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Abstract

In recent years, there has been increased interest in studying cancer by using algorithmic methods
to infer the evolutionary tree underlying a tumor’s developmental history. Quantitative measures that
compare such trees are then vital to benchmarking these algorithmic tree inference methods, understand-
ing the structure of the space of possible trees for a given dataset, and clustering together similar trees
in order to evaluate inheritance patterns. However, few appropriate distance measures exist, and those
that do exist have low resolution for differentiating trees or do not fully account for the complex rela-
tionship between tree topology and how the mutations that label that topology are inherited. Here we
present two novel distance measures, Common Ancestor Set distance (CASet) and Distinctly Inherited
Set Comparison distance (DISC), that are specifically designed to account for the subclonal mutation
inheritance patterns characteristic of tumor evolutionary trees. We apply CASet and DISC to two sim-
ulated and two breast cancer datasets and show that our distance measures allow for more nuanced and
accurate delineation between tumor evolutionary trees than existing distance measures. Implementations
of CASet and DISC are available at: https://bitbucket.org/oesperlab/stereodist.
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1 Introduction

A tumor is the result of an evolutionary process and its history can therefore be described as a rooted tree [1].
Specifically, the tree’s root can either represent a healthy cell or the original founding tumor population (as-
suming monoclonal tumor evolution), and every other vertex represents a distinct tumor population that
existed at some point during the tumor’s evolution. Directed edges represent direct ancestral relationships
between populations. In recent years, a number of methods have been developed to infer the tree describing
a tumor’s evolution from single nucleotide variants in bulk sequencing data [2–9] and single cell sequencing
data [10–14] (see [15] for a more complete listing). The goal of tree inference is to gain a better under-
standing of tumor development, which may in turn reveal insights about the mutations that drive a tumor’s
growth [16, 17] and may be targeted for patient treatment [18, 19].

Due to the ongoing development of tumor evolution inference methods, the similarity of two potential
tumor histories often needs to be quantified. First, new methods need to be benchmarked against other
methods or against a ground truth tree, and the ad hoc measures that have typically been used in these
situations [2–4] have not been rigorously studied. Second, some methods themselves rely on the use of a
distance measure when inferring a tumor’s evolutionary history. For example, the GraPhyC method [20]
uses a distance measure to create a consensus tumor history from several input histories. Lastly, there have
been growing questions about the structure of the space of possible evolutionary histories consistent with
the underlying sequence data [21–23] and how tumor evolutionary histories across patients can be used to
identify patterns of tumor evolution [24, 25]. Further analysis of these questions would be aided by distance
measures tuned to the intricacies of tumor evolution histories.

For traditional phylogenetic trees, there are several well-known distance measures such as Robinson-
Foulds [26] and triplet distance [27], among others. However, the substantial evolutionary differences be-
tween species and cancer subpopulations prevent the direct application of traditional phylogenetic distance
methods [15]. The primary difference between the two types of trees is that tumor evolutionary trees have
internal node labels, which represent mutations rather than extant species. Furthermore, the mutations in
a tumor evolutionary tree are inherited by all descendant tumor populations, creating a complex underly-
ing relationship between topology and mutation labeling. In addition, nodes in tumor evolutionary trees
may contain multiple labels (indicating mutations whose order of appearance cannot be readily identified)
whereas nodes in a traditional phylogeny contain only one label each [20, 28]. There is then a critical need
for specially calibrated distance methods that account for the intricacies of tumor evolutionary trees.

Despite this need for tumor tree distance measures, a limited number of such measures have been rig-
orously developed and comprehensively evaluated. Several simple distance measures described by [20]
generalized earlier ad hoc approaches that relied on the existence of a ground truth tree [2–4], but were
not the focus of that work, and their effectiveness was not analyzed in depth. Another recently proposed
approach called MLTED uses an edit distance-based measure focused on handling multi-labeled nodes to
count the minimum number of moves to convert both trees into a specific common tree [28]. However, this
distance measure does not explicitly consider that mutation labels are inherited by all descendant popula-
tions. We argue that distance measures that consider how mutation placement affects a tree’s global structure
will allow for much more precision when comparing tumor evolutionary trees.

