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ABSTRACT: 

It has long been noted that the cell arrangements in epithelia, regardless of their origin, exhibit 

some striking regularities: first, the average number of cell neighbours at the apical side is 

(close to) six. Second, the average apical cell area is linearly related to the number of 

neighbours, such that cells with larger apical area have on average more neighbours, a relation 

termed Lewis’ law. Third, Aboav-Weaire’s (AW) law relates the number of neighbours that a 

cell has to that of its direct neighbours. While the first rule can be explained with topological 

constraints in contiguous polygonal lattices, and the second rule (Lewis’ law) with the 

minimisation of the lateral contact surface energy, the driving forces behind the AW law have 

remained elusive. We now show that also the AW law emerges to minimise the lateral contact 

surface energy in polygonal lattices by driving cells to the most regular polygonal shape, but 

while Lewis’ law regulates the side lengths, the AW law controls the angles. We conclude that 

global apical epithelial organization is the result of energy minimisation under topological 

constraints. 
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INTRODUCTION 

Epithelia are polarized tissues. This means that cell properties change along the apical-basal axis (Fig. 

1a). In particular, cells adhere tightly on the apical side via an adhesion belt composed of Cadherins, 

while they bind to the extracellular matrix on the basal side. When viewed from the apical side, the 

tissue appears as a contiguous polygonal lattice (Fig. 1b). The organisation of the polygonal lattice 

may appear random at first sight, but it has previously been noted to follow certain phenomenological 

laws. First, even though the fraction of cells with a certain number of neighbours differs hugely 

between epithelial tissues (Fig. 1c), the average number of neighbours, 𝑛̅, is always close to six (Fig. 

1d) [1-7] because of topological constraints in 2D contiguous polygonal lattices [4, 8]. In fact, in the 

limit of an infinite number of polygons, the average number of neighbours is exactly 

 

𝑛̅ = 6,             (1) 

 

if three cells meet at each vertex; this can be derived from Euler's formula, v-e+f =2, which formulates 

a relationship between the number of vertices, v, edges, e, and faces, f. Second, the average apical area 

is linearly related to the number of cell neighbours, n, a relation termed Lewis' law (Fig. 1e), i.e. 

 

𝐴𝑛
̅̅ ̅̅

𝐴̅
=

𝑛−2

4
            (2) 

 

Here, 𝐴𝑛
̅̅̅̅  refers to the average apical area of cells with n neighbours, and 𝐴̅ refers to the average 

apical area of all cells in the tissue. We have recently shown that Lewis’ law can be explained with a 

minimisation of the lateral cell-cell contact surface energy (Kokic et al, submitted). The lateral contact 

surface energy is minimal if the cell-cell contact area, and thus the combined cell perimeter is 

minimised. For a given apical area, the cell perimeter is minimal if the polygons are the most regular. 

To form a contiguous polygonal lattice from regular polygons, these need to all have the same 

side/edge length. However, for the same polygon area, side lengths differ between polygon types (Fig. 

1f). In epithelial tissues, apical areas vary as a result of several processes, most prominently growth 
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and cell division. By following the relationship between polygon area and polygon type as stipulated 

by Lewis' law (Eq. 2), the difference in side lengths is minimised between cells. However, equal side 

lengths are only achieved if the areas followed a quadratic rather than a linear relationship, 

 

𝐴𝑛̅̅ ̅̅

𝐴̅
≈ (

𝑛

6
)

2
.           (3) 

 

This quadratic relationship only emerges in case of a larger variability in apical areas than previously 

observed in epithelia. We confirmed this prediction by increasing the area variability in the 

Drosophila larval wing disc, which led to the predicted quadratic relationship (Kokic et al, 

submitted). 

 

Finally, Aboav-Weaire's law (AW law) formulates a relationship between the number of neighbours, 

n, that a cell has and the average number of neighbours, 𝑚𝑛, of its direct neighbours (Fig. 1g). Aboav 

[9] empirically observed for grains in a polycrystal that 

 

𝑚𝑛 ∙ 𝑛 = 5𝑛 + 8.          (4) 

 

Eq. 4 has previously been found to be a close approximation to the neighbour relationships in 

epithelial tissue in both plants [10-12] and animals [7] (Fig. 1h). However, Eq. 4 cannot explain 

regular hexagonal packings, where 𝑚6 = 6 ≠ 5 +
8

6
. Weaire suggested a refinement of the form 

 

𝑚𝑛 ∙ 𝑛 = 5𝑛 + 6 + 𝑉𝑎𝑟(𝑛),         (5) 

where 𝑉𝑎𝑟(𝑛) =  ∑ (𝑛 − 𝑛̅)2𝑓𝑛
∞
𝑛=3  is the variance of the polygon distribution, and 𝑓𝑛 is the fraction of 

cells with 𝑛 neighbours [13]. Eq. 5 applies to hexagonal lattices as 𝑉𝑎𝑟(𝑛) = 0, and reduces to Eq. 4 

for 𝑉𝑎𝑟(𝑛) =  2. Efforts to explain the mathematical basis of Eqs. 4 and 5 have led to a wide range of 
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alternative formulations [14], but no physical or mathematical argument has so far been established to 

explain the experimental observations. 

