inherently determined by the autoregulatory architecture, we analyzed the model and found 11 

relations for the change in steady state concentrations of total FadR (ΔRT) in each autoregulatory 12 

architecture (details of derivation in Supplementary Information S5): 13 

Negative autoregulation:  Δ𝑅( > 0, (1) 

Positive autoregulation:  Δ𝑅( < 0, (2) 

Constitutive expression:  Δ𝑅( = 0. (3) 

Equations (1), (2) and (3) are valid for any combination of positive parameters, and therefore the 14 

long-term trends observed in Figure 3A are structural properties of the model.  15 

To determine the effect of the three regulatory architectures on the recovery time, we 16 

simulated the recovery dynamics of each architecture for varying exposure times and calculated 17 

the recovery time (Figure 3A, bottom). We observe that the overall relation between recovery time 18 

and exposure time is similar across the three architectures (Figure 3A bottom inset). However, for 19 

positive autoregulation we found recovery to be significantly slower for a wide range of exposure 20 
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times. To test this prediction, we engineered an E. coli strain with positively autoregulated FadR 1 

expression by replacing the native fadR promoter with one that activated by FadR (PfadRpo, see 2 

Supplementary information S6), and a PfadD reporter plasmid. The positively autoregulated reporter 3 

strain (PA-reporter, Tables S5,6) was grown in the ON-state (M9G media + 1mM oleic acid) and 4 

then rapidly switched to the OFF-state (M9G media) after 3, 6 and 9 hours. We measured the fadD 5 

expression dynamics (see time course dynamics in S6, Fig. S3), and calculated the respective 6 

recovery times (Figure 3B). Consistent with the trend predicted from the model, recovery times 7 

for the positively autoregulated strain increased with the exposure time of oleic acid in the ON-8 

state (Figure 3C).  9 

 10 

Negative autoregulation provides a resource-saving recovery strategy 11 

The results in Equations (1) and (3) suggest that constitutive expression and negative 12 

autoregulation can both maintain high amounts of sequestered FadR for long exposure times to 13 

oleic acid. Our earlier results showed that longer exposure times lead to larger pool of sequestered 14 

FadR (Figure S2D), which enables a faster recovery time (Figure 2E, F). We thus asked which 15 

system parameters influence the steady-state pool size of sequestered FadR in these two 16 

architectures. We found that for high concentrations of oleic acid, the steady-state concentration 17 

of sequestered FadR in the ON-state are given by (details in Supplementary Information S7): 18 

Negative autoregulation:  lim
8→:

aR =
𝑎+
𝜇 , 

(4) 

Constitutive expression:  lim
8→:

aR =
𝑝?
𝜇 , 

(5) 

where A and aR are the steady state concentrations of acyl-coA and sequestered FadR, 19 

respectively. These results suggest that at high oleic acid concentrations, the amount of sequestered 20 
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FadR scales linearly with the strength of its own promoter. Simulations of both architectures in the 1 

ON-state induced with high concentration of oleic acid (1mM) and varying promoter strengths, we 2 

found that increasing promoter strength both increases the amount of sequestered FadR in the ON-3 

state and decreases the recovery time (Figure 4A).  4 

The results in Figure 4A also suggest that through tuning of fadR promoter strength, in 5 

principle both constitutive expression and negative autoregulation can produce the same recovery 6 

time. We thus sought to identify potential benefits of one architecture over the other in terms of 7 

the recovery dynamics in the OFF-state. Since production of FadR entails a biosynthetic cost, we 8 

compared both regulatory architectures in terms of the cost of FadR synthesis. From time-course 9 

simulations of FadR synthesis rates in the ON- and OFF- states (Figure 4B), we computed the total 10 

amount of synthesized FadR for increasing fadR promoter strengths by integrating the area under 11 

the curves (Figure 4C). Our results show that both architectures require identical biosynthetic costs 12 

for FadR in the ON-state, but negative autoregulation leads to a reduced biosynthetic cost for FadR 13 

in the OFF-state as compared to constitutive expression (Figure 4C).  14 

 15 

Discussion 16 

In this paper we combined mathematical modelling and experiments to study metabolic pathway 17 

recovery upon depletion of an external nutrient. Changes in nutrient conditions trigger 18 

transcriptional programs that adapt cell physiology [19] to meet the cellular energy budget [20]. 19 