In this work, we formalize the definition of a tumor evolution distance measure by precisely defining
the input and output of such a function and describing what features of such a measure are desirable in the
context of tumor evolution. We then describe two novel tumor evolution distance measures, CASet and
DISC, that are specifically designed to account for structure of mutation inheritance by subsequent tumor
populations and extend these measures to trees that do not share the same set of mutations. We apply our
distance measures to two simulated datasets and two breast cancer datasets. We find that CASet and DISC
allow for more precision when comparing tumor evolution histories and are better able to distinguish groups
of similar trees than existing distance measures when applied in a clustering scenario.
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2 Methods

2.1 Tumor Evolutionary Trees

We first make two common assumptions about tumor evolution. The first is the infinite sites assumption
(ISA) which states that no mutation occurs more than once during a tumor’s history, and that once gained,
a mutation is never lost. This has been a common assumption made by many methods that infer tumor
evolutionary histories ([2–4, 6, 8] and many others). While some recent phylogeny inference methods do
allow for minor violations of the ISA (e.g. [29]), our work here will be most widely applicable if we assume
the ISA. The second assumption is that all tumor cells are descended from a single founding tumor cell,
and hence the tumor’s evolution can be described as monoclonal. This assumption is non-essential to our
approaches and can easily be dropped by rooting evolution trees with healthy cells instead of founding tumor
mutations. Nonetheless, we make the monoclonal assumption to simplify our definitions. We now formally
describe the evolutionary history of a monoclonal tumor adhering to the ISA as a clonal tree.

Definition 2.1. A clonal tree is a rooted, directed tree T in which: (i) each vertex in the tree is labeled by
one or more mutations; and (ii) no mutation appears more than once.

We also define T to be the set of all clonal trees. Given a tree T ∈ T, we define M(T ) to be the set of
all mutations (i.e. vertex labels) in T . In this representation, every vertex represents a distinct tumor clone
(or population) that existed at some point during the tumor’s evolution. Directed edges represent direct
ancestral relationships between tumor clones. The mutation labels indicate the clone in which the mutation
first appeared. Thus, the complete set of mutations that exist in any particular clone, represented by vertex
v, is the set of mutations that label all vertices on the path from the root to vertex v.

We sometimes wish to restrict our attention to a predetermined set of mutations, so we also define
m-clonal trees for this purpose.

Definition 2.2. An m-clonal tree is a clonal tree T with M(T ) = {1, ...,m}.

We emphasize that this definition uses the variable m to refer to the set of mutations rather than the
number of clones in the tree. We also define Tm to be the set of all m-clonal trees that share the same
mutation set [m] = {1, 2, . . . ,m}.

2.2 Tumor Evolution Distances

In this section, we define a tumor evolution distance measure on clonal trees and then analyze what particular
features are desirable for such a measure.

Definition 2.3. A tumor evolution distance measure is a function d : T × T −→ R≥0 for which a value
of d(·, ·) that is close to 0 indicates that the two input clonal trees are very similar and progressively larger
values of d(·, ·) indicate the clonal trees are more dissimilar.

A tumor evolution distance measure must give us a quantitative evaluation of how different two tumor
histories are from each other, but how best to define “different” is not immediately obvious. There are two
main aspects of tumor evolutionary trees that should contribute to a distance measure: (i) the topology of
the tree; and (ii) the labels present in the vertices of the trees. Topology can be separated from labeling by
simply ignoring all labels, and the labels can be separated from topology by considering only the the set(s)
of labels that appear or appear together. Thus, simple distance measures could certainly consider each of
these aspects separately. However, these two tree attributes are inherently intertwined.

