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Abstract
Quantitative analysis of neuronal morphologies usually begins with choosing a particular feature

representation in order to make individual morphologies amenable to standard statistics tools and
machine learning algorithms. Many different feature representations have been suggested in the
literature, ranging from density maps to intersection profiles, but they have never been compared
side by side. Here we performed a systematic comparison of various representations, measuring
how well they were able to capture the difference between known morphological cell types. For
our benchmarking effort, we used several curated data sets consisting of mouse retinal bipolar cells
and cortical inhibitory neurons. We found that the best performing feature representations were
two-dimensional density maps closely followed by morphometric statistics, which both continued to
perform well even when neurons were only partially traced. The same representations performed
well in an unsupervised setting, implying that they can be suitable for dimensionality reduction or
clustering.

1 Introduction
The development of experimental methods for high-throughput single cell RNA sequencing (Zeisel et al.,
2018; Saunders et al., 2018; Tasic et al., 2018; Cao et al., 2019) and large-scale functional imaging (Baden
et al., 2016; Pachitariu et al., 2017; Schultz et al., 2017) has led to a surge of interest in identifying the
building blocks of the brain – the neural cell types (Zeng and Sanes, 2017; Chen et al., 2018). Both data
modalities are analyzed with specialized quantitative tools (Stegle et al., 2015; Stringer and Pachitariu,
2019) and produce data sets amenable to statistical analysis such as cell type identification by clustering.

At the same time, ever since the work of Santiago Ramón y Cajal (Ramón y Cajal, 1899), it was the
anatomy of a neuron that has been considered the defining feature of a neural cell type. Like in genetics
and physiology, recent years have seen a tremendous increase in the availability of anatomical data sets,
due to advances in light and electron microscopy (Briggman et al., 2011; Helmstaedter et al., 2013;
Economo et al., 2016) and associated tools for increasingly automated reconstruction (Peng et al., 2010,
2014; Bria et al., 2016). As a consequence, more and more full reconstructions of neurons are becoming
available in public databases, such as the Allen cell type atlas (http://celltypes.brain-map.org) or
the NeuroMorpho database (http://neuromorpho.org).

Anatomical analysis of neural cell types based on these reconstructions, however, requires accurate
quantitative representations of the neuron morphologies. While many different representations have been
developed in the literature, they have rarely been systematically compared with regard to their ability
to discriminate different cell types. Two prominent examples of such representations are density maps
(Jefferis et al., 2007) and morphometric statistics (Uylings and van Pelt, 2002; Scorcioni et al., 2008;
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Polavaram et al., 2014; Lu et al., 2013, 2015), representing two ends of the spectrum: density maps ignore
all fine details of a morphology, simply measuring the density of neurites; morphometric statistics, in turn,
quantify the complex branching of axons and dendrites in a set of single-valued summary statistics. Other
spatial analyses such as Sholl intersection profiles (Sholl, 1953) can be seen as occupying an intermediate
position on this spectrum. In addition, several novel feature representations based on graph theory and
topology have been suggested in recent years (Heumann and Wittum, 2009; Gillette and Grefenstette,
2009; Gillette et al., 2015; Li et al., 2017; Kanari et al., 2018).

Here we benchmarked different representations of neural morphologies as to how well they were
able to capture the difference between known morphological types of interneurons. We used carefully
curated anatomical data from three studies, encompassing over 500 retinal and cortical interneurons with
complete axonal and dendritic reconstructions and expert annotated cell type labels (Helmstaedter et al.,
2013; Jiang et al., 2015; Scala et al., 2019). In order to have a well-defined performance measure, we used
a supervised learning framework: given the expert labels, we asked which morphological representations
were most suitable for cell type discrimination. By combining different representations together, we also
studied to what extent they captured complementary information about cell morphologies. In addition,
we investigated how robust these representations are if only parts of a neuron are reconstructed and how
useful they remain in an unsupervised setting.

2 Results
2.1 Morphological feature representations
We analyzed the discriminability between different morphological cell types in adult mouse retina and
adult mouse cortex (Figure 1). The retinal data set consisted of n = 221 retinal bipolar cells semi-
automatically reconstructed from electron microscopy scans and sorted into 13 distinct cell types (Helm-
staedter et al., 2013; Behrens et al., 2016) (Figure 1A). In this study we only used the 11 cell types
that included more than 5 neurons (remaining sample size n = 212). The cortical data consisted of
inhibitory interneurons from primary visual cortex manually reconstructed based on biocytin stainings
(Jiang et al., 2015; Scala et al., 2019). We analyzed the neurons separated by layer (V1 L2/3: n = 108
neurons in 7 classes, Figure 1B; V1 L4: n = 92 neurons in 7 classes, Figure 1C; V1 L5: n = 93 neurons in
6 classes, Figure 1D). All four data sets comprised accurate and complete morphological reconstructions
of dendrites and axons and included cell types that are morphologically close enough to pose a challenge
for classification (see Discussion).

We investigated 62 feature representations that we grouped into four different categories: density
maps, morphometric statistics, morphometric distributions, and persistence images (Figure 2). Each
feature representation was computed using only axons, only dendrites, and using the full neuron (i.e.
axons and dendrites together).

Density maps are one- or two-dimensional projections of the neural morphology. We used projections
onto the x, y, and z axes as well as onto the xy, xz, and yz planes. Figure 2A shows the XZ density
maps for two exemplary bipolar cells, one of type 1 and one of type 5O. Figure 2B shows Z density maps
of all cells of these two types. This particular pair of cell types can be easily discriminated based on the
Z projection alone.

We used 24 single-valued summary statistics of each neuron, such as width, height, total neurite
length, number of tips, number of branch points, etc., many of which were different for the bipolar
types 1 and 5O (Figure 2C). We also considered a feature representation that joins all of them into a
24-dimensional morphometric statistics vector.