We chose the regulation of fatty acid uptake in E. coli as our model system, as it is representative 20 

of a widely conserved transcriptional program for controlling the uptake of nutrients in bacteria 21 

(Table S1). We show that fast recovery after nutrient depletion can be achieved by rapid release 22 

of a transcriptional regulator from a metabolite-sequestered complex. In particular, a sizable 23 
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contribution of FadR rapidly made available after oleic acid depletion came from its release from 1 

its sequestered complex form (aR), as opposed to new synthesis. The rapid availability of FadR 2 

quickly recovers its inhibition on the fad regulon, and so shortens the recovery time. Furthermore, 3 

our model simulations and experiments have demonstrated that increasing the amount of FadR 4 

stored in complex form during nutrient exposure and fast consumption of acyl-CoA (the 5 

sequestering metabolite) facilitate a speedy recovery in the OFF-state. 6 

Our model simulations show that pathway recovery is delayed by high intracellular acyl-CoA 7 

concentrations, which slow the release of free FadR from stored complex until those high 8 

concentrations are reduced. This delay occurs because FadR is only able to sense the intracellular 9 

metabolite concentrations, which can remain high even when extracellular metabolite 10 

concentrations are low. During this delay, wasteful expression of the uptake pathway continues 11 

despite the absence of oleic acid in the environment. Previous research has shown that upon 12 

nutrient induction, metabolite dynamics tend to lag behind slow upregulation of metabolic 13 

enzymes [13]. In contrast, here we find that after inducer depletion, the recovery of metabolic 14 

enzymes back to their downregulated state lags behind the metabolite dynamics. This has 15 

important implications for designing synthetic control circuits which utilize non-metabolizable 16 

inducers such as IPTG or TMG. Without consumption of the inducer, post-induction recovery 17 

response will be slow and may cause a dramatic drain of cellular resources. Our simulations of the 18 

relation between sequestered FadR and recovery time suggest that this inherent lag can be 19 

compensated for by storing and releasing higher amounts of TF, which highlights the benefits of 20 

maintaining a sequestered pool of FadR.  21 

Further mathematical analyses revealed principles that explain how autoregulation shapes the 22 

recovery time. We found that systems with only negative autoregulation and constitutive 23 
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expression can maintain the pool of sequestered FadR needed for a rapid recovery. In contrast, we 1 

found that positive autoregulation loses this storage over time, resulting in a reduced availability 2 

of FadR after nutrient depletion and slower recovery times. We additionally found that negative 3 

autoregulation of the transcription factor reduces the total biosynthetic cost of for FadR in a full 4 

ON-OFF-state cycle as compared to using constitutive expression. This occurs because both 5 

systems need to maintain the same level of sequestered FadR in the ON-state in order to achieve 6 

the same recovery time, but only negative autoregulation allows FadR synthesis to be down-7 

regulated in the OFF-state. Thus, negative autoregulation provides a resource-saving strategy for 8 

controlling the recovery dynamics compared to constitutive expression. We found that the 9 

transcriptional regulators in 13 out of 18 nutrient uptake systems (see Table S1) have negative 10 

autoregulation, suggesting an evolutionary pressure for a resource-saving control strategy. Past 11 

studies in the literature have found that expression under negative autoregulation can decrease 12 

response times in gene expression [12], linearize dose-response in responsive systems [21], and 13 

even speed up metabolic dynamics [13]. In addition to these properties, we find that negative 14 

autoregulation enables a rapid and more resource-saving metabolic recovery to nutrient depletion. 15 