Since mutation labelings indicate in which vertex a mutation was first acquired, all descendants of that
vertex also inherit that mutation. A difference in a vertex with many descendants should then contribute
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more to a distance measure than one in a vertex with few descendants, since it affects more clonal popu-
lations. Thus, a tumor evolution distance measure that simply counts the differences between trees (often
referred to as a tree edit distance, as proposed by [28, 30], and others) does not address the impact any given
label change may have. A distance measure should assign different weights to disagreements in different
locations in order to appropriately address the relationship between topology and mutation labeling. These
observations and analyses form the basis for the distance measures presented in the following section.

2.3 Two New Distance Measures on m-Clonal Trees

In this section, we first present some useful notation and then describe two novel tumor evolution distance
measures restricted to m-clonal trees. In Section 2.4, we extend these measures to clonal trees in general.

2.3.1 Notation

Suppose T ∈ T is a clonal tree. We will need to translate between mutations and the vertices in a clonal tree
that are labeled with those mutations. Therefore, given a mutation i ∈ M(T ), we will denote the vertex in
T that is labeled with mutation i as vi. We are interested in sets of mutations that label certain paths in a
clonal tree. In particular, given i ∈M(T ), we define the ancestral set A(i) as the set of mutations that label
the path from the root vertex r to vi in T . This definition means that A(i) gives the set of mutations that
exist in the clone represented by vertex vi. Given i, j ∈ M(T ), we define the common ancestor set C(i, j)
to be A(i)∩A(j). That is, C(i, j) is the set of mutations that are ancestral to both mutations i and j. Given
i, j ∈M(Tk), we also define the distinctly inherited set D(i, j) to be A(i)\A(j). That is, D(i, j) is the set of
mutations that are ancestral to mutation i but not mutation j in T . Note that under this definition it is almost
always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A,B) = |A∪B|−|A∩B|

|A∪B| and
Jacc(∅, ∅) = 0.

Ancestral*set!A1(6)!

1!

2!

6! 8! 3!

7!

5!

10!

4,!9!

T1* 1!

2!

6! 8! 3!

7!

5!

10!

4,!9!

T1* 1!

2!

6! 8! 3!

7!

5!

10!

4,!9!

T1*

Ancestral*set!A1(4)! Common*Ancestor**
set!C1(4,6)!

1!

2!

6! 8! 3!

7!

5!

10!

4,!9!

T1*

Dis2nctly*Inherited**
set!D1(4,6)!

1!

2!

6! 8! 3!

7!

5!

10!

4,!9!

T1*

Dis2nctly*Inherited**
set!D1(6,4)!

Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` ∈ Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1(
m
2

) ∑
{i,j}⊆[m]

Jacc(Ck(i, j), C`(i, j)) (1)
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Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. See Figure 2 for an example of CASet distance.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` ∈ Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m− 1)

∑
(i,j)∈[m]2

i6=j

Jacc(Dk(i, j), D`(i, j)) (2)

Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.2. The running time to compute DISC(Tk, T`) is O(m3).

The proof of Observation 2.2 is similar to the CASet runtime proof and can also be found in the appendix.
Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [31]) that do not share the same set of observed
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mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) ∩M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:

CASet∩(Tk, T`) =
1(|Ik,`|
2

) ∑
{i,j}⊆Ik,`

Jacc(Ck(i, j), C`(i, j)) (3)

and
DISC∩(Tk, T`) =

1

|Ik,`|(|Ik,`| − 1)

∑
(i,j)∈Ik,`2

i6=j

Jacc(Dk(i, j), D`(i, j)). (4)

We note that while we restrict attention to pairs of mutations that exist in both trees, the actual sets
compared using the Jaccard distance may themselves contain mutations that exist in only one of the trees.
Thus, these distances are not the same as removing all non-shared mutations from the trees, contracting the
tree topology, and computing the original version of the distances.

This variation is most useful when differences in mutation labelings between trees should not strongly
contribute to their distance value. For example, this method could be used when comparing trees recon-
structed using two different methods, one of which does not use all input mutations. A degenerate case
arises if this approach is applied to two trees with disjoint mutation sets. Since we sum over pairs of shared
mutations, CASet∩ and DISC∩ are both 0 in this case. If we want mutation set differences to be penalized,
we can instead sum over pairs of mutations in the union of the two trees’ mutation sets, as described in the
following section.