We used 23 morphometric distributions of which 17 were one-dimensional and six were two-dimensional.
As an example, the Sholl intersection profile (Sholl, 1953) describes the number of intersection of a 2D
projection with concentric circles of different radius, and is very different for bipolar types 1 and 5O.
(Figure 2D). An example of a two-dimensional distribution is the distribution of path angle (turning
angle) vs. path distance (distance to soma along the neurite path) across all nodes in the traced mor-
phology (Figure 2E). After binning, this becomes a 400-dimensional feature vector; Figure 2F shows two
principal components (PCs) across all bipolar cells of type 1 and 5O, indicating that PC1 discriminates
the types very well.
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Figure 1: Exemplary cells of each cell type for all five data sets. Axons are shown in light green, dendrites in
dark green. (A) Mouse retinal bipolar cells (cone-connecting) from Helmstaedter et al. (2013). The dashed line
shows the onset of the inner plexiform layer (IPL). The cell types used for analysis are types 1, 2, 3A, 3B, 4,
5I, 5O, 5T, X, 6, and 7. Cell types 8 and 9 were excluded from further analysis due to insufficient sample sizes.
(B) Layer 2/3 inhibitory interneurons in primary visual cortex of adult mice (Jiang et al., 2015). BC: basket
cells, BPC: bipolar cells, BTC: bitufted cells, ChC: chandelier cells, DBC: double bouquet cells, MC: Martinotti
cells, NGC: neurogliaform cells. (C) Layer 4 inhibitory interneurons in primary visual cortex of adult mice
(Scala et al., 2019). LBC: large basket cells, BPC: bipolar cells, DBC: double bouquet cells, HBC: horizontal
basket cells, MC: Martinotti cells, NGC: neurogliaform cells, SBC: small basket cells. (D) Layer 5 inhibitory
interneurons in primary visual cortex of adult mice (Jiang et al., 2015). BC: basket cells, DC: deep-projecting
cells, HEC: horizontally elongated cells, MC: Martinotti cells, NGC: neurogliaform cells, SC: shrub cells.
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Figure 2: Selected feature representations for retinal bipolar cells of type 1 and type 5O. (A) Smoothed density
map of XZ projection for two exemplary cells. (B) Smoothed density map of Z projection for all cells of these two
types. The cells of type 5O stratify deeper in the inner plexiform layer (IPL) than cells of type 1. Bold lines show
class means. (C) A selection of ten single-valued summary statistics that were included in the morphometric
statistics vector. (D) Sholl intersection profile of the YZ projection for all cells of these two types. Bold lines
show class means. (E) Two-dimensional distribution of path angles and path distances to the soma across all
nodes for the same two exemplary cells shown in (A). (F) The first and the second principal components (PCs)
of path-angle/path-distance histograms for all cells of these two types. (G) Two-dimensional persistence images
for the same two exemplary cells shown in (A) and (E). (H) The first and the second PCs of 2D persistence
images for all cells of these two types.
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Figure 3: Processing pipeline. Inhibitory interneurons were soma-centered. Retinal bipolar cells were soma-
centered in x and y while z = 0 was chosen to correspond to the inner plexiform layer (IPL) onset. The z direction
of each cell was aligned with cortical/retinal depth, whereas the x and y direction were left unchanged. Several
different feature representations were extracted automatically and used for pairwise and multi-class classifications
using logistic regression regularized with elastic net. The performance was assessed using 10 times repeated 5-fold
stratified cross-validation.

Finally, we used persistence images, a recently introduced quantification of neural morphology based
on topological ideas (Li et al., 2017; Kanari et al., 2018, 2019). We used four different distance functions
(also called filter functions) to construct one- and two-dimensional persistence images, resulting in eight
different persistence representations. The same two bipolar cell types can be well discriminated based
on PC1 of the two-dimensional radial-distance-based persistence images (Figure 2G–H).

See Methods for a complete list and detailed definitions of the investigated feature representations.

2.2 Predictive performance of feature representations
For each feature representation and for each pair of morphological types in a given data set, we built
a binary classifier and assessed its performance using cross-validation. As a classifier, we used logistic
regression regularized with elastic net penalty and PCA pre-processing. Nested cross-validation was used
to tune the regularization strength and obtain an unbiased estimate of the performance (see Methods
and Figure 3).

As an example, Figure 4 shows the performance of one particular feature representation (XZ density
map of the full neuron) for all 55 pairs of neural types in the bipolar data set, 21 pairs in the V1 L2/3
data set, 21 pairs in the V1 L4 data set, and 15 pairs in the V1 L5 data set. We used the cross-
validated log-loss as the main measure of performance, because it is a proper scoring rule used by logistic
regression, it is unaffected by class imbalance and it penalizes confident but wrong decisions. Zero loss
means perfect classification, while chance-level performance (for balanced classes) corresponds to the
loss of ln(2) ≈ 0.69. For each pair of types, we also computed cross-validated classification accuracy, F1
score, and Matthews correlation coefficient. In our data, the relationships between log-loss and these
other performance measures were monotonic and approximately quadratic (Figure S1). As a rule of
thumb, a log-loss of 0.2 roughly corresponded to 95% accuracy, a log-loss of 0.4 corresponded to 80%
accuracy, and a log-loss of 0.6 corresponded to 65% accuracy.

The matrix of pairwise classification performances for the bipolar data set can serve as a sanity check
that our classification pipeline works as intended: bipolar types with close numbers (e.g. types 1 and
2, or types 3A and 3B) are hard to distinguish (Figure 1), and indeed the log-loss values were generally
higher close to the diagonal than far away from it (Figure 4). In fact, to distinguish between bipolar
types 1/2, 3A/3B/4, and 5I/5O/5T, the original studies used tiling of the retina and synaptic input
patterns in addition to the morphological information (Helmstaedter et al., 2013; Behrens et al., 2016).

For each feature representation, we averaged the log-losses across all pairs within each data set and
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Figure 4: Cross-validated log-loss for each pair of morphological types in each data set using XZ density maps
as predictors in logistic regression. Zero log-loss corresponds to perfect prediction, ln(2) ≈ 0.69 corresponds to
random guessing. For abbreviations see Figure 1.

within each ‘modality’ (full-neuron/axon/dendrite), obtaining 4 × 3 = 12 average log-losses for each of
the 62 feature representations. Figure 5 shows a summary for the seven top performing features (see
Methods for how they were selected). The performance using the dendritic features was consistently
poor for the bipolar cells and the V1 L5 interneurons (close to chance level) and generally much lower
than using the axonal features (see also Figure S2). Indeed, for cortical interneurons as well as for retinal
bipolar cells, it is the axonal, and not the dendritic, geometry that primarily drives the definition of
cell types (Helmstaedter et al., 2013; Sümbül et al., 2014; Ascoli et al., 2008; Markram et al., 2004;
DeFelipe et al., 2013), as can be seen in Figure 1. In turn, the performance using the axonal features
was practically indistinguishable from the performance of the full-neuron features, consistent with the
statistics of our data, where axonal neurites make up about 86% of the total traced neuritic length
(4.55 m out of 5.27 m).

Using the performance of the full-neuron features (Figure 5A), we found that the top performing
feature representation were XZ density maps, with the mean log-loss of 0.18 ± 0.20 (mean±SD across
n = 4 datasets), followed by Z density maps (0.19± 0.22), morphometric statistics (0.23± 0.22), and YZ
density maps (0.25±0.23), and then by the 2D persistence images constructed using height (0.29±0.22)
and radial distance (0.31± 0.22) as filter functions. The best performing morphometric distribution was
the YZ Sholl intersection profile (0.37± 0.22).