Recent efforts in synthetic biology focus on engineering gene control circuits to manipulate 16 

microbial metabolism [22]–[24]. One key goal of such control systems is to rapidly turn off 17 

metabolic pathways in response to metabolic signals [25]–[27]. Our results provide core design 18 

principles for engineered metabolic systems with tunable response to nutrient depletions, which 19 

could be used as a pathway control tool in bioreactors. Our experiments and simulations reveal 20 

that the recovery time can be simply tuned through well-established promoter engineering 21 

techniques [28]–[30]. Further, we identify regulatory architectures with differing dynamic 22 

responses to nutrient depletion provides further avenues for tuning system response to the highly 23 
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dynamic and heterogeneous environments typical of large-scale fermenters. These design rules 1 

can be readily applied to mitigate against deleterious nutrient fluctuations found in metabolic 2 

engineering applications. 3 

 4 

Materials and Methods 5 

Materials. Phusion DNA polymerase, T4 DNA ligase, restriction enzymes, and Teknova 5x M9 6 

minimal salts were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Gel 7 

purification and plasmid miniprep kits were purchased from iNtRON Biotechnology (Lynnwood, 8 

WA, USA.). Oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, IA, 9 

USA). All other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA.) 10 

  11 

Plasmids, strains, and genome modifications. A list of plasmids used along with promoter 12 

sequences in this study is provided in Supplementary Information S7 (Tables S4 and S5). E. coli 13 

DH10β was used for plasmid construction. The plasmid pSfadDk-rfp was constructed by cloning 14 

the fadD promoter (500 bp upstream of its translation start site) into the 5’ of a rfp gene in a 15 

BglBrick vector, pBbSk-rfp [31] using Golden Gate DNA Assembly [32]. The positively 16 

autoregulated fadR strain was engineered by replacing fadR’s native promoter with a FadR-17 

activated promoter PfadRpo via CRISPR-Cas9 genome editing [33]. Detailed engineering methods 18 

and the characterization of the PfadRpo promoter are described in Supplementary Information S8.  19 

Three reporter strains were created to measure expression dynamics from the fadD promoter. 20 

These strains were created by transforming plasmid pSfadDk-rfp into either the wild-type DH1 21 

strain, DH1(ΔfadE), or an engineered strain with positively autoregulated fadR, resulting in WT-22 

reporter, ΔfadE-reporter, and PA-reporter, respectively. 23 
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 1 

Media conditions. All strains were grown from single colonies and cultivated overnight in Luria-2 

Bertani (LB) media before experiments. For OFF-State culture conditions, cells were grown in M9 3 

minimal media [34] supplemented with 1% glycerol and 0.5% Tergitol Solution Type NP-40 4 

(M9G). For ON-state culture conditions, cells were grown in M9G + 1 mM oleic acid (M9G+OA). 5 

All cultures were supplemented with appropriate antibiotic selection (50 mg/L Kanamycin, 100 6 

mg/L Ampicillin). 7 

  8 

Assays of fadD expression dynamics.  To measure the recovery dynamics, reporter strains were 9 

grown in 3 mL M9G+OA for 24-48 hours at exponential growing state. To rapidly switch nutrient, 10 

cells were centrifuged (5500 rcf, 2 minutes) and washed twice in M9G. Cultures were then diluted 11 

in M9G medium to OD600 = 0.08 and transferred to a Falcon 96-Well Imaging Microplate 12 

(Corning, NY, USA). The microplate was then incubated in an Infinite F200PRO plate reader 13 

(TECAN, Männedorf, Switzerland) at 37°C with constant shaking. To maintain exponential 14 

growth during measurement, cultures were diluted by a factor of 5 for three times during 15 

incubation.  Kinetic measurements of cell density (absorbance at 600 nm) and RFP fluorescence 16 