2.4.2 Union of Mutation Sets

In the second extension to clonal trees, we consider the union of the mutation sets for the input trees. To do
so, we need to address how to handle mutations that exist in only one tree. Let Uk,` = M(Tk) ∪M(T`) be
the union of the sets of mutations labeling Tk and T`. If i 6∈M(Tk), then we define Ak(i) = ∅ and compute
Ck(i, j) and Dk(i, j) as usual. Thus, we can modify both CASet and DISC distances as follows:

CASet∪(Tk, T`) =
1(|Uk,`|
2

) ∑
{i,j}⊆Uk,`

Jacc(Ck(i, j), C`(i, j)) (5)

and
DISC∪(Tk, T`) =

1

|Uk,`|(|Uk,`| − 1)

∑
(i,j)∈Uk,`

2

i6=j

Jacc(Dk(i, j), D`(i, j)). (6)

This variation allows differences in the sets of mutation labels to contribute to the distance computed
between two trees. Thus, this variation may be most useful for comparing tumor evolutionary trees gen-
erated by different data types, across samples taken at different times, or even across patients. Notice that
because Jacc(X, ∅) = 1 if X 6= ∅, we no longer have distance 0 between trees with disjoint labels. In the
appendix, we describe a formula that relates CASet∪ and CASet∩, allowing us to compute CASet∪ with
fewer operations.
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3 Results

We compare CASet and DISC to existing distance measures on two simulated datasets and two real datasets.
We find that our methods allow for more granularity in comparing tumor evolutionary trees and outperform
other methods when used in a clustering context.

3.1 Results on Simulated Datasets

3.1.1 Dataset Generation

We created two different simulated datasets for our analysis. In the first dataset, we manually constructed
five “base” clonal trees each with 15 mutations but different topologies and labelings (Figure A.1), and
generated five variants of each base tree for a total of 25 trees. The second dataset was generated using the
OncoLib [32] tree generation tool, which simulates tumor evolutionary trees and read count data. We took
the read count data from five OncoLib simulations (each with 3 sequenced samples and 10–20 mutations)
and reconstructed clonal trees that were consistent with the simulated data [22]. Each OncoLib simulation
yielded a “tree family” of between 50 and 10,000 clonal trees, of which 50 were sampled to create a dataset
of 250 trees from five families (labeled A–E). All trees within a family have the same set of mutations, but
mutation sets differ across families. The true underlying clonal trees produced by OncoLib are in Figure A.5.

3.1.2 Correlation Between CASet and DISC

In each of the five tree families from the OncoLib dataset, the underlying tree structure has a strong effect
on the correlation between CASet and DISC distances (Figure 3). In general, two trees with a large CASet
distance also have a large DISC distance; however, family A includes some pairs of trees whose CASet and
DISC distances differ significantly.
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Figure 3: Correlation of CASet and DISC on tree families A-E on the OncoLib dataset. Pearson correlation
coefficients are shown in parentheses. The red and green stars in (a) mark the tree pairs T14, T26 and T5, T20,
respectively. Note that x and y scales are not consistent across all plots in order for all patterns to be visible.

The different patterns of CASet and DISC correlation are related to the height of the underlying true
tree. For example, the true tree underlying family A (Figure A.5) is the shallowest of the set and has the
lowest correlation between CASet and DISC, while the true tree of family E is the deepest tree and has the
highest correlation. Shallow trees will tend to be wider, and therefore the ancestral set comparisons used
by CASet will frequently only contain the root (whose labels are consistent due to the tree reconstruction
process). As such, the Jaccard distance between the two sets will be 0 more frequently than in a deeper tree,
in which more labels are in the ancestral set on average, causing any given label change to have an impact
across more sets. In contrast, changes in shallow trees (with many leaves) will be weighted slightly more
heavily by DISC by a similar argument. The relationship between tree height and distance correlation can
also be seen for the manually constructed dataset (Figure A.2).
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Figure 4: CASet and DISC calculations for trees T14 and T26 (left) and T5 and T20 (right) from the OncoLib
dataset. These pairs of trees are starred in Figure 3(a).

