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Abstract 
 

Genome-wide association studies have generated an increasing number of common genetic variants that affect 

neurological and psychiatric disease risk. Given that many causal variants are likely to operate by regulating 

gene expression, an improved understanding of the genetic control of gene expression in human brain is vital. 

However, the difficulties of sampling human brain, and its complexity, has meant that brain-related expression 

quantitative trait loci (eQTL) and allele specific expression (ASE) signals have been more limited in their 

explanatory power than might otherwise be expected. To address this, we use paired genomic and 

transcriptomic data from putamen and substantia nigra dissected from 117 brains, combined with a 

comprehensive set of analyses, to interrogate regulation at different stages of RNA processing and uncover 

novel transcripts. We identify disease-relevant regulatory loci and reveal the types of analyses and regulatory 

positions yielding the most disease-specific information. We find that splicing eQTLs are enriched for neuron-

specific regulatory information; that ASE analyses provide highly cell-specific regulatory information; and that 

incomplete annotation of the brain transcriptome limits the interpretation of risk loci for neuropsychiatric 

disease. We release this rich resource of regulatory data through a searchable webserver, 

http://braineacv2.inf.um.es/. 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/591156doi: bioRxiv preprint 

https://doi.org/10.1101/591156
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Introduction 
The use of genome-wide genotyping in large patient and control populations has resulted in the identification of 

increasing numbers of common variants that impact on the risk of a wide range of neurological and psychiatric 

conditions, including Parkinson’s disease
1-5

, Alzheimer’s disease
6-10

 and schizophrenia
11,12

. However, the majority 

of these risk loci are still poorly characterised, and we do not yet fully understand the underlying molecular and 

cellular processes through which they act. As it is reasonable to assume that many causal variants operate by 

regulating gene expression, several studies have attempted to address this problem through the use of 

expression quantitative trait loci (eQTL) and allele-specific expression (ASE) analyses in a wide range of human 

tissues, with the aim of finding eQTL and ASE signals that colocalise with disease risk signals13,14.  

This approach has had success, but perhaps not as much as might have been expected for all diseases. While the 

identification of eQTLs in blood have provided insights into autoimmune disorders15-17, the utility of brain-

related eQTL and ASE data sets, particularly with regard to neurodegenerative disorders has been harder to 

demonstrate. For example, monocyte eQTL data sets appear to provide greater insights for Alzheimer’s 

disease
17

 probably because they reflect regulatory processes in microglia. This would suggest that while relevant 

eQTL and ASE signals are present in the brain, they are currently difficult to detect given the constraints on eQTL 

and ASE analyses in human brain.  

Currently, the most easily available sampling method for brain tissue is post-mortem, making repeat sampling 

impossible and typically leading to smaller sample sizes, particularly for smaller structures such as the substantia 

nigra.  Furthermore, the brain is a highly complex organ.  Not only is it split into many regions with known inter-

regional differences in expression18, each region is composed of an assemblage of different cell types, which 

complicates the interpretation of transcriptomic data and limits statistical power.  Finally, the brain 

transcriptome is unusual in having a high degree of alternative splicing and a high degree of non-coding RNA 

activity19, much of which has yet to be fully characterised20. 

We have addressed the latter of these constraints by conducting total RNA sequencing in two basal ganglia 

regions of clinical interest to human neurodegenerative and neuropsychiatric disorders: the substantia nigra 

and putamen.  Using a comprehensive set of analyses to interrogate different stages of RNA processing and 

uncover novel unannotated transcripts, we have sought to identify not only disease-relevant regulatory loci but 

also the types of analyses and regulatory positions yielding the most brain and disease-specific information. We 

find that splicing eQTLs are enriched for neuron-specific regulatory information; that ASE analyses, probably by 

more effectively controlling for cellular heterogeneity, provide highly cell-specific regulatory information; and 

that incomplete annotation of the brain transcriptome is limiting the interpretation of risk loci for 

neuropsychiatric disease. We have released the rich resource of eQTL and ASE data generated in this study 

through a searchable webserver, http://braineacv2.inf.um.es/ (Supplementary Figure 1).  
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Results 

RNA quantification and eQTL discovery  
We assayed DNA and RNA from 180 brain samples originating from 117 individuals of European descent, which 

were part of the UK Brain Expression Consortium data set21 and which were classified as neurologically healthy 

based on the absence of neurological disease during life and neuropathological assessment (Supplementary 

Table 1). Using these paired data, we searched for eQTL associations between ~6.5 million genetic variants and 

~411,000 RNA expression traits in putamen and ~370,000 RNA expression traits in substantia nigra, resulting in 

~5.3 billion eQTL tests. We generated RNA expression traits using both annotation-based (known transcripts) 

and annotation-agnostic approaches (Figure 1a). Within annotated regions, RNA quantification was performed 

with RNA processing in mind (Figure 1a) to produce four separate measures of transcription, which formed the 

bases of our eQTL analysis. This resulted in the generation of four types of eQTLs (gi-eQTLs, e-eQTLs, ex-ex-

eQTLs and ge-eQTLs) of which two were designed to capture the genetic regulation of splicing eQTLs (e-eQTLs 

and ex-ex-eQTLs). Finally, we included annotation-independent approaches to quantify transcription. We 

focused specifically on unannotated transcription within intergenic regions (producing i-eQTLs, Online 

Methods).  