To make a statistical comparison of the performance between two different features A and B, we
computed the mean difference δ(A,B) in log-loss across all 112 pairs of neural types (pooling pairs
across the four data sets). The standard error of δ cannot be estimated directly because the pairs
are not independent: e.g. the discriminative performances for bipolar types 1 and 2 and for bipolar
types 1 and 3A include the same cells from type 1. We used a jackknife procedure across types (not
across pairs) to estimate the standard error of each reported δ (see Methods). We found no evidence
of significant difference in performance between XZ density maps and morphometric statistics (δ =
0.05 ± 0.05, z = 0.92, p = 0.36, z-test) nor between morphometric statistics and 2D height-based
persistence (δ = 0.08 ± 0.17, z = 0.5, p = 0.62). However, the difference between XZ density maps and
2D height-based persistence was statistically significant (δ = 0.1 ± 0.04, z = 2.7, p = 0.007). Among
the density maps, the Z density map did not show a significant difference from XZ (δ = 0.006 ± 0.02,
z = 0.37, p = 0.71), while YZ was much worse than XZ in the three V1 data sets (δ = 0.14±0.05, z = 2.84,
p = 0.005, average across V1 pairs only) but very similar in the bipolar data set (δ = 0.01±0.02, z = 0.77,
p = 0.44). Indeed, the y direction is mostly meaningless in the V1 data as the slices are flattened during
the biocytin staining process (Farhoodi et al., 2019).

For completeness, we also performed all the classifications using axonal and dendritic features pooled
together, but the resulting performance was very similar to the performance using axonal (or full-neuron)
features alone (Figure S2A).

Next, we asked if combining the feature representations can improve performance. We pooled mor-
phometric statistics and XZ density maps, morphometric statistics and 2D persistence, XZ density maps
and 2D persistence, and all three of these feature sets, yielding four additional combined feature sets
(Figure 5, right). For some of the data sets (bipolar cells and V1 L2/3) this improved the performance
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Figure 5: (A–C) Pairwise classification performance of the top performing feature representations based on
the full-neuron (A), axonal (B), and dendritic (C) features for each data set. Feature representations are grouped
into density maps, morphometric statistics, morphometric distributions, persistence images, and combinations
of the top three feature representations. Each shown value is cross-validated log-loss, averaged across all pairs.
Error bars correspond to 95% confidence intervals. Chance-level log-loss equals ln(2) ≈ 0.69 and is indicated
in each panel. See Figure S2A for the results using combined axonal+dendritic feature representations. (D)
Cross-validated log-loss of multinomial classification. Chance level for each data set is indicated on the y-axis.
See Figure S2B for the results using axonal, dendritic, and combined axonal+dendritic feature representations.
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but on average across all data sets we found no increase in performance for feature combinations com-
pared to their constituent feature representations. In some cases performance even decreased, indicating
over-fitting due to the small sample sizes in our data (median class size n = 16).

2.3 Top performing features are consistent across classification schemes

Figure 6: Ranked top five feature representations for each classification scheme using different performance
measures on full neuron data. In our case any measure selected the same features within each classification
scheme.

As an alternative to the pairwise classification approach, we also used multi-class classification. We
used multinomial logistic regression with exactly the same pipeline of regularization and cross-validation
as above. For each of the full-neuron feature representations and each of the data sets, we obtained
cross-validated multi-class log-loss (Figure 5D; see Figure S2B for the axonal, dendritic, and combined
axonal+dendritic feature representations). Note that for each feature representation and data set, the
performance is given by one single estimate, as opposed to the mean over all pairs that we reported
above. Therefore only point estimates and no confidence intervals are shown in Figure 5D. Note also
that the values of multi-class loss are not directly comparable between data sets, because they are strongly
influenced by the number of classes in a data set (K). The chance-level performance is given by ln(K)
and is therefore different for each data set: ln(11) ≈ 2.40 for the bipolar data set, ln(7) ≈ 1.95 for the
V1 L2/3 and L4 data sets, and ln(6) ≈ 1.79 for the V1 L5 data set. For this reason, here we are not
reporting averages across data sets.

The overall pattern was in good qualitative agreement with that obtained using pairwise classifications
(Figure 5D). For three out of four data sets (bipolar, V1 L4 and V1 L5), XZ density maps performed
the best (bipolar data set log-loss: 1.75, V1 L4: 1.36, V1 L5: 1.11), followed by morphometric statistics
(1.86/1.47/1.24). For the fourth data set (V1 L2/3), morphometric statistics showed the smallest loss
(1.26), very closely followed by the density maps (1.34). Combining morphometric statistics with XZ
density maps led to a clear improvement in all cortical data sets and was on par with further adding
2D persistence. For the bipolar data, combining features did not improve performance compared to XZ
density maps alone. Unlike what we saw above with the pairwise classification, here feature combinations
never decreased the performance, possibly due the larger sample sizes of the multi-class classification
problems.

To make sure that our conclusions were not dependent on the choice of the classification approach
or the performance metric, we repeated the experiments using two other pairwise classifiers: k-nearest
neighbour (with k = 3) and decision trees. In each case we used classification accuracy, F1 score and
Matthews correlation coefficient (MCC) as a performance metric (note that log-loss is not available for
these classifiers). The selection of top performing feature representations was very consistent, with XZ
and Z density maps always ranked the first (Figure 6).
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2.4 The best feature representations are robust against partial tracings
Accurate morphological reconstructions often become more and more difficult to achieve as one goes
away from the cell soma, because the neurites become thinner and might have weaker staining which
makes them easier to miss. We therefore assessed the robustness of using XZ density maps, morphometric
statistics, and 2D persistence as predictors of cell type when neurons are only partially traced.

Partial tracings were simulated by subsequently removing 10 to 90% of the branches (in steps of 10%)
of each reconstructed skeleton. On each truncation step, we removed the given fraction of branches with
the highest branching order (see Methods). The branching order corresponds to the count of branch
points that are passed when tracking the branch back to the soma, so the higher the branching order the
more branching has occurred along this branch. This procedure cuts away most of the axonal neurites
before reaching the dendrites that typically have branches of lower branch order, and therefore mimics
what can happen in actual reconstructions. We used the V1 L2/3 data set for this analysis, performing
all pairwise classifications between all pairs of cell types at each truncation step (Figure 7A). In addition,
we shuffled the labels of each pairwise comparison to estimate the chance-level distribution of log-losses
(Figure 7A, grey shading). Exactly the same cross-validation pipeline was run after shuffling the labels.