We then examined two pairs of trees in the OncoLib dataset A for which CASet and DISC disagreed
significantly, {T14, T26} and {T5, T20}, highlighted in Figure 3a. According to CASet, T14 and T26 are
more similar than T5 and T20, while DISC reports the opposite (Figure 4). The CASet distance between
T14 and T26 is small, since ancestral relationships in the two trees are nearly identical (label 3 being the
exception). However, the larger DISC distance between T14 and T26 reflects the significant differences
in leaf locations in the two trees. Nine mutations are direct children of the root in both T14 and T26,
but eight mutations are children of 3 in exclusively one tree. This results in a large number of mutation
pairs with different sets of distinctly inherited ancestors, causing the DISC distance to be comparatively
large. On the other hand, the CASet distance between T5 and T20 is large, reflecting the significant an-
cestral differences between the trees. Many more mutations have 3 as an ancestor in T20 than in T5.

Figure 5: Plot of average silhouette values
for different cuts of the hierarchical clus-
tering with average linkage tree for each
distance method on the manually created
dataset. Three distances (clonal, parent-
child, and path) did not have a large sil-
houette score for 5 clusters and are shown
in gray. See Figure A.3 for a fully labeled
plot.

However, the DISC distance is relatively small because enough
siblings move together between the two trees that their sets of
distinct ancestors are mostly similar. Thus we see that CASet
emphasizes ancestral similarity and performs especially well
on deeper trees, while DISC prioritizes similarity in leaf rela-
tionships and is more granular with shallower trees.

3.1.3 Clustering Clonal Trees

Previous work has shown that many different hypothesized
mutation trees can be consistent with data from a single pa-
tient [21, 22]. Clustering these trees is a compelling use case
for tumor evolution distance measures as it has the potential
to reveal structure in the space of compatible trees of a single
dataset. Clustering trees inferred from different patients can
also be used to identify shared evolutionary patterns. We com-
pare our distance measures to MLTED [28], the four distance
measures introduced in [20] (ancestor-descendant, parent-
child, clonal, and path distances), and triplet distance [33] (a
modified version of a distance designed for phylogenetic trees,
described in A.4) using a clustering scenario on both simulated
datasets.
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We performed hierarchical clustering with average linkage
on both the manual and OncoLib datasets. On the manual dataset, we compute the average silhouette value
[34] for different cuts of the resulting tree on all tested distance measures and use the cut with the highest
such value to produce a clustering of the data (Figure 5). Heatmaps showing all pairwise distances are in
Figure A.4. We found that several of the methods (including CASet and DISC) produce the correct number
of clusters, five.

On the OncoLib dataset, we applied CASet∪, CASet∩, DISC∪, DISC∩, and MLTED [28] when doing
hierarchical clustering. Figure 6 shows heatmaps of all pairwise tree distances for the five tree families A–E
and the average silhouette score for five clusters, which all but one method identified as the optimal hierar-
chical clustering cut (CASet∩ had an optimal cut at three clusters). When cut at five clusters, all five distance
measures correctly clustered the trees, but they did so with varying degrees of tightness. CASet∪ performed
best in distinguishing trees belonging to different datasets, with an average silhouette score of 0.81 over the
five tree families. While it performs worse at separating different families, CASet∩ identifies that the pairs
A, B and D, E have strong agreement about ancestral relationships among their shared mutations (see Fig-
ure A.5). This highlights the different useful features of CASet∪ and CASet∩. In comparison, MLTED did
a worse job of separating trees from different groups, with an average silhouette score of 0.54 over the five
tree families. At the same time, it also does not recognize that the relationships between mutations shared
by the D and E tree families are very similar.
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Figure 6: Inter-dataset distance heatmaps of five tree families in the OncoLib dataset. The color of each
cell represents the distance between two trees. Average silhouette scores for five clusters are displayed in
parentheses to quantify clustering tightness and separation.