In the following, we will show that the emergence of the AW law in epithelia can be explained with 

the minimisation of the lateral contact surface energy. We previously showed that Lewis' law ensures 

that the side lengths of the different polygon types are the most similar, so that the different polygon 

types can fit within a polygonal lattice as the most regular polygons. To form a regular polygon also 

the internal angles of the polygon must match the polygon type, and to form a contiguous lattice, the 

internal angles around the shared vertex of adjacent cells must add to 360°. We show that this second 

constraint results in the AW law.  

 

 

RESULTS 

 

The emergence of the AW law can be explained with the minimisation of lateral surface energy  

 

In the first step, we sought to test whether the AW law could be explained with the minimisation of 

the lateral contact surface energy. We have previously introduced the simulation framework 

LBIBCell [15] to simulate epithelial tissues (Kokic et al, submitted). LBIBCell represents tissues in 

a 2D plane, and can thus be used to simulate the apical tissue dynamics (Fig. 2a). The simulation 

framework offers high spatial resolution, i.e., it represents the boundaries of all cells separately such 

that cells can unbind and the spatial resolution is sufficiently high that cell edges can be curved. 

Cortical tension as well as cell-cell adhesion are implemented via springs between vertices. The fluid 

inside and outside the cells is represented explicitly and the fluid dynamics are approximated by the 

Lattice Boltzmann method. The interaction between the elastic cell boundaries and the fluid is 

realised via an immersed boundary condition. 
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The biological parameters in the simulation are the growth rate, the cell division threshold (i.e. the 

apical cell area, at which the cell divides), as well as the spring constants representing cortical tension 

and cell-cell adhesion. We have previously adjusted these to recapitulate the quantitative data from 

the Drosophila larval wing disc, a model epithelial tissue, and we have re-used the same setup as 

described before (Kokic et al, submitted; Supplementary Material, Table S1). When we simulate the 

Drosophila larval wing disc dynamics while dividing cells either perpendicular to their longest axis 

(Hertwig’s rule [16]) (Fig. 2b, orange line) or randomly (Fig. 2b, cyan line), the resulting lattice 

results in polygonal relationships that are close to the AW law (Fig. 2b, black line). The deviation of 

the simulations from the AW law is similar to that observed for epithelial tissues (Fig. 2c). Thus, if we 

determine the parameters a and b for which   

 

𝑚𝑛 ∙ 𝑛 = 𝑎 ∙ 𝑛 + 𝑏          (5) 

best fits the simulations and the data, the inferred values differ in a similar way from those of the AW 

law (a=5, b=8) [9]. We note that the 𝑏 parameter deviates more than the 𝑎 parameter. Weaire linked 

the 𝑏 parameter to the variance in the observed polygon distribution, i.e. 𝑏 = 6 + 𝑉𝑎𝑟(𝑛) (Eq. 5) 

[13]. However, 6 + 𝑉𝑎𝑟(𝑛) does not correlate with the parameter 𝑏 that we infer from the data (Fig. 

2d), thus ruling out such a relationship. Given the definition of variance, the hexagon fraction declines 

with the variance of the polygon distribution (Fig. 2e), and 𝑉𝑎𝑟(𝑛) = 2  and thus 𝑏 = 8 as in Aboav’s 

formulation is observed only for tissues with low hexagon fraction (~30%), which are rare (Fig. 1c). 

We conclude that the LBIBCell simulations generate a distribution of cell-cell contacts that lead to 

similar parameters for the AW law as observed in epithelia, but that differ from those specified by 

Aboav and Weaire. This suggests that the AW law could be explained with a minimisation of the 

lateral contact surface energy. But why would energy minimisation result in neighbour arrangements 

that follow the AW law? 
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Perfect polygonal lattices do not follow Aboav’s law, but match Weaire’s law 

 

To understand the underlying constraint that leads to the particular form of the AW law, we consider 

perfect polygonal lattices made of regular polygons. The simplest case is a perfect hexagonal lattice 

(Fig. 3a, red). Here, all polygons must have the same area. To generate other regular lattices, cells 

with the appropriate areas must be placed in the correct relative position within the polygonal lattice. 