As expected, performance of each feature representation gradually decreased with increasing level
of truncation. The decrease was rather moderate until around 30% truncation level (e.g. it grew from
0.14± 0.17 to 0.17± 0.19, mean±SD across all 21 pairs, for morphometric statistics, and very similarly
for the density map). After that, all representations were noticeably losing in performance.

2.5 Using morphological features for unsupervised learning
So far we used supervised learning and assumed cell type labels to be known. A more difficult and
arguably more interesting task is to identify morphological cell types using unsupervised clustering
(Sümbül et al., 2014; Gouwens et al., 2018). The small sample sizes of our data sets make it very
challenging to obtain reliable clustering and to compare the clustering performance of various feature
representations. Instead, we directly used the best performing feature representations identified above
and performed unsupervised dimensionality reduction using t-distributed stochastic neighbour embed-
ding (t-SNE) (van der Maaten and Hinton, 2008). If the cell types are well-separated in the t-SNE
embedding, then it is plausible that a clustering algorithm would identify them as separate types, given
a large enough data set.

We first used XZ density maps (reduced to a set of 6–18 PCs capturing 90% of the variance) as
an input to t-SNE with perplexity 50 (Figure 8A). The resulting embeddings corresponded well to
the pairwise classification performance for XZ density maps that we presented earlier (Figure 4). For
example, horizontally elongated cells (HECs) and shrub cells (SCs) in the V1 L5 data set that were both
easily distinguishable from other types in the classification task, formed clear clusters, away from other
cell types. In contrast, the embedding for basket cells (BCs) and neurogliaform cells (NGCs), the only
cell pair with a high log-loss for density maps, showed some overlap. Similarly, retinal bipolar types that
were hard to classify, such as types 1 and 2 or types 3A, 3B, and 4, formed joint clusters with a lot of
overlap (Figure 8A).

We then combined XZ density maps with morphometric statistics. To do so, we reduced each feature
representation to a set of PCs capturing 90% of the variance (6–18 PCs) and normalized each set of PCs
by the standard deviation of the respective PC1, to put both sets roughly on the same scale. We pooled
the scaled PCs together and used this feature representation as input for t-SNE (Figure 8B). For some
of the data sets (e.g. V1 L2/3 and V1 L5), the combination of morphometric statistics and XZ density
maps yielded an arguably superior t-SNE embeddings with less overlap between types.

The embeddings shown in Figure 8 used full-neuron features that, as we saw above, are dominated
by the axonal geometry. Applying the same procedure to the dendritic features yielded embeddings
with far worse separation between cell types (Figure S4). Moreover, dendritic features resulted in t-
SNE embeddings with far less structure than the full-neuron features, suggesting that there is less of an
interesting variability in the dendritic morphologies compared to the axonal ones.
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Figure 7: (A) Cross-validated log-loss of XZ density maps, morphometric statistics and 2D persistence (height)
as a function of truncation level. Branches were truncated to mimic what happens when neurons are only partially
traced. The classification was performed on all pairs of types in V1 L2/3 data set. Dots and error bars show
the means and 95% confidence intervals across all 21 pairs. Dashed grey line shows chance level at ln(2) ≈ 0.69.
Grey shading shows the chance-level distribution of log-losses obtained by shuffling the labels during the cross-
validation (shading intervals go from the minimum to the maximum obtained chance-level values). The arrows
mark the levels of truncation shown in panel B. (B) XZ projections of four exemplary cells at three levels of
truncation: 10%, 50%, and 90%. At 50% truncation the global structure of each cell is still preserved, whereas
at 90% only the dendritic structures remain. See Figure 1 for abbreviations.

A

B

Figure 8: (A) T-SNE embeddings of all four data sets using full-neuron XZ density maps. (B) T-SNE
embeddings using XZ density maps combined with morphometric statistics. The ellipses are 95% coverage
ellipses for each type, assuming Gaussian distribution and using robust estimates of location and covariance.
They are not influenced by single outliers. For abbreviations see Figure 1.
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3 Discussion
Here we benchmarked existing morphological representations in the context of supervised cell type clas-
sification on well-curated data sets encompassing over 500 full reconstructions of interneurons in the
mouse visual system. We found that density maps yield the best predictions of cell type labels, followed
by morphometric statistics and then 2D persistence images, and showed that they do so even if sub-
stantial parts of the traced morphologies are removed. We demonstrated that these predictors work well
independent of the used classification scheme or the performance metric suggesting that they are a good
starting point for morphological analysis.

Previous literature
Previous literature has argued that on their own, density maps, morphometric statistics, and persistence
work well for cell type identification and classification. Retinal cells, for example, can be successfully
discriminated by their stratification depth within the inner plexiform layer (IPL) which can be seen as
a z-projection of their neurite density (Helmstaedter et al., 2013; Sümbül et al., 2014). Morphometric
statistics have been used in a wide variety of studies across species and brain areas (Lu et al., 2013;
Polavaram et al., 2014; Lu et al., 2015; Gouwens et al., 2018) and have been shown to perform well in
a one-vs-rest classification of cortical neurons (Mihaljević et al., 2015, 2018). Persistence, in turn, has
lately been shown to distinguish pyramidal neuron types in juvenile rat somatosensory cortex (Kanari
et al., 2019).

These studies, however, did not directly compare different morphology representations, but rather fo-
cused on comparing classification schemes or establishing cell type related differences within their chosen
morphological representation. Our study fills this gap by applying the same standardized classification
procedure to each morphological representation, using well-curated data sets with well-defined cell types.
This comparison revealed that the density maps contain enough information to accurately discriminate
most inhibitory cell types. This implies that the spatial extent and overall shape of the axonal arbour,
as a consequence of a neuron’s connectivity, are more relevant than precise branching characteristics; a
finding that has already been proposed for dendrites (Cuntz et al., 2007, 2008, 2010; Cuntz, 2012; van
Pelt and van Ooyen, 2013).

Morphometric statistics performed similarly well on some of the data sets but showed a somewhat
lower performance than density maps. For example, they failed to distinguish double-bouquet cells and
Martinotti cells in layer 4. Various forms of persistence-based measures performed consistently worse than
density maps, at least for the interneurons studied here (originally, persistence diagrams were developed
for cortical pyramidal neurons (Adams et al., 2017; Kanari et al., 2019; Li et al., 2017)). We did not
extensively evaluate combinations of feature representations, as combining even the best representations
did not dramatically improve performance, possible as a result of overfitting to a data set of limited size
(see Figure 5).