3.1.4 Intra-family Clustering Structure

Figures 3e and 6 show that tree family E from the OncoLib dataset might have internal structure. There-
fore we took a closer look at the internal clustering structure for this tree family (see Figure 7). In this
dataset, CASet, DISC, and MLTED all identify two primary clusters of trees, but CASet and DISC are
both able to resolve more complex substructure. In particular, CASet distinguishes between eight strongly
defined subfamilies, with an average silhouette score of 0.94. The same eight subfamilies are visible in the
DISC heatmap along with a finer-grained resolution within each of these clusters. In contrast, the MLTED
heatmap shows less resolution within the two primary categories. For a similar set of plots of family A, see
Figure A.7, but none of the other four tree families had internal structure as well-defined as family E under
any of the three distances.
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Figure 7: Clustering of dataset E. Note that the colormap range has been reduced to provide more contrast.

3.2 Results on Real Datasets
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Figure 8: Tumor evolutionary trees inferred by
PHiSCS [35] (T1), SciFit [13] (T2), and SCITE [10]
(T3) from a triple negative breast cancer patient [36]
as reported by [28] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [36, 37]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [28] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [36]
(see Figure 8). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [28], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [8] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [3], on breast cancer xenoengraftment data sample SA501 [37], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [37] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [8]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [37] than the MIPUP tree
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according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
topology. In particular, CASet uses the number of clones that inherit common mutations when weighting
the effect of mutation labeling differences between trees. In contrast, DISC pays special attention to the
set of mutations that distinguish clones from each other, placing comparatively more emphasis on recently
acquired mutations. We extend both distance measures to apply clonal trees with different sets of mutations.

We demonstrate the differences between CASet and DISC on simulated data and use a clustering appli-
cation to show that that CASet is better able to distinguish groups of trees than existing distance measures.
Moreover, we find that both CASet and DISC can identify complex clustering structure in a space of trees
that is missed by the MLTED distance measure [28].

Using a breast cancer dataset, we show that CASet and DISC are able to differentiate between trees
with differing clonal makeups, demonstrating their topological acuity. In addition, we use CASet and DISC
to assess trees reconstructed by MIPUP [8] and LICHeE [3] from a breast cancer xenograft dataset [37].
Our results suggest that the MIPUP tree may not more closely resemble the original hypothesized tree from
[37] than the LICHeE tree, as is suggested in [8] based solely on qualitative analysis. This highlights the
importance of using quantitative measures such as CASet and DISC for these types of assessments.

Future work is needed to determine the benefits of using CASet or DISC in methods like GraPhyC [20]
that rely explicitly on distance measures. Our findings on the internal clustering structure of the OncoLib
tree families also invite further investigation. It remains to be seen whether the same kind of structure is
found in real cancer data—either within sets of trees consistent with data from a single patient or across
sets of patients with the same type of cancer. If so, this structure could provide insight into improved tumor
phylogeny inference methods or common mutational patterns across patients.
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A Appendix

A.1 Runtime Proofs

Proof of Observation 2.1. We first do some pre-processing by computing Ak(i) for all i ∈ [m] using a depth
first traversal of Tk. We keep track of the set of mutations on the path from the root to the current vertex
while executing the algorithm. When visiting vertex v during the traversal, we can then store Ak(i) for all
mutations i that label vertex v. Since we store m sets of mutations, each of which may contain up to m
mutations, this step takes O(m2). Next we sort each of these m sets which takes O(m2 logm). Next we can
compute the

(
m
2

)
common ancestor sets, each of which takes O(m) to find since the Ancestor sets are sorted.