Following stepwise conditional analyses under a false discovery rate (FDR) of 5%, we identified 19,156 separate 

significant eQTL signals (hereafter “eQTLs”) genome-wide (Supplementary Tables 2-6), of which 359 were 

secondary eQTLs (i.e. eQTLs with independent affects after conditioning on the primary eQTL in the region). 

While there was a substantial difference in the number of eQTLs identified in putamen and substantia nigra, the 

difference in sample size (N=111 for putamen and N=69 for substantia nigra) most likely accounted for this. 

However, eQTL discovery was not simply driven by the number of features tested. Notably, the rate of eQTL 

discovery, defined as the percentage of all expression features tested with at least one significant associated 

eQTL, was highest in unannotated intronic and intergenic regions (Figure 1b), suggesting that such eQTLs could 

be biologically important. 

eQTL signals and i-eQTL target regions show high replication rates in independent data 

sets 
We found that 50.6% and 50.4% of the testable eQTLs identified in putamen and substantia nigra respectively 

were detected using microarray data, generated by the UK Brain Expression Consortium21 and based on a 

common set of RNA samples. We also found that 39.3% of putamen and 50.6% of substantia nigra eQTLs  

replicated in the GTEx (v7) data resource
22

, using their 111 putamen and 80 substantia nigra samples 

respectively. Furthermore, we investigated eQTL replication across all brain regions studied in GTEx 

(Supplementary Table 7). We demonstrated a replication rate of 19% to 53.3% for putamen, with the highest 

replication rates observed in cerebellum (53.3%) and caudate (48.2%). In the case of substantia nigra samples, 

replication rates were more similar across all brain tissues (50.6% - 62.0%), potentially reflecting the relatively 

low sample numbers used in the eQTL analysis in both our study (N=65) and that performed by GTEx (N=80). In 

contrast, when we checked our eQTL signals against those reported by Lappanainen and colleagues
14

 using 

RNAseq analysis of 373 lymphoblastoid cell lines, we found that despite the larger sample size in this study only 

22.0% of putamen and 24.2% of substantia nigra eQTLs were replicated.  

Given the paucity of existing eQTL analyses using annotation-independent approaches, we focused on validating 

the expression of unannotated intergenic regions that were the target of a significant i-eQTL. Using data 

provided by GTEx and processed for re-use by recount2
23

, we found that 70.3% of all such i-eQTL target regions 

(in putamen and substantia nigra combined) were detected in at least one other human tissue within the GTEx 

data set, with the highest validation rates observed amongst brain regions (Supplementary Table 7). We also 

explored the possibility that the transcribed regions detected in our analysis and regulated by i-eQTLs may 

represent enhancer RNAs as another means of understanding the biological relevance of our findings. 

Considering all transcribed regions targeted by an i-eQTL and accounting for their genomic size, we found that 

that there was a 3.0 fold increase in overlap with enhancer regions as defined within the GeneHancer database 
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 amongst i-eQTL target regions (17.9%) as compared to e-eQTL targets (5.9%) suggesting that the 

transcribed regions targeted by i-eQTLs are highly enriched for eRNAs.  

 

We further characterised i-eQTL target regions based on their relationship to known genes (Figure 2a). Using 

reads spanning known exons and novel regions, physical proximity and correlation in expression, we categorised 

unannotated expressed regions into those with strong, moderate or weak evidence for being part of a known 

gene (Figure 2a, Online Methods). This approach allowed us to characterise 68.1% of all unannotated 

expression regions (Figure 2b). The validation rate for expression in the GTEx data resource was 98.5% for 

unannotated expressed regions with strong evidence for being part of a known gene, 93.8% for those with 

moderate evidence, and still high at 60.4% for regions with weak evidence for being part of a known gene 

(Figure 2c). We also selected eight unannotated expressed regions for experimental validation (Supplementary 

Table 8). Regardless of their putative relationship to existing genes, all eight regions validated using Sanger 

sequencing (Figure 2d). In the case of unannotated expressed regions with moderate evidence for association, 

this analysis also enabled us to clarify the exon boundaries. For example, sequencing confirmed the existence of 

a novel exon of FIGNL1 (DER18381, Figure 2d). Thus, using a combination of public data resources and 

experimental work, we demonstrated the validity of annotation-independent approaches in transcriptomic 

analysis. 

Most i-eQTLs and other non-standard eQTLs represent novel signals 
Since 51.2% of our characterised i-eQTL target regions have strong or moderate evidence linking them to a 

known gene, we further classified i-eQTLs into those with evidence for being new regulatory variants versus 

those appearing to act in a consistent manner across all exons (thus recapitulating gene-level signals). Using a 

modified test of heterogeneity
25

 (Online Methods) we separately analysed i-eQTLs with strong, moderate and 

weak evidence for being linked to a known gene (Figure 3). This analysis demonstrated that some i-eQTLs were 

indeed “re-discovered” versions of existing eQTL signals (Figure 3a). However, many i-eQTLs appear to be 

independent regulatory sites. For example, SNP rs4696709 regulates DER10633 expression, a probable novel 

exon of ABLIM2 (based on the presence of junction reads), but there is no significant co-regulation of other 

exons of ABLIM2 (Figure 3b). Even amongst those i-eQTLs with strong evidence linking them to a known gene, 

the percentage of i-eQTLs sharing signals with known annotation expression features was only 44% (Figure 3c). 