The relative areas of the different polygon types must follow the quadratic law (Eq. 3) so that all 

polygons in the lattice have the same side length. In addition, the internal angles of the cells that meet 

at a vertex must add up to 360° (Fig. 3b). The internal angles of a regular polygon with n neighbours 

(Fig. 3c) are given by 

 

𝜃𝑛 =  
𝑛−2

𝑛
∙ 180°,          (6) 

 

and only in few regular configurations, the angles at each vertex will add up to 360° (Fig. 3a). 

Consider for instance the case of a lattice made of repetitive elements with one square and two 

octagons: the 90° angle of a square and the 135° angles of two regular octagons (Fig. 3c) add up to 

360° at each vertex (Fig. 3a). If in addition, the octagons have about four times the area of the square 

(Eq. 3), a regular lattice emerges (Fig. 3a, blue). On the contrary, if the areas of neighbouring cells do 

not match such requirements, irregular lattices emerge (Fig. 3d).  

 

As noted above, in a hexagonal lattice the average number of neighbours is six, i.e., 𝑚6 = 6 ≠ 5 +
8

6
 

(Fig. 3e, red triangle), which violates Aboav’s law (Eq. 4, Fig. 3e, black line), but matches Weaire’s 

law (Eq. 5, Fig. 3e, red line). Also, the other arrangements that result in perfect polygonal lattices 

(Fig. 3a) deviate from Aboav’s law (Eq. 4, black line), but match Weaire’s law (Eq. 5, coloured lines) 

rather well (Fig. 3e). These perfect lattices also all emerge in LBIBCell tissue simulations when 

adhesive circles with the appropriate relative areas are placed at the appropriate relative positions in a 

grid (Fig. 3a, coloured lattices) and thus represent the configuration with the lowest lateral surface 
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energy. This shows that not all configurations that minimise the lateral contact surface area follow 

Aboav’s law.  

 

In summary, regular polygonal lattices follow Weaire’s law more closely than Aboav’s law (Fig. 3e), 

while epithelial tissues follow Aboav’s law more closely than Weaire’s law (Fig. 2c,d). What is 

special then about epithelial tissues, and what is the underlying physical principle that leads to these 

regularities?  

 

 

The AW law in epithelial tissues 

 

In an epithelial tissue, the apical areas are predetermined by several active processes, including cell 

growth, cell division, and interkinetic nuclear migration. As a result, the position of cells with a 

certain area does not follow a pattern that would allow the emergence of a contiguous lattice made 

from regular polygons. But, why would these lattices follow the AW law? 

 

According to Euler’s formula, cells have on average six neighbours [4, 8]. The plot of 𝑚𝑛 ∙  𝑛 with 

𝑚𝑛 = 6 versus n is reasonably close to the AW law (Fig. 4a, black line), but clearly deviates (Fig. 4a, 

green line). In a contiguous lattice, cells have to meet a further constraint, in that at each vertex point, 

the combined angle must be 360° (Fig. 3b). At each of the n vertices, the neighbouring cells should 

then have a combined angle of 360° - 𝜃𝑛 (Fig. 4b, inset). The average angle, 𝜃𝑚= 
(𝜃1+𝜃2)

2
, of the two 

neighbouring cells therefore follows from 𝜃𝑚 =
(360°−𝜃𝑛)

2
= 180° −

𝜃𝑛

2
= 180° ∙ (1 −

𝑛−2

2𝑛
), where we 

used Eq. 6 for 𝜃𝑛. We then obtain for the average number of neighbours 

 

𝑚𝑛 =  
360°

(180°−𝜃𝑚)
=  

4𝑛

𝑛−2
  .         (7) 
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This relationship approximates the AW law for neighbour numbers close to n = 5 rather well, but 

deviates for larger and smaller neighbour numbers (Fig. 4a, yellow line). We note that the internal 

angle of regular polygons, 𝜃𝑛, depends non-linearly on the polygon type n (Eq. 6, Fig. 4b). As a 

consequence, two cells, whose angles at a vertex add up to 2𝜃𝑚 yield a different 𝑚𝑛 depending on 

whether their angles are very similar or very different. If we take this non-linear effect into account 

(see Supplementary Information for details), and integrate within sensible physiological limits, i.e. 