The axonal morphology of neurons in our study contained more information about the cell type than
the dendritic morphology, in agreement with the existing literature (Mihaljević et al., 2015; Jiang et al.,
2015; Ofer et al., 2018). Our unsupervised analysis also demonstrated far more variability within axonal
features compared to the dendritic features (Figure S4), which is in line with classical expert-based
cell type naming conventions (Markram et al., 2004; DeFelipe et al., 2013; Helmstaedter et al., 2013).
Notwithstanding, dendritic reconstructions are more prevalent in the literature and in the available
databases: at the time of writing only 55% (367/667) and 8% (630/8 129) of mouse cortical neurons
in the Allen Cell Type atlas (http://celltypes.brain-map.org/data) and the NeuroMorpho library
(Ascoli et al., 2007) are flagged as containing complete axonal reconstructions. This is because dendrites
are usually thicker and more compact than axons and so are easier to stain and trace. This has obstructed
acquisition of complete axonal reconstructions in mammals but might be remedied by recently developed
whole brain imaging techniques (Ragan et al., 2012; Yuan et al., 2015; Economo et al., 2016; Gong et al.,
2016). At the same time, the robust classification performance of truncated morphologies and the good
performance of density maps suggest that full reconstructions might not be necessary for morphological
cell type identification.
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Limitations
First, we always used the cell type labels provided in the original publications, treating them as ground
truth. For cortical interneurons it has been shown that there is a considerable inter-expert variability
between assigned cell type labels (DeFelipe et al., 2013), affecting the outcome of any supervised learning
task. Ideally, one would use consensus labels between multiple experts or data modalities for a benchmark
evaluation, but such data sets are currently even harder to obtain than the data sets used in this study.

Next, tissue shrinkage and staining method can affect the measured morphology (Farhoodi et al.,
2019). In our study all three data sets obtained through biocytin staining (V1 L2/3, V1 L4, V1 L5)
showed flattening of the cortical slice (y-direction) which made XY density maps perform worse in
comparison to other projections. We did not observe this effect for the bipolar cells that have been
obtained through EM imaging. Obviously, a feature representation can only be good for classification,
if the data contains the relevant information in the first place. Therefore, it is important to be aware of
biases or distortions in the experimental protocol before deciding on which feature representation to use.

Further, we believe that a meaningful comparison between different numerical descriptions of mor-
phology is only possible through maintaining strict data consistence and quality criteria. This is why
we restricted this work to data from only one species (mouse) of one developmental stage (adult) where
morphological cell types are well established and supported by other studies based on electrophysiology
(Jiang et al., 2015) or genetics (Shekhar et al., 2016). At the same time we wanted morphologies to be
similar enough to pose a challenge and we required complete axonal and dendritic reconstructions. The
resulting data set of 505 interneurons is comparable to the sample sizes used in related studies (Mihal-
jević et al., 2015, 2018). As these interneurons are only locally projecting, our study does not provide
guidance as to which features are useful for discriminating neurons based on their long-range projection
patterns (Costa et al., 2016; Economo et al., 2018; Gerfen et al., 2018).

As the 505 neurons were split into 31 types, the median sample size per class was only 16 cells. It
is difficult to fit machine learning algorithms in the n � p regime where the number of dimensions p
highly exceeds the number of samples n (Friedman et al., 2001). We used a simple linear model strongly
regularized by PCA preprocessing and an elastic net penalty as well as nonlinear non parametric models
since fitting more complicated models be challenging with these low sample sizes. This approach performs
well when the leading principal components of the data have good discriminative power, but can also
perform at chance level if the difference between types is restricted to low-variance directions. Thus, low
classification performance for a given cell type pair does not necessarily imply that they could not be
reliably separated with more available data.

Finally, we restricted our benchmarking effort to the most prominent and established morphological
representations that have been independently employed by more than one research group. In particular,
this excluded some methods based on graph theory (Heumann and Wittum, 2009; Gillette and Grefen-
stette, 2009) and sequence alignment (Gillette and Ascoli, 2015; Gillette et al., 2015; Costa et al., 2016)
which can be promising candidates for further studies. The morphometric statistics that we used did not
include everything that has been suggested in the literature either. For example, we did not use morpho-
metric statistics such as fractal dimension because of their disputed relevance for our data (Panico and
Sterling, 1995) and did not explicitly quantify the amount of layer-specific arborization (DeFelipe et al.,
2013; Gouwens et al., 2018) because this concept only applies to cortical neurons and layer boundaries
were not available for our data. However, given the superior performance of density maps, it is possible
that including layer-specific information could improve the performance of morphometric statistics.

Outlook
Our study serves to provide a starting point for future work on algorithmic cell type discrimination based
on anatomical data, for example in the context of large-scale efforts to map every cell type in the brain
as pursued by the NIH BRAIN initiative. It allows experimenters to make an informed choice which cell
type representations are useful to automatically distinguish interneurons based on their morphology. Of
course, how far our results generalize to other species remains to be seen. The resulting representations
also make it possible to relate anatomical descriptions of neurons to data from other modalities such as
e.g. gene expression patterns (Cadwell et al., 2017).

The representations investigated here are purely descriptive and do not provide deeper mechanistic
insight, compared e.g. to generative models of the growth process of neurons during development (van
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Pelt and Schierwagen, 2004; Cuntz et al., 2010; Memelli et al., 2013; Wolf et al., 2013; Fard et al., 2018;
Farhoodi et al., 2019). Ideally, a mechanistically grounded feature representation would perform at least
on par with density maps for cell type discrimination while yielding parameters that are more easily
interpretable. Potential starting points for such a representations are growth models proposed by van
Pelt and Schierwagen (2004) and Cuntz et al. (2010), which have a manageable amount of parameters and
show systematic parameter differences for dendrites of different cell types. This make them promising
candidates for further research.

4 Methods
4.1 Data
We used data from Helmstaedter et al. (2013), Scala et al. (2019), and Jiang et al. (2015), splitting the
latter data set into two parts by cortical layer. All neurons were labelled by human experts in the original
studies. We confirmed the quality of all reconstructions through inspection. Our study investigated a
total of 5.27 meters of traced neurites from n = 505 neurons.

1. Bipolar cells. This data set comprised n = 221 tracings of retinal bipolar cells in one mouse
(p30) from electron-microscopy data (Helmstaedter et al., 2013). To allow for at least 5-fold cross-
validation, we did not analyze cell types which had counts of 5 cells or fewer. This criterion excluded
types 8 and 9 and resulted in n = 212 remaining morphologies in 11 types. The reconstructions
(as .SWC files) as well as their cell type labels were obtained from the authors of Behrens et al.
(2016) which explains the additional cell types 5O, 5I and 5T as compared to the original work.