Thus, across all types of characterised i-eQTLs we found evidence for the majority representing novel regulatory 

variants, acting in a transcript-specific manner. 

We also asked whether our alternative annotation-based eQTL classes (gi-eQTLs, e-eQTLs and ex-ex-eQTLs) 

provided novel regulatory information compared to the standard gene-level eQTL analysis (ge-eQTLs). Again we 

used a modified test of beta heterogeneity to determine eQTL signal sharing among these classes. While 66.8% 

of gi-eQTLs were detectable with “standard” ge-eQTLs, this figure was only 6.9% for splicing eQTLs (Figure 3d, 

suggesting that our additional eQTL classes provided distinct regulatory information driven by splicing effects. 

Splicing eQTLs are enriched for neuronal information 
We asked whether our different eQTL classes varied in terms of the cellular specificity of their target expression 

features. We used weighted gene co-expression network analysis, in combination with publicly available cell-

specific annotation data, to assign eQTL target expression features to one of five broad cell types: neuron, 

oligodendrocyte, astrocyte, microglia and endothelial cell (Figure 4a, Online Methods). This module-

membership approach allowed us to provide putative cellular classifications for expression features even if they 

were outside known annotations. We confidently assigned up to 75% of all analysed genes to a specific cell type, 

and these were then related to 41.5% of all eQTL target expression features. We observed a significant 

enrichment of neuronal genes in all non-standard eQTL classes in one or both tissues investigated (Figure 4b, 

Supplementary Table 8). These included i-eQTLs targeting unannotated expressed regions (FDR-corrected p-

value = 1.20 x 10-2 in putamen, Figure 4b).  Furthermore, we found that the targets of splicing eQTLs were 

significantly enriched for neuronal genes (FDR-corrected p-values = 1.21 x 10-7 and 2.28 x 10-5 for e-eQTLs and 
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ex-ex-eQTLs respectively in substantia nigra), oligodendrocyte genes (FDR-corrected p-value = 1.7 x 10
-3

 and 4.1 

x 10
-2

 for e-eQTLs and ex-ex-eQTLs respectively in substantia nigra) and astrocyte genes (FDR-corrected p-value 

= 8.74 x 10-4 and 1.12 x 10-3 for e-eQTLs and ex-ex-eQTLs respectively in substantia nigra, Figure 4b). This points 

to the importance of capturing splicing information in the analysis of human brain samples.  

eQTLs targeting unannotated transcribed regions are enriched for disease-relevant 

information 
We investigated the overlap of unannotated transcribed regions and eQTL sites with known GWAS association 

signals. We used the US National Human Genome Research Institute (NHGRI) GWAS catalogue, restricted to 

genome-wide significant SNPs (P < 5 × 10-8) and stratifying for SNP-phenotype associations of relevance to 

neurological/behavioural disorders as defined within the STOPGAP database
26

. First, we investigated the 

possibility that unannotated transcribed regions could themselves harbour risk loci of relevance to neurological 

diseases, by calculating the proportion of transcribed intergenic regions containing a brain-relevant risk locus 

and comparing this value to that for expressed exons. After adjusting for the size of each annotation, we found 

that unannotated transcribed regions and exons had a similar level of overlap with brain-relevant risk loci (3.5% 

for exons and 2.9% for transcribed intergenic regions after adjustment for annotation size). However, the 

enrichment of brain-relevant risk loci was higher for novel transcribed regions as compared to exons (1.51 fold 

for targets of e-eQTLs versus 2.70 fold for targets of i-eQTLs after adjustment for annotation size). Furthermore, 

we found a significant enrichment for GWAS variants that were associated with neurological and behavioural 

disorders compared to all other SNP-phenotype associations (Supplementary Figure 2) amongst our eQTLs. 

While the enrichment of brain-relevant GWAS associations was most evident in ex-ex-eQTLs and gi-eQTLs, we 

also found a significant enrichment for i-eQTLs (FDR-corrected Fisher’s Exact p-value = 6.45 x 10
-7

). i-eQTLs 

provided useful information for 36.7% of all the neurologically-relevant risk loci within this analysis (equating to 

76 loci). Given that these findings could potentially be driven by correlations between i-eQTLs and more 

conventional eQTL signals, we repeated this analysis only using i-eQTLs considered to be independent 

regulatory signals (based on modified beta-heterogeneity testing described above). We found that the 

enrichment of brain-relevant risk loci amongst i-eQTLs increased in significance in this sub-group (FDR-corrected 

p-value= 7.01 x 10
-8

). Thus, our analysis suggests that i-eQTLs do contribute to the understanding of a significant 

proportion of neurologically-relevant risk loci.  