This step is then O(m3). We do the same steps for T`. Finally we need to compute the Jaccard distance
between each of the

(
m
2

)
common ancestor sets for Tk and T`. Since all these sets are in sorted order, each

of these computations is O(m). Thus, computing these Jaccard distances and summing them up to get the
CASet distance is O(m3). Therefore, the overall runtime to compute CASet distance is O(m3).

Proof of Observation 2.2. We first do some pre-processing by computing Ak(i) for all i ∈ [m] by doing a
depth first traversal of Tk. We keep track of the set of mutations on the path from the root to the current
vertex while executing the algorithm. When visiting vertex v during the traversal, we can then store Ak(i)
for all mutations i that label vertex v. Since we store m sets of mutations, each of which may contain up
to m mutations, this step takes O(m2). Next we sort each of these m sets which takes O(m2 logm). Next
we can compute the m2 distinctly inherited sets, each of which takes O(m) to find since the Ancestor sets
are sorted. This step is then O(m3). We do the same steps for T`. Finally we need to compute the Jaccard
distance between each of the m2 distinctly inherited ancestor sets for Tk and T`. Since all these sets are in
sorted order, each of these computations is O(m). Thus, computing these Jaccard distances and summing
them up to get the DISC distance is O(m3). Therefore, the overall runtime to compute DISC distance is
O(m3).

A.2 Matrix Implementation

Let Ak denote the m ×m binary ancestor matrix of Tk, which contains a 1 in entry Ak[i, j] if mutation i
is an ancestor of mutation j. To compute CASet distance, we first have to find the common ancestors of
every pair of columns in Ak and in A`. This can be done quickly by taking boolean ANDs of columns.
Similarly, distinctly inherited sets can be found using XORs of columns. Then, the Jaccard distances in
the algorithm can be computed by performing boolean ANDs and ORs on the common ancestor/distinctly
inherited vectors to find intersections and unions, respectively, and finally summing the entries. Note that
the process of computing all common ancestors within a tree should be performed as a pre-processing step
if a large number of trees are being compared to each other. Lastly, we note that the asymptotic running
time of this approach is O(m3), but it may still be faster in practice depending on available hardware and
programming language specifics.

A.3 A Direct Relationship Between CASet∪ and CASet∩
In Theorem 1, we describe a direct relationship that allows us to compute CASet∪ based on CASet∩. In
particular, CASet∪ is a weighted sum of CASet∩ with terms that quantify the number and proportion of
mutations unique to each tree. Using Theorem 1, we can compute CASet∩(Tk, T`) and then use the formula
to compute CASet∪(Tk, T`) if desired. This allows us to consider fewer pairs i, j, which may be helpful in
practice when the trees have significantly different sets of mutations. The relationships between mutations
considered by DISC are more complex, which prevents us from performing a similarly clean expansion of
DISC∪.
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Theorem 1.

CASet∪(Tk, T`) =
1(|Uk,`|
2

)((|Ik,`|
2

)
CASet∩(Tk, T`) + |Ik,`||Uk,` \ Ik,`|

+

(
|M(T`) \M(Tk)|

2

)
+

(
|M(Tk) \M(T`)|

2

))

Proof of Theorem 1. By definition,

CASet∪(Tk, T`) =
1(|Uk,`|
2

) ∑
{i,j}⊆Uk,`

Jacc(Ck(i, j), C`(i, j))

We can break this sum into parts (a)-(d), based on the cases for i and j:

(a) i, j ∈ Ik,`

(b) i ∈ Ik,` and j /∈ Ik,`

(c) i, j ∈M(T`) \M(Tk) or i, j ∈M(Tk) \M(T`)

(d) i ∈M(T`) \M(Tk) and j ∈M(Tk) \M(T`)

Notice that if either i or j does not appear in Tk, we will have Ck(i, j) = ∅, and likewise for T`. Thus,
in cases (b) and (c), we have Jacc(Ck(i, j), C`(i, j)) = 1. However, in case (d), the Jaccard distance
is Jacc(∅, ∅) = 0. We’ll use these case labels to abbreviate our summations. Using these facts and the
definition of CASet∩,