2. V1 Layer 2/3. Manually traced biocytin stainings of n = 108 inhibitory interneurons of 7 types
in layer 2/3 (L2/3) of adult mouse primary visual cortex (Jiang et al., 2015). We obtained the
reconstructions (as .ASC file) and their cell type labels from the authors.

3. V1 Layer 4. Manually traced biocytin stainings of n = 92 inhibitory interneurons of 7 types in
layer 4 (L4) of adult mouse primary visual cortex (Scala et al., 2019). We obtained the reconstruc-
tions (as .ASC file) and their cell type labels from the authors.

4. V1 Layer 5. Manually traced biocytin stainings of n = 94 inhibitory interneurons of 6 types in
layer 5 (L5) of adult mouse primary visual cortex (Jiang et al., 2015). One deep-projecting cell
lacked an axon so it was excluded from further analysis resulting in n = 93 remaining morphologies.
We obtained the reconstructions (as .ASC file) and their cell type labels from the authors.

For data availability see Information Sharing Statement.

4.2 Preprocessing and nomenclature
Reconstructed morphologies were converted into SWC format using NLMorphologyConverter 0.9.0
(http://neuronland.org) where needed and further analysed in Python. The SWC format represents
a morphology with a list of nodes (points) with each node described by its id, 3D position, radius, type
(1: soma, 2: axon, 3: dendrite), and parent id. Each node connects to its parent node with a straight
line that we will call “sub-segment”. Several nodes can connect to the same parent note; in this case
this parent node is called a “branch point”. A neurite path from one branch point to the next is called
a “segment”.

The bipolar cells were missing explicit type labels for the soma, we therefore set every node of radius
larger than 1 micron to be somatic. We generally allowed for only one somatic node so that within one
reconstruction all somatic nodes were grouped and replaced by one node with position and radius being
the mean across all original soma nodes. Especially in the initial branch segments it can occur that node
type labels (1: soma, 2: axon, 3: dendrite) are not consistent between consecutive nodes. Node type
labels within one branch we hence assigned according to the majority vote over all sub-segment types
within this branch.

All cortical interneurons were soma-centered and their z coordinate (height) was oriented along the
cortical depth. We did not account for the shrinkage of slice thickness (depth) that happens during the
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staining, however, we ameliorated reconstruction jumps in y direction using a 3rd order Savitzky-Golay
filter with window size of 21 microns (as implemented in scipy.signal). For this we re-sampled all
neurons to have equidistant points of 1 micron along all neurites. Bipolar cells were soma-centered in
their x and y coordinates and IPL-centered in the z direction corresponding to the retinal depth (i.e.
z = 0 corresponded to the outer border of the inner plexiform layer, IPL). Smoothing and re-sampling
was not done for this data set.

4.3 Feature representations
We calculated 62 different feature representations for each cell. These representations can be grouped
into four categories: density maps, morphometric statistics, morphometric distributions, and persistence.
All feature representations were separately computed for axons, for dendrites, and for the whole neuron
(without distinguishing axons from dendrites) yielding 62 · 3 = 186 representations per neuron (see
Figure 2).

4.3.1 Density maps

We sampled equidistant points with 25 nm spacing along each neurite of the traced skeletons and nor-
malized the resulting point clouds within each data set for each modality to lie between 0 and 1 (for the
range values used for this normalisation see the linked Github repository). For 2D density maps, the
normalized point cloud was projected onto the xy, xz, and yz planes and binned into 100 × 100 bins
spanning [−0.1, 1.1]. For 1D density maps the normalized point cloud was projected onto the x, y, and z
axes and binned into 100 bins spanning [−0.1, 1.1]. We smoothed the resulting histograms by convolving
them with a 11 × 11 (for 2D) or 11-bin Gaussian kernel with standard deviation σ = 2 bins. For the
purposes of downstream analysis, we treated the density maps as vectors of 10 000 (for 2D) or 100 (for
1D) features. Overall we used 6 versions of density map representations.

4.3.2 Morphometric statistics

For each cell we computed a set of 24 single-valued summary statistics:

number of branch points Count of points at which the neurites branch.

number of tips Count of end-points.

cell height Extent (max−min) of the cell in the z direction in microns. This
direction corresponds to the cortical/retinal depth.

cell width Extent (max−min) of the cell in the x direction in microns. In
biocytin data this direction corresponds to the width of the slice.

cell depth Extent (max−min) of the cell in the y direction in microns. In
biocytin data this direction corresponds to the depth of the slice
and is flattened due to the staining process.

number of stems Count of neurites extending directly from the soma.

average thickness The average radius across all neurites in microns (soma is excluded).

total length Total path length of all neurites in microns.

surface Estimated total surface area of all neurites. Each neurite sub-
segment is assumed to be a truncated cone, and its surface was
computed as π(r +R)

√
(R− r)2 + h2 where h is the length of the

sub-segment and r and R are the radii at both ends.

volume Estimated total volume of all neurites, computed as 1
3πh(r2 + rR+

R2) for each sub-segment.

maximal neurite length Path length of the longest neurite from tip to soma in microns.
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maximum branch order The maximum number of branch points passed when tracing a neu-
rite from the tip back to the soma. Branch ordering starts with the
soma having branch order 0 and each subsequent branching point
increases the order by 1. This ordering scheme is also called cen-
trifugal order.

maximum segment Euclidean length of the longest segment in microns.

median intermediate segment The median path length of intermediate segments in microns.

median terminal segment The median path length of terminal segments in microns.

median path angle “Path angle” is the angle between two consecutive sub-segments
(not including the sub-segments that meet at a branching point).
Median path angle refers to the median across all such consecutive
sub-segments. It is bounded between [0, 180] degree.

maximal path angle Maximal path angle represents the 99.5 percentile across all such
consecutive sub-segments. We used the percentile to ameliorate the
influence of reconstruction quality on this measure. It is bounded
between [0, 180] degree.

median tortuosity The median log(tortuosity) across all neurite segments. Tortuosity
describes the “bendiness” of a segment and is defined as the ratio
of path length to the Euclidean distance between the end-points.
Tortuosity follows a skewed distribution, we therefore used the log-
transformed value.

maximal tortuosity 99.5 percentile of log(tortuosity) across all neurite segments. We
used the percentile to ameliorate the influence of reconstruction
quality on this measure.

minimal branch angle For each pair of branches meeting at a branching point, “branch
angle” is the angle (in [0, 180] degrees range) between the meeting
sub-segments. Minimal branch angle refers to the minimal branch
angle across all such pairs.

average branch angle Average branch angle, see above.

maximal branch angle Maximal branch angle, see above.

maximal degree Maximal number of neurites meeting at a single branch point.

tree asymmetry The tree asymmetry measures how far a tree-graph is away from a
perfectly balanced tree-graph. As a measure we use the weighted
sum over the proportional sums of absolute deviations (PSADs) of
each branch point: ∑

wp · PSAD(p)

where the sum is over all branch points p, wp ∈ 0, 1, and wp = 1 iff
the sub-tree emerging from branch point p has more than 3 leaves.
The PSAD is a measure of topological tree asymmetry and is defined
for one branching node p as

PSAD(p) = m

2(m− 1)(n−m) ·
∑
m

|ri −
n

m
|

where m is the out-degree of node p, n is the number of leaves of
the sub-tree starting at p, and ri is the number of leaves of the i-th
sub-tree of p. For a more detailed definition see Verwer and van
Pelt (1986).
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In addition to the 24 features listed above, we grouped all of them together into one vector which we
named morphometric statistics.