We further explored signal enrichment in i-eQTLs in relation to two neurological diseases related to basal 

ganglia dysfunction: Parkinson's disease and schizophrenia. Using GWAS summary statistics for these 

diseases
1,11

, we performed colocalisation analyses for disease-risk association signals against i-eQTL signals using 

the coloc
26

 program. We identified twenty-three i-eQTL signals that colocalised with risk loci for schizophrenia 

or Parkinson’s disease (Supplementary Table 10). Amongst the former, we identified a signal indexed by the 

lead SNP rs35774874 (GWAS p-value = 1.97 x 10-11) that colocalised with an i-eQTL targeting a probable novel 

3’UTR of SNX19 (posterior colocalisation probability = 0.75), a gene which has already been highlighted in 

schizophrenia27,28. Similarly we identified a colocalisation of the PD GWAS lead SNP rs4566208 (GWAS p-value = 

2.28 x 10
-7

) with an i-eQTL regulating a probable novel exon of ZSWIM7 (i-eQTL p-value =1.09 x 10
-5

; posterior 

colocalisation probability = 0.89, Supplementary Figure 3). However, we also found seven co-localising i-eQTL 

signals targeting unannotated expressed regions that were not linked to a known gene. For example, we found 

that the schizophrenia risk SNP rs12908161 (GWAS p-value = 9.41 x 10-10) had a posterior colocalisation 

probability of 1.00 with an i-eQTL targeting the unannotated expressed region DER36302 (chr15:84833811- 

84833975, eQTL p-value = 7.94 x 10-10 in putamen, Figure 5a). This novel transcribed region appears to be 

independent of neighbouring genes, and is expressed in human brain, with the highest expression in the 

anterior cingulate and frontal cortex, two brain regions relevant to schizophrenia (Figure 5b). 

ASE discovery and validation  
We applied allele-specific expression (ASE) analysis to a subset of 84 brain samples (substantia nigra n=35; 

putamen n=49) for which we had access to whole exome sequencing in addition to SNP genotyping data (Online 

Methods, Supplementary Table 1). ASE analysis quantifies the variation in expression between two haplotypes 
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of a diploid individual distinguished by heterozygous genetic variation, and so can capture the effects of a range 

of regulatory processes, namely genomic imprinting, nonsense-mediated decay and cis-regulation (Figure 6a). In 

total 252,742 valid heterozygous SNPs (hetSNPs) across 53 individuals were analysed. Of these, 7.62% (19,266) 

were significant ASE signals (hereafter “ASEs”) at FDR <5% in at least one sample, covering 8,654 genes. Of the 

19,266 ASEs identified, 12,096 were found in putamen and 11,871 in substantia nigra (Supplementary Table 

11). Consistent with previous studies, we found that ASEs can operate as markers of imprinting or parent-of-

origin effects: ASE signals that are not unidirectional across individuals are expected to be enriched for 

imprinted genes (Figure 6a). Consistent with expectation, of all genes containing an ASE, 170 were identified on 

the X chromosome. Furthermore, we observed that all inconsistent ASE signals (those that were not 

unidirectional within >= 10 individuals) were located within genes known to be imprinted (as reported in 

www.geneimprint.com or within the literature27-30) compared to 1-5% of consistent signals (Figure 6b).  

We also found evidence for the generation of ASE signals through nonsense-mediated decay. We identified 61 

protein-truncating variants (defined as stop gain, donor splice site and donor acceptor mutations) among our 

ASEs. Consistent with expectation, the majority of these variants were predicted to cause nonsense-mediated 

decay (52.5% using SNPeff31) and appeared  to result in mono-allelic expression, with >95% of all reads at the 

ASE site originating from a single allele. These extreme ASEs are expected to generate an effective reduction in 

gene dosage, and therefore to cause a significant reduction in the total expression of the affected genes. An 

example of this pattern is seen in the LMBRD2 gene (Figure 6c).  

Finally, to check the overall reliability of our findings, we looked for validation of our ASEs in an independent 

data set of 462 lymphoblastoid cell lines reported by Lappanainen and colleagues
14

. We found that 67% of 

testable ASE signals could be detected at an FDR <5%, demonstrating the reliability of our ASE sites while also 

suggesting the presence of brain-specific ASEs.  

ASEs tag both gene level and splicing eQTLs 
Cis-regulatory variants are known to be one important generator of ASEs32. We therefore investigated the 

overlap of eQTLs with ASEs in our data, and compared it to the overlap observed with randomly selected non-

ASE heterozygous SNPs. After controlling for read depth, we identified a highly significant enrichment of eQTLs 

amongst our ASEs (p-value = 2.65 x 10
-195

 in putamen and 9.99 x 10
-111

 in substantia nigra). This enrichment 

remained significant when we restricted our analysis to eQTLs with effects on splicing (e-eQTLs and ex-ex-eQTLs, 

p-value = 1.17 x 10-178 in putamen and 1.29 x 10-89 in substantia nigra). However, as expected, it was absent 

when we considered ASEs located within imprinted genes, where the parental origin of the SNP rather than the 

impact of cis regulatory sites is expected to drive allele-specific expression (p-value = 0.923 in putamen and 

0.856 in substantia nigra ).  