(excitation: 584 ± 9 nm, emission: 620 ± 20 nm) were taken every 900 seconds until all diluted 17 

cultures reached stationary phase. Fluorescence from water in the same 96-well plate was used as 18 

the background and was subtracted from all fluorescence measurements. The background-19 

corrected fluorescence was later normalized by cell density. To calculate the recovery time, the 20 

average of three biological replicates were fitted to an exponential curve: 21 

𝐹 = 𝑎	 ×	𝑒*B∗D + 𝑐	22 
where F is the background-corrected, cell-density-normalized fluorescence. The recovery time 23 

was calculated as τ50=log(2)/b.  24 
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For switches after defined times in the ON-state, cultures were first grown in exponential 1 

growth phase for 24-28 hours in M9G. Samples from these cultures were then centrifuged (5500 2 

rcf, 2 minutes) and suspended in M9G+OA with an initial OD600 of 0.08 and cultivated in 96-well 3 

plates for various amount of time as indicated.  4 

 5 

Kinetic model of fatty acid uptake. To study the dynamic response to oleic acid exposure (ON-6 

state) and its recovery (OFF-state) (Fig. 1C), we built a kinetic model of the fatty acid uptake 7 

system. We define the model as a system of ODEs describing the rate of change of each species: 8 

 , (6) 

 , (7) 

 , (8) 

 , (9) 

where R, D, A and aR represent the concentrations of transcription factor FadR, uptake enzyme 9 

FadD, internalized fatty acid acyl-CoA, and sequestered complex acyl-CoA-FadR, respectively 10 

(Fig.1B). The reversible sequestering of one FadR dimer by two acyl-CoA molecules 11 

(stoichiometry as defined in [35]) is modeled as mass-action kinetics in the term . 12 

The term  represents the expression and autoregulation of the fadR promoter. To model 13 

FadR negative autoregulation for the wild-type strain, we use: 14 

 . (10) 

To fit model parameters, we first extended the model to simulate batch culture, and then applied a 15 

least-squares fitting of simulations to time course measurements of RFP fluorescence expressed 16 
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under a fadD promoter, from strain ΔfadE, in various concentrations of oleic acid (see details in 1 

Supplementary Information S2 and Table S2). Fitted parameter values are reported in Table S3, 2 

and were used throughout this study, unless otherwise stated. To understand the impact of model 3 

parameters on the recovery time, we performed global parameter sensitivity analysis (details in 4 

Supplementary Information S8). To model the strains with positive autoregulation and constitutive 5 

expression of FadR, we use: 6 

 , (2) 

 . (3) 

Model simulations. The model was solved with the MATLAB R2018a ODE solver suite. To 7 

simulate the ON-state: simulations were initialized using steady state values achieved from 8 

simulations of the preculture (oleic acid, OA = 0 µM), and setting a constant oleic acid 9 

concentration of 1000 µM. Simulations were then run for a defined exposure time. To simulate the 10 

OFF-state: the system was initialized from the state achieved at the end of the ON-state, and oleic 11 

acid set to 0 µM. Simulations were then run to steady state, and recovery times were calculated as 12 

the time from the start of the OFF-state till FadD reached half-way between its initial value and 13 

minimum steady state value. To calculate the cost of FadR synthesis in the ON and OFF-states 14 

(Fig. 4C), we integrated simulations of FadR synthesis rate over 48hrs in each state. 15 

In Figure 3, for fair comparison model parameters are set such that the steady state concentration 16 

of FadR is the same for all three architectures prior to switching to the ON-state. Likewise, in 17 

Figure 4B-C for fair comparison, fadR promoter strengths for both architectures were set to achieve 18 

same concentration of sequestered FadR in the ON-state (and thus equal recovery times). 19 

 20 
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Figures 1 

 2 

Figure 1. General architecture of a bacterial nutrient uptake system. (A) Regulation of 3 

nutrient uptake by a metabolite-responsive transcription factor, a ubiquitously observed control 4 

system in bacteria (Table S1). (B) We use the Escherichia coli fatty acid uptake as a model system. 5 