4.3.3 Morphometric distributions

For each cell we computed the following 17 one-dimensional morphometric distributions:

branch angles Histogram of bifurcation angles between neurites (20 bins from 0 to
180).

branch orders A vector of length K where K is the maximal branch order within
each data set, with element i equal to the number of branch-points
of order i.

path angles Histogram of the path angles (20 bins from 0 to 180).

root angles Histogram of the root angles of each segment. The root angle de-
notes the angle between the straight line connecting the segment’s
start and end nodes and the straight line that connects the seg-
ment’s end point with the soma (20 bins from 0 to 180). It is
indicative of the preferred growing direction of the neural arbor.
For more details see Bird and Cuntz (2019).

Euler root angles, α Histogram of the Euler root angles (α). Here, the root angles are
expressed as Euler angles around the x, y and z axis (20 bins from
0 to 180).

Euler root angles, β See above.

Euler root angles, γ See above.

segment lengths Histogram of Euclidean segment lengths (20 bins from 0 to the
maximal segment length within the data set).

thickness Histogram of nodes’ radii, the soma is excluded (30 bins from 0 to
the maximal radius within the data set).

path distance to soma Histogram of the path length of each branch point and tip to the
soma (20 bins from 0 to maximal neurite length within data set)

Euclidean distances to soma Histogram of the Euclidean distance of each branch point and tip
to the soma.

Sholl intersection xy Sholl intersection profile in the xy-plane. The Sholl intersection
profile describes the number of intersection of a 2D projection with
concentric circles of different radius around the soma (Sholl, 1953).
We used 36 steps from soma to maximal radial distance from soma.

Sholl intersection xz Sholl intersection profile in the xz-plane.

Sholl intersection yz Sholl intersection profile in the yz-plane.

3-star motif 10-dimensional vector with element i being the number of 3-star
motifs in the sub-graph containing i ·10% of all nodes closest to the
soma. A 3-star motif represents a branch point where one branch
forks into two branches. For each additional branch the 3-star motif
is counted again (e.g. a neurite forking into three sub-branches is
counted as having two 3-star motifs).

average 3-star motif The 3-star motif vector is calculated 100 times using different ran-
dom nodes instead of the soma as the “center” of concentric spheres.
The resulting vectors are then averaged.
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average maximal distance Using the same sub-graphs, we compute the maximal Euclidean
distance in each sub-graph (10-dimensional vector). This procedure
is repeated 100 times with random starting nodes and the resulting
vectors are then averaged.

In addition, we used six two-dimensional morphometric distributions. The binning and normalization
were the same as for the respective 1D distributions.

branch angles × branch orders 2D histogram of branch angles as a function of branch orders (across
all branch points).

branch angles × path distances 2D histogram of branch angles as a function of path distances to
the soma in microns (across all branch points).

path angle × branch order 2D histogram of path angles as a function of branch orders (across
all nodes, not only branch points).

path angle × path distance 2D histogram of path angles as a function of path distances to the
soma in microns (across all nodes).

thickness × branch order 2D histogram of neurite radii as a function of branch orders (across
all nodes).

thickness × path distance 2D histogram of neurite radii as a function of path distances to the
soma in microns (across all nodes).

4.3.4 Persistence diagrams

Persistence diagrams originate from the field of algebraic topology but recently have been proposed
as a representation for neural morphologies (Kanari et al., 2018). We briefly outline their underlying
algorithm here. Starting from each tip, one records the “birth time” of each branch as the distance of the
tip from the soma. Hereby, the distance is measured according to some filter function f. While moving
away from the tips towards the soma, at each branch-point the “younger” branch, i.e. the one with a
smaller birth time, is “killed” and its “death time” is recorded as the distance of the branch point from
the soma. This results in a 2D point cloud of (birth time, death time) for each branch, the so called
persistence diagram, in which only the longest branch survived until the soma and has a death time of
0. Depending on the filter function f, different aspects of the neuron’s topology can be captured. Here
we employed four different filter functions, following Kanari et al. (2018):

radial distance returns the Euclidean distance of node x to the soma s;

path length returns the sum over the lengths of all segments along the path connecting node x with
the soma s;

branch order returns the branch order of node x;

height returns the difference of z-coordinates between node x and the soma s projected onto the z-axis.

Euclidean distance is undefined for persistence diagrams themselves. To circumvent this problem we
converted each persistence diagram into a 1D or 2D image and used Euclidean distance on the results as
this procedure has been shown to work well in the neural domain (Kanari et al., 2019; Li et al., 2017).
To obtain a 2D Gaussian persistence image we performed kernel density estimation of the point cloud
using a 2D Gaussian kernel (gaussian_kde from the scipy.stats package with default settings). We
evaluated the density estimate on a 100 × 100 equidistant grid spanning a [0,maxbirth] × [0,maxdeath]
rectangle. Here maxbirth and maxdeath refer to the maxima across all cells within each data set (for
actual values see the linked Github repository). For the purposes of downstream analysis, we treated
this as a set of 10, 000 features.

The 1D Gaussian persistence vector we obtained in a similar way. Namely, we performed a one-
dimensional Gaussian kernel density estimation of the neurites’ “living time” (birth−death) and sampled
the resulting estimate at 100 equidistant points spanning [0,maxbirth].
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4.4 Classification
Each feature representation was used as a predictor for pairwise and multinomial classification. Except
for morphometric statistics, we reduced all representations using principal component analysis (PCA)
and kept as many features as needed to capture at least 90% of the variance on the training set (for cross-
validation, PCA was computed on each outer-loop training set separately, and the same transformation
was applied to the corresponding outer-loop test set). We divided all PCA components by the standard
deviation of the respective first principle component to put all features roughly on the same scale and to
allow for combination of features. Morphometrics were z-scored.