To investigate the extent to which ASE sites tagged gene-level or transcript-specific cis-regulatory effects, we 

focussed on common ASE sites (seen in >=10 individuals) that were unidirectional in nature (same direction of 

effect across all individuals). For each valid ASE site, we measured exon expression across all three genotypes. 

Of all testable ASEs, we found that 43.2% were also likely to be eQTLs. To ask whether the underlying cis 

regulatory effects operated in an exon-specific or gene-level manner, we repeated the analysis using gene-level 

expression across the genotypes. Of the ASEs that were also likely eQTLs, 51.8% appeared to operate in an 

exon-specific manner, implying that they tagged splicing eQTLs. rs7724759, a splice site variant present in the 

CAST gene (Figure 7a and Figure 7b), and rs1050078, a variant in SNX19 (Figure 7c and Figure 7d), are example 

of ASEs likely to be driven by exon-level and gene-level regulation respectively.  

While this approach allowed us to identify ASE sites tagging splicing eQTLs, it was limited to a small subset of 

common ASE sites and represented only 0.8% of all ASEs. To address this issue, we used the machine learning 

program SPIDEX to predict the effect of all ASEs on splicing33. Given a genetic variant, SPIDEX provides the delta 

percent inclusion ratio (ΔΨ) for the exon in which the variant is located (reported as the maximum ΔΨ across 

tissues). We compared predicted ΔΨ values at ASE sites versus non-ASE sites and found significantly higher 

values amongst ASEs (Fishers test p-value = 4.50 x 10
-5

 and p-value = 2.07 x 10
-19

 using a randomization 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/591156doi: bioRxiv preprint 

https://doi.org/10.1101/591156
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

approach – see Online Methods). This strongly suggests that ASEs are enriched for variants with effects on 

splicing. 

ASEs are significantly enriched for biologically- and disease-relevant information 
We assessed the cellular specificity of the regulatory information ASEs provide. Given that ASE analysis is 

performed within an individual and so is not subject to the confounding effects of cellular heterogeneity across 

individuals, we expected that ASEs would be a powerful means of obtaining cell-specific regulatory information.  

Using a similar approach to that applied to eQTLs to assign genes containing ASEs to brain-relevant cell types 

(neurons, oligodendrocytes, astrocytes, microglia and endothelial cells), we found that ASE-containing genes 

were highly enriched for neuronally–expressed genes (FDR-corrected p-values of 9.97 x 10-235 in putamen and 

3.05 x 10-97 in substantia nigra). We also found significant enrichments (FDR p-value <5%) for oligodendrocyte, 

astrocyte, microglia and endothelial gene sets. While we observed a similar pattern of cell-type specific 

enrichments amongst eQTLs, the strength of evidence for cellular specificity of ASEs was striking, suggesting 

that incomplete covariate correction may be hampering the power of eQTL analyses (Figure 8a, Supplementary 

Table 9). 

Finally, we used GWAS summary data sets for Parkinson’s disease1 and schizophrenia11 to investigate the 

disease-relevance of ASEs. Since GWAS loci often lie close to genic regions and so are likely to overlap by chance 

with ASE signals, we used a randomization approach
34

 to investigate the enrichment of GWAS loci within our 

ASEs (Online Methods). We compared overlaps between risk loci and ASEs to overlaps between risk loci and 

randomly selected non-ASE sites, and found a highly significant enrichment of GWAS risk loci for both 

schizophrenia (p-value = 7.49 x 10-35 for ASEs derived from both tissues) and Parkinson’s disease (p-value = 4.19 

x 10-7 for ASEs derived from both tissues). We validated these findings using stratified LD score regression35 by 

treating our ASE sites as a form of binary annotation, and interestingly found that the enrichment of PD 

heritability appeared to be more specific to ASEs identified in substantia nigra using this approach (Figure 8b, 

Supplementary Table 12). There was no enrichment in PD or schizophrenia heritability amongst eQTLs using the 

same method. Thus, while we recognise that eQTLs can be powerful when linked to even more specific cell 

types for this type of analysis36,37, we demonstrate the additional power of ASE analysis to generate disease-

relevant information, despite the small number of samples we had at our disposal. 
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Discussion 
 

The human brain is an especially challenging organ in which to conduct eQTL and ASE studies.  In addition to the 

difficulties of sample collection, the brain is a highly complex organ, with site-specific pathologies that motivate 

the use of equivalently specific analyses.  The brain is also known to express many transcripts not seen in other 

parts of the body, and it is suspected that much of its transcriptome remains uncharacterised
20,38

. 

We tackled these issues by collecting RNA-seq data from human substantia nigra and putamen, and applied a 

bank of five transcriptome quantification methods, including annotation-agnostic approaches as well as 

approaches to interrogate different stages of RNA processing. We found that there is significant variation 

between eQTL classes in their neuron- and brain-specific information content, as measured by the cell type-

specific enrichment of eQTL targets. The most neuronally-enriched and brain-specific results were found in eQTL 

classes that most closely tag the regulation of splicing (e-eQTLs and ex-ex-eQTLs) rather than gene level 

expression. This finding is consistent with recent studies that suggest that splicing eQTLs can provide significant 

insights into complex diseases in general39, and brain-related disorders in particular (e.g. schizophrenia36,37). 