CASet∪(Tk, T`) =
1(|Uk,`|
2

)(∑
(a)

Jacc(Ck(i, j), C`(i, j)) +
∑
(b)

1 +
∑
(c)

1 +
∑
(d)

0
)

=
1(|Uk,`|
2

)((|Ik,`|
2

)
CASet∩(Tk, T`) +

∑
(b)

1 +
∑
(c)

1
)

Finally, notice that the number of pairs i, j in case (b) is |Ik,`||Uk,` \ Ik,`| and that the number of pairs in
case (c) is

(|M(T`)\M(Tk)|
2

)
+
(|M(Tk)\M(T`)|

2

)
. We can then explicitly write out the (b) and (c) sums:

CASet∪(Tk, T`) =
1(|Uk,`|
2

)((|Ik,`|
2

)
CASet∩(Tk, T`) + |Ik,`||Uk,` \ Ik,`|

+

(
|M(T`) \M(Tk)|

2

)
+

(
|M(Tk) \M(T`)|

2

))

A.4 Extending Triplet Distance to Tumor Evolutionary Trees

The triplet distance is an algorithm designed to compute the similarity of phylogenetic trees based on subtree
relationships [27]. For every triplet of leaf nodes (in a phylogenetic tree, each leaf node has exactly one
label), the closer two nodes (determined via the last common ancestor of each pair) are recorded. The
count of triplets for which this closeness does not match across trees is normalized by the total number of
comparisons made,

(
m
3

)
for an m-clonal tree, and recorded as the distance. It is possible to adapt this method

to a tumor evolutionary tree by picking all triplets of mutation labels and ranking proximity based on the
distance of their last common ancestors to the root.
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A.5 Additional Figures
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Figure A.1: The base trees for the manual clustering experiment, in which five variants of each of these
trees were created.
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(a) Tree Family 1 (b) Tree Family 2 (c) Tree Family 3 (d) Tree Family 4 (e) Tree Family 5

Figure A.2: Scatterplots of CASet and DISC correlation on the manual dataset. Again, the shallower trees
(families 1 and 2) have the greatest disparity between distance measures (see Section 3.1.2 for an elabora-
tion).

Figure A.3: All silhouette plots for the manual dataset.

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/591107doi: bioRxiv preprint 

https://doi.org/10.1101/591107


0.0 0.2 0.4 0.6 0.8 1.0
Distance

(a) CASet (b) DISC

(c) Triplet (d) MLTED

(e) Ancestor-Descendent (f) Clonal

Figure A.4: Heatmaps showing the (unclustered) pairwise distances between trees. In each, lighter shades
represent closer trees. Defined 5-by-5 boxes show that the method measures trees within a cluster as being
very similar to each other and less similar to other groupings.
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Figure A.5: Mutation trees from OncoLib. OncoLib simulations are structured such that mutations are
represented by ordered integers, so all five tree families had at least 10 common mutations, often near the
root of the tree.
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Figure A.6: Multidimensional scaling (MDS) plots of OncoLib family E. These provide another way of
visualizing the clustering in Figure 7. Colors correspond to clusters in the optimal silhouette cut, the score
for which is shown above each plot.
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Figure A.7: Clustering of dataset A. The top row shows hierarchically clustered distance heatmaps and the
bottom row shows multidimensional scaling plots.
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(a) LICHeE tree.
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114,47,48,49,50,51,115,52,53,54,13,55,14,116,56,57,117,118,119,120,121,15,

122,16,123,124,125,58,59,126,17,18,127,128,60,19,20,21,129,130,61,62,63,22,64,
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(b) MIPUP tree (ip parameter).
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(c) MIPUP tree (ipd parameter).
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(d) Original tree from [37].

Figure A.8: Trees inferred from the SA501 dataset presented in [8]. We used tree (b) when referring to the
MIPUP tree. The distances to tree (c) differed by an insignificant amount from the distances we reported
(less than 0.01).
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