For binary classification, we used logistic regression with an elastic net regularization. It minimizes
the following loss function:

L = − 1
N

N∑
i=1

[
yi(x>i β)− log(1 + e−x>i β)

]
+ λ
[
α‖β‖2

2/2 + (1− α)‖β‖1

]
, (1)

where xi are predictors, yi a binary response (that can be 0 or 1), and there are N training sam-
ples. Regularization parameter α was fixed to 0.5, which is giving equal weights to the lasso and ridge
penalties. We used nested cross-validation to choose the optimal value of the regularization parameter
λ and to obtain an unbiased estimate of the performance. The inner loop was performed using the
civisanalytics Python wrapper around the glmnet library (Friedman et al., 2010) that does K-fold
cross-validation internally (default: 3-fold). We kept the default setting which uses the maximal value
of λ with cross-validated loss within one standard error of the lowest loss (lambda_best) to make the
test-set predictions. We explicitly made the civisanalytics Python wrapper use the loss (and not
accuracy) for λ selection:

from glmnet.scorer import make_scorer
from sklearn.metrics import log_loss

m = LogitNet(alpha=0.5, n_splits=3, random_state=17,standardize=False)
m.scoring = make_scorer(log_loss, greater_is_better=False, needs_proba=True)

The outer loop was 10 times repeated stratified 5-fold cross-validation, as implemented in scikit-learn
by

RepeatedStratifiedKFold(n_splits=5, n_repeats=10, random_state=17)

Model performance was assessed via mean test-set log-loss and test-set accuracy. For comparison be-
tween different classification schemes we also computed the mean test-set macro F1 scores, which is the
unweighted mean of the F1 scores for each class, and the mean test-set Matthews correlation coefficients
(Matthews, 1975).

For multi-class classification we used multinomial logistic regression with an elastic net regularization.
The parameters and the cross-validation procedure were the same as above.

The processing pipeline including preprocessing, feature extraction and classification was automated
using DataJoint (Yatsenko et al., 2015).

4.4.1 Selection of top performing features

We identified the top five performing feature representations for each “modality” (full-neuron, axon,
dendrite, as well as axon + dendrite) based on their mean binary classification performance across data
sets and identified their superset (six features). We also included the best performing morphometric
distribution to have at least one feature representation of each category investigated. This lead to the
seven features shown in Figure 5.

4.4.2 Statistical analysis of differences

We estimated the mean difference between two feature representations A and B as

δ(A,B) = 1
|P|

∑
p∈P

(
`(B, p)− `(A, p)

)
,
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where P denotes the set of pairs of types across the four data sets, |P| = 112 is their total number, and
`(X, p) is cross-validated log loss of feature X for pair p. To estimate the standard error of δ(A,B) we
use the jackknife procedure (Efron and Hastie, 2016). We repeat the procedure leaving out one type τ
entirely, so that all pairs including that type are left out:

δ−τ = 1
|P−τ |

∑
p∈P−τ

(
`(B, p)− `(A, p)

)
,

where P−τ is the set of pairs without type τ . This yields n = 31 estimates of δ−τ , with the jackknife
estimate of the standard error given by

ŜE(δ(A,B)) =
[n− 1

n

∑
τ

(δ−τ − δ̄)2
] 1

2
,

where δ̄ = 1
n

∑
τ δ−τ . All reported p-values were obtained with a z-test using

z = δ(A,B)
ŜE(δ(A,B))

.

4.4.3 Other classification schemes

For comparison with different classification schemes we used the 3-nearest neighbour classifier and the
decision tree classifier of the Python scikit-learn implementation:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier

m_neighbour = KNeighborsClassifier(n_neighbours=3)
m_tree = DecisionTreeClassifier(random_state=17)

4.5 t-SNE visualization
For the t-SNE visualization (van der Maaten and Hinton, 2008) of each data set, we reduced density
maps and morphometric statistics to as many principal components needed to keep 90% of the variance
each. As done during classification, we scaled each set of PCs by the standard deviation of the respective
PC1, to put both sets roughly on the same scale. Then we stacked them together to obtain a combined
representation of each cell. Exact (non-approximate) t-SNE was run with perplexity 50 and random
initialization using the scikit-learn implementation:

TSNE(perplexity=50, method='exact', random_state=42)

To plot the coverage ellipses for each cell type (Figure 8), we used robust estimates of location and co-
variance, so that the ellipses are not influenced by outliers. We used the minimum covariance determinant
estimator (Rousseeuw and Driessen, 1999) as implemented in MinCovDet() in scikit-learn.

4.6 Robustness analysis
Morphological tracings are done manually and reconstruction quality can vary between protocols and
experts. We assessed the robustness of the top performing feature representations by repeating the
classification procedure on only partially traced neurons. We simulated incomplete tracings using the
full reconstructions of the V1 L2/3 data set and assessed the performance of all pairwise classifications
(Fig. 7). Incomplete tracings were simulated by successively removing 10–90% of all branches starting
with the branches of the highest branch order. We then used the XZ density map, the morphometric
statistics and the 2D persistence image for each degree of truncation as predictors.

To estimate the chance-level performance we shuffled the class labels for each pairwise classification
at each truncation grade and repeated our classification pipeline with shuffled labels. The resulting
distribution of chance-level test-set log loss values was in agreement with the theoretical value of ln(2).
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Supplementary

A B C

Figure S1: (A–C) Conversion of pairwise classification performance between different average performance
metrics. Each dot represents the average across all pairs within one data set for one modality and one selected
feature representation. The conversion is shown between average log-loss and average accuracy (A), average
log-loss and average F1 score (B), and average log-loss and average Matthews correlation coefficient (C). The
grey line denotes a quadratic regression fit.

A B

Figure S2: Comparison of average log-losses for each statistic in each modality and data set for binomial (A)
and for multinomial classification (B). In both cases, dendrites perform considerably worse than any of the other
modalities.
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Figure S3: Conversion from multi-class loss to accuracy for each data set. The colored lines denote a linear
regression fit to the respective data set. V1 layer 5 (orange) is almost perfectly separable with accuracies close
to 1 for some feature representations. This is also indicated by the emerging clusters in Figure 8.

Figure S4: T-SNE embeddings of all four data sets (perplexity 50) for dendrites. We used a combined feature
representation consisting of XZ density map and morphometric statistics. Both feature representations were
reduced to as many PCs needed to keep 90% of the variance and combined into one feature set prior to t-SNE.

Bipolar cells V1 Layer 2/3 V1 Layer 4 V1 Layer 5

Figure S5: Visualization of the coefficient vectors that are fitted during the multinomial Logistic regression on
the morphometric statistics for each data set. The data shown here is based on the full neural reconstructions.
White squares indicate a coefficient of zero and have been masked out to improve visibility.
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