Thus, in addition to providing a rich eQTL resource, our study suggests that the utility of existing and future 

eQTL analyses in human brain may critically depend on the ability of the RNA sequencing technology, and of the 

analytic methods applied, to capture transcript-specific information. 

We also asked whether the incomplete annotation of the human brain transcriptome might be limiting eQTL 

discovery as well as reducing the tissue-specific nature of the regulatory information discovered. We focused on 

transcription within intergenic regions, since transcriptional activity in these regions cannot be explained 

through the presence of pre-mRNA but could be generated through the expression of long intergenic non-

coding RNAs and enhancer RNAs, as these are reported to be expressed in a highly tissue specific manner19,40. 

We show that these expressed intergenic regions are reliably detected, and that approximately 16.1% of these 

expressed regions are highly likely to represent novel exons of known genes (as demonstrated through the 

existence of junction spanning reads). They are also enriched for overlap with enhancer regions, suggesting that 

many could also represent eRNAs (3.03-fold enrichment over expressed exons). Finally, we show that intergenic 

eQTLs (i-eQTLs) are enriched for neuronally-relevant information, and most importantly that they can provide 

unique disease insights that would be missed using standard analyses, as illustrated by the colocalisation of i-

eQTL signals with schizophrenia risk loci. 

Nevertheless, the identification of splicing eQTLs from homogenates of macro-dissected human brain, 

particularly from brain regions which are hard to obtain in large numbers, is likely to remain challenging even 

after accounting for the on-going development of tools to optimise transcriptome quantification. This motivates 

the use of ASE analysis, a form of within individual comparison that compares variation in expression between 

two haplotypes of a diploid individual. This within-individual comparison means that ASE analysis is unaffected 

by between-individual confounders, such as the variability in cell type-specific density among individuals. We 

applied ASE analysis to 49 putamen and 35 substantia nigra samples, for which both whole exome sequencing 

and genotyping data were available. Consistent with our expectation, we found that ASEs were significantly 

enriched for variants identified as splicing eQTLs within our own analysis or as predicted to affect splicing 

according to SPIDEX. Furthermore, we found that the ASEs we identified tagged regulatory information that was 

highly enriched for neurons and brain-relevant cell types, even after accounting for the general enrichment in 

brain-specific information contained within the RNA-seq data. Finally, and most importantly, we used two 

separate approaches to demonstrate the relevance of ASEs to complex forms of both Parkinson’s disease and 

schizophrenia, with evidence for enriched heritability amongst ASEs. Given the small numbers of samples used 

in our ASE analyses, this finding is particularly important. Thus, we provide evidence to suggest that ASE analysis 

may be a particularly effective and efficient means of obtaining regulatory information relevant to splicing, cell-

type and disease. 

In summary, by using a range of methods to quantify and analyse brain transcriptomic data, we demonstrate 

the importance of capturing information on the regulation of known and novel splicing for the understanding of 
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complex brain disorders, and show that more effective ASE analyses performed even on small sample sets can 

provide additional insights.  
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Figure Legends 
 

Figure 1 
Similar eQTL yield for unannotated expression features compared to annotated features. 

a) Overview of transcriptome quantification. RNA was quantified using five pipelines, each targeting distinct 

stages of RNA processing, and each followed by eQTL generation. Within annotated regions of the 

transcriptome, reads were mapped to expression features and thereafter RNA was quantified. These features 

included: all intronic and exonic regions of a gene (producing gene-intronic gi-eQTLs and gene-exonic ge-eQTLs, 

respectively); individual exons (producing e-eQTLs) and exon-exon junctions (producing ex-ex-eQTLs).  As total 

RNA was used for library construction, reads mapping to introns were presumed to be due to pre-mRNA within 

samples (an assumption supported by previous analyses using a subset of these data
41

). Quantification of 

individual exons and exon-exon junctions provided a means of identifying loci that impact on alternative 

splicing. In common with most eQTL analyses, we also calculated overall gene expression using all reads 

mapping to exons of a given gene, resulting in an expression metric which is influenced by transcriptional rate, 

splicing and RNA degradation rates. Finally, we included annotation-independent approaches to quantify 

transcription. We focused specifically on unannotated transcription within intergenic regions (producing i-

eQTLs, Online Methods). b) eQTL yields for both tissues were calculated as the number of expression features 

within a category with at least one significantly associated eQTL divided by the total number of tested features 

within the same category. 

Figure 2 
i-eQTL target regions show high replication rates in independent data sets and validate experimentally. 

a) Characterisation of i-eQTL target regions (unannotated expressed regions that were the target of a significant 

i-eQTL) was based on several features reflecting their relationship to known genes. These features were used to 

classify these regions into those with strong, moderate and weak evidence for being part of a known gene. 

Regions categorised as strong and moderate are considered likely to be novel exons of known genes or 

misannotations of existing exon boundaries, while weak regions are presumed to be independent of any known 

genes.  b) Scatterplot of genomic distance and correlation of expression between i-eQTL target regions and their 

reference genes.  c) The expression of unannotated expressed regions was validated in GTEx data, using brain 

region-specific and global brain expression data. Validation rates in putamen and substantia nigra GTEx 

expression data were combined and displayed separately from validation rates in RNA-seq data from all GTEx 

brain regions. d) Sequencing results for i-eQTL target regions with strong, moderate and weak evidence of being 

part of a gene. In each case, tracks are provided relating to the location of the primers used to amplify the 

unannotated expressed region, the RNA-seq split read, the alignment of Sanger-sequenced cDNA, and the 

predicted boundaries of the unannotated expression region. 