The ON-state is defined by induction at a constant level of oleic acid, which is imported as acyl-6 

CoA by uptake enzyme FadD. Acyl-CoA sequesters the transcription factor FadR, which de-7 

represses expression of the uptake enzyme. The OFF-state is defined by the wash out of oleic acid 8 

after some time t0 in the ON-state. Release of sequestered FadR recovers its repression on FadD 9 

synthesis. FadR is also subject to negative autoregulation. (C) Schematic of the experiments and 10 

simulations in this work, with defined exposure time to oleic acid (green area), and recovery time 11 

of FadD levels in the OFF-state (τ50) defined as the time to reach to half way between maximum 12 

and minimum concentrations. 13 
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 1 

Figure 2. Nutrient exposure time and speed of metabolite consumption in the OFF-state 2 

shape the recovery time. (A) Predicted recovery time (τ50) and proportion of free FadR released 3 

from sequestration after one doubling time (η) for variations in the amount of consuming enzyme 4 

and nutrient exposure time. (B) Inverse relation between the proportion of released FadR (η) and 5 

predicted recovery time. (C) Simulated time course of FadD concentration during OFF-state and 6 

predicted recovery times for increasing concentration of acyl-CoA consuming enzyme. (D) 7 

Measured time course of fadD expression when switching from ON- to OFF-state for strains with 8 
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low (ΔfadE-reporter) and high (WT-reporter) concentration of acyl-CoA consuming enzyme. 1 

Strains were switched from M9G+1mM oleic acid to M9G media at time zero. Error bars represent 2 

standard error of the mean (SEM) from biological triplicates (n=3). Recovery times were 3 

calculated from exponential fits to each of the triplicate time course data (inset). Error bars 4 

represent SEM from biological triplicates (n=3). (E) Time course simulations of FadD induction 5 

and recovery dynamics, and predicted recovery times, for increasing exposure times. (F) Measured 6 

time course of fadD expression from the WT-reporter strain grown for 3, 6 and 9 hours of exposure 7 

to oleic acid (M9G+1mM oleic acid), and then switched to OFF-state (M9G). Error bars represent 8 

SEM from biological triplicates (n=3). Recovery times were again calculated from exponential 9 

fits, with error bars SEM from triplicates (n=3).  10 
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 1 

 2 

Figure 3. Impact of regulatory architecture on the recovery time after nutrient depletion. (A, 3 

top) Simulated steady state concentrations of sequestered (thick line) and total FadR (thin line) for 4 

varying times spent in the ON-state for three regulatory architectures of FadR; constitutive 5 

expression (black line) is represented by a blunt line. (A, bottom) Predicted recovery times for 6 

each architecture. (B) Measured recovery times in the WT (WT-reporter) and positively 7 

autoregulated strain (PA-reporter, Supplementary Table 6) for 3, 6 and 9 hours of exposure in ON-8 

state. Recovery times were calculated from exponential fits to each of the triplicate time course 9 

data (data in Supplementary Information S6) and error bars represent SEM of the calculated values 10 

(n=3). (C) Schematics illustrating how negative and positive autoregulation affect the build-up of 11 

sequestered FadR in the ON-state. 12 
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 1 

Figure 4. Comparison of recovery dynamics in constitutive expression and negative 2 

autoregulation. (A) Simulated recovery times for variations in the strength of FadR’s own 3 

promoter, with both architectures achieving the same recovery times. (B) Time course simulations 4 

of FadR synthesis rates for 48 hours in the ON-state (1mM oleic acid) and OFF-state, for increasing 5 

promoter strengths; yellow curve represents response with the fitted promoter strength value 6 

(Table S3). To ensure fair comparison, promoter strengths were chosen to achieve the same 7 

recovery time in the two architectures. (C) Cost of FadR synthesis for increasing concentrations 8 

of sequestered FadR, modified by changes to fadR promoter strength. Circles correspond to costs 9 

associated to simulations shown in (B). Details of simulations in Methods. 10 
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