Figure 3 

i-eQTL target regions have evidence for distinct regulation.  

a) Local association plots (-log10 FDR-corrected p-values for eQTL association) illustrating sharing of the 

rs113317084 variant (red point) between the i-eQTL-targeted region, DER32583 (green track), and the ge-eQTL-

targeted gene, DNAJC15 (blue track). b) Local association plot illustrating no sharing of the rs4696709 variant 

(red point) between the i-eQTL-targeted region, DER10633 (green track), and the ge-eQTL-targeted gene, 

ABLIM2 (blue track). The detection of reads spanning DER10633 and an annotated exon within ABLIM2 provides 

compelling evidence that this region represents a novel exon of the gene. c) Heterogeneity (distinct vs. shared) 

of i-eQTL signals, cross-categorised by the strength of evidence linking their target region to a known gene, 

suggests that most are distinct and likely represent novel regulatory variants acting in a transcript-specific 

manner. Heterogeneity was determined using a modified beta-heterogeneity test, accounting for the 

dependency structure arising from within-individual and within-gene correlations. i-eQTL beta-coefficients were 
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compared to that of the known exon with most evidence of association with the i-eQTL target region. All eQTL 

signals with an FDR-corrected p-value for heterogeneity < 0.05 were considered distinct, while those with an 

FDR-corrected p-value > 0.05 were considered shared (similar beta coefficients). d) Heterogeneity (distinct vs. 

shared) of non-standard eQTL classes (gi-eQTLs, e-eQTLs, ex-ex-eQTLs, and i-eQTLs) suggests that many of these 

classes are distinctly regulated. Heterogeneity was determined using a modified beta-heterogeneity test 

comparing beta-coefficients from ge-eQTLs to those derived from non-standard eQTL analyses applied to the 

same gene. This analysis was performed separately for gi-eQTLs (tagging pre-mRNA), e-eQTLs and ex-ex-eQTLs 

(tagging splicing) and all i-eQTLs (tagging unannotated expression).  All eQTL signals with an FDR-corrected p-

value < 0.05 were considered distinct, while an FDR-corrected p-value > 0.05 was taken as evidence of eQTL 

sharing.   

Figure 4 
Non-standard eQTL analyses produce additional biologically-relevant information. 

a) Schematic diagram showing the use of gene co-expression networks to assign eQTL target genes and 

unannotated expressed regions (ERs) to the cell type most likely to be driving gene expression in the tissue.  We 

used the WGCNA R package42 refined with a k-means algorithm43 to construct separate gene co-expression 

networks for each tissue separately. We annotated modules for cell type-specific enrichments using cell type-

specific marker genes sets
44-47,

T. Genes assigned to modules significantly enriched for brain-related cell type 

markers and with a module membership of > 0.3 were allocated a cell type “label”. Next, for each eQTL 

targeting a known genic region or an unannotated expressed region with high or moderate evidence linking it to 

a known gene, if the target gene was allocated to a cell type then the related eQTL received the same cell type 

label. For eQTLs targeting unannotated expressed regions with low evidence for association with a known gene 

or which could not be classified, we assigned the target expression feature to a module (and by inference a cell 

type) based on its highest module membership providing the module membership was at least 0.3. Finally, for 

each eQTL class and each cell type, namely neuron, microglia, astrocyte, oligodendrocyte and endothelial cell, 

we applied a Fisher’s Exact test to test for enrichment of that cell type label amongst the genes associated to 

the eQTL class. b) Expression features targeted by different eQTL classes were variably enriched for genes with 

cell-biased expression, highlighting the importance of capturing this information. Enrichment of genes with cell-

biased expression within eQTL targeted expression features was performed separately for each tissue and was 

determined using a Fisher’s Exact test and a significance cut-off of P < 0.05 (dashed red line at -log10(P) = 1.30). 

Genes assigned to modules significantly enriched for brain-related cell type markers and with a module 

membership of > 0.3 were allocated a cell type “label”. Next, for each eQTL targeting a known genic region or an 

unannotated expressed region with high or moderate evidence linking it to a known gene, if the target gene was 

allocated to a cell type then the related eQTL received the same cell type label. For eQTLs targeting 

unannotated expressed regions with low evidence for association with a known gene or which could not be 

classified, we assigned the target expression feature to a module (and by inference a cell type) based on its 

highest module membership providing the module membership was at least 0.3. Finally, for each eQTL class and 

each cell type, namely neuron, microglia, astrocyte, oligodendrocyte and endothelial cell, we applied a Fisher’s 

Exact test to test for enrichment of that cell type label amongst the genes associated to the eQTL class. b) 

Expression features targeted by different eQTL classes were variably enriched for genes with cell-biased 

expression, highlighting the importance of capturing this information. Enrichment of genes with cell-biased 

expression within eQTL targeted expression features was performed separately for each tissue and was 

determined using a Fisher’s Exact test and a significance cut-off of P < 0.05 (dashed red line at -log10(P) = 1.30). 

Figure 5 
Annotation-independent approaches produce disease-relevant information unavailable through annotation-

dependent approaches. 

a) Colocalisation of the schizophrenia GWAS lead SNP rs950169 (GWAS p-value = 7.62 x 10
-11

) and the i-eQTL 

targeting DER36302 (eQTL p-value = 1.15 x 10-10 in putamen). b) Expression of DER36302 across tissues sampled 
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by the GTEx consortium. Brain tissues are highlighted in yellow with the anterior cingulate and frontal cortex 

showing the highest expression.  

Figure 6 
Allele-specific expression provides evidence of dosage compensation in human brain-expressed genes. 

a) Overview of the mechanisms by which allele-specific expression can arise. Allele-specific expression can arise 

through epigenetic effects (e.g. imprinting), heterozygous mutations triggering nonsense-mediated decay of 

transcripts, and regulation by (for example) a cis-regulatory variant (cis-eQTL). b) The majority of allele-specific 

expression signals passing FDR < 0.05 produced unidirectional signals (0 or 1) and were considered consistent. 

Inconsistent ASE signals (those that were not unidirectional in ≥ 10 individuals) were found only in known 

imprinted genes, thus providing additional validation of our ASE signals. c) Comparison of LMBRD2  expression 

in putamen from one individual heterozygous for a rare stop gain mutation (CA) in the gene versus all other 

individuals (CC) revealed a significant reduction in LMBRD2 expression, implying effective nonsense-mediated 

decay. Data presented using Tukey-style box plots.  

 

Figure 7 
Allele-specific expression sites capture both splicing and gene level cis-regulation.  

a) Some ASEs appear to operate in an exon-specific manner, and likely represent splicing QTLs. Expression of the 

exon containing rs7724759, a splice variant present in the CAST gene, across individuals of all three genotypes 

demonstrates that the dosage of the splice variant impacts on exon expression. However, CAST gene-level 

expression across individuals of all three genotypes is unaffected by the dosage of the splice variant. b) Some 

ASEs appeared to operate in a gene-level manner. Expression of the exon containing rs1050078, a variant 

present in the SNX19 gene, and SNX19 gene-level expression across individuals of all three genotypes 

demonstrates a similar dosage relationship. Data presented using Tukey-style box plots.  

Figure 8 
Allele-specific expression sites biologically- and disease-relevant information.  

a) Genic locations of ASEs were highly enriched for genes with cell-biased expression in both putamen and 

substantia nigra. Enrichment of genes with cell-biased expression within ASE locations was performed 

separately for each tissue and was determined using a Fisher’s Exact test and a significance cut-off of p-value < 

0.05 (dashed red line at -log10(P) = 1.30). b) Enrichment of heritability for Parkinson’s Disease and schizophrenia 

in ASEs and eQTLs identified in substantia nigra, putamen and across both tissues. 
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Supplementary Figures 
 

Supplementary Figure 1 
Screenshots to show the information accessible through the BRAINEAC web resource  

a) Use of BRAINEAC to access eQTL data. b) Use of BRAINEAC to access gene co-expression network data. 

Supplementary Figure 2 
Enrichment of risk loci for neurological and behavioural disorders across all eQTL classes. 

Supplementary Figure 3 
Colocalisation of the PD GWAS lead SNP SNP rs4566208 (GWAS p-value = 2.28 x 10-7) and the i-eQTL targeting 

DER38036 (i-eQTL p-value =1.09 x 10-5 in putamen). 

Supplementary Figure 4 

Heatmap to show the relationship between PEER axes (X-axis) and known covariates (Y-axis). The FDR-corrected 

p-values for correlations between each PEER axis and known factor are depicted by the colour of ea. The 

Pearson R² values are displayed within each cell. 
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Supplementary Tables 
 

Supplementary Table 1 
Table summarising brain samples used for the generation of RNAseq data  

Supplementary Table 2 
Table of gene-intronic eQTLs (gi-eQTLs) at FDR <5% 

Supplementary Table 3 
Table of exonic eQTLs (e-eQTLs) at FDR <5% 

Supplementary Table 4 
Table of exon-exon junction eQTLs (ex-ex-eQTLs) at FDR <5% 

Supplementary Table 5 
Table of gene-exonic eQTLs (ge-eQTLs) at FDR <5% 

Supplementary Table 6 
Table of intergenic eQTLs (i-eQTLs) at FDR <5% 

Supplementary Table 7  
Table of eQTL replication rates across all GTEx brain-specific eQTL datasets 
 

Supplementary Table 8 
Table of i-eQTL target region validation 

Supplementary Table 9 
Cell type-specific enrichments of eQTL target regions  

Supplementary Table 10 
i-eQTLs colocalising with GWAS loci for schizophrenia  and Parkinson's Disease 

 

Supplementary Table 11 
Table of ASEs identified in putamen and substantia nigra with a MAF > 5% 

 

Supplementary Table 12 
Enrichment of PD and schizophrenia heritability amongst ASEs using stratified LD score regression 
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