𝜃min = 60°, the smallest internal angle of a regular polygon (triangle), and 𝜃max=
(360°−𝜃min)

2
= 150°, 

the internal angle of a regular dodecagon (12-gon), we obtain  

 

𝑚𝑛 =  {

3𝑛

(𝑛−3)
ln (5 −

12

𝑛
)      for  3 < 𝑛 ≤ 12

2 ln (
10𝑛−24

𝑛−6
)        for  𝑛 > 12

  ,       (8) 

 

which yields a rather close fit to the AW law for larger 𝑛 (Fig. 4c, grey line). In the limit of 𝑛 → ∞, 

Eq. 8 yields (Fig. 4c, blue line) 

 

𝑎 =  lim
𝑛 →∞

𝑚 =
180°

𝜃max−𝜃min
ln (

180°−𝜃min

180°−𝜃max
∙

𝜃max

𝜃min
) ≈ 4.6 ,      (9) 

 

𝑏 =  lim
𝑛 →∞

𝑚𝑛 − 𝑎𝑛 = 2 (
180°

𝜃min
) (

180°

𝜃max
) = 7.2 ,       (10) 

 

which is close to the parameters 𝑎 = 5 and 𝑏 = 8 in the AW law as given by Eq. 4 (Fig. 4c, black 

line), and within the range of parameter values inferred from biological data and the LBIBCell 

simulations (Fig. 2c). Aboav's empirical values 𝑎 = 5 and 𝑏 = 8 are obtained with 𝜃min = 50.4° and 

𝜃max = 160.7°, the lower bound of which is plausible only if trigons become distorted.   

 

For small 𝑛, Eq. 8 predicts larger values for 𝑚𝑛 than what is observed. So, what happens for smaller 

𝑛? Consider a regular triangle. To meet the angle constraint, it requires neighbouring polygons that 
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each have 12 neighbours (Fig. 3a, purple). To maintain a lattice of equilateral polygons, this would 

require a tissue with a large variability in cell area (Eq. 3), and a strict pattern of large and small cells 

(Fig. 3a, purple). Such tissues are unlikely to emerge from biological processes. In the case of more 

physiological variabilities in apical cell areas, a triangular cell will border cells that have a smaller 

area than what is required for a regular dodecagon (n=12) according to the quadratic law (Eq. 3). As a 

consequence, such neighbouring dodecagonal cells would have a smaller side length than the 

triangular cell. To fit into a contiguous lattice, the polygons would then become stretched and their 

internal angles would no longer correspond to that of a regular polygon. Alternatively, the neighbours 

can assume a lower neighbour number than 12. Also in this case, the internal angles can no longer 

reflect that of a regular polygon as they would no longer add to 360°. 

 

Accordingly, we extended the above formalism to allow for an irregular central polygon that deviates 

from the perfect internal angle 𝜃𝑛 by an angle 𝜃i (Fig. 4d, inset; see Supplementary Information for 

details). In the limit of 𝑛 → ∞, we recover the same value for the parameter 𝑎 as for the regular 

polygon case (Eq. 9), but 𝑏 now depends also on the maximal value of the deviatory angle 𝜃i. We 

obtain an excellent fit to the AW law (a=5, b=8, Fig. 4d, black line) when we use 𝜃min = 360° −

𝜃𝑛 − 𝜃i − 𝜃max and 𝜃max = 151.3°, and set the symmetric upper bounds of the angle mismatch to 

|𝜃i
−| = 𝜃i

+ = 0.59
2𝜋

𝑛
, where 

2𝜋

𝑛
 is the upper limit to maintain convexity (Fig. 4d, red line).  

 

In fact, there is sufficient parametric freedom to reproduce all measured values of a and b (Fig. 2c) by 

adjusting the integration bounds for the angles, 𝜃min and 𝜃max, and the upper bounds 𝜃i
−, 𝜃i

+ for the 

angle deviation 𝜃i. Thus, the neighbour relationships in the Drosophila larval wing disc (a=4.76, 

b=8.34, grey) deviate slightly from the classical AW law (Eq. 4, Fig. 5a, black), but can be 

reproduced very well by the model (Fig. 5a, red line), and the predicted upper bound, |𝜃i
−| = 𝜃i

+ =

0.57
2𝜋

𝑛
, in the angle deviation matches that observed in the tissue very well (Fig. 5b). Importantly, 

even though we introduced the irregularity assumption to explain the neighbour relationships of cells 

with few neighbours, it applies to all polygon types. In agreement with this, the great majority of 
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epithelial cells deviate from a regular shape as measured by their ellipticity, and the irregularity of the 

apical sides of epithelial cells does not dependent on the cells’ neighbour number (Fig. 5c).  

 

Much as the internal angles, we expect the side lengths to deviate from that of a regular polygon. In a 

regular polygonal lattice, all side lengths should be equal (Eq. 3, Fig. 5d, yellow line), and the average 

normalised side lengths are indeed close to one (Fig. 5d). Single cells mostly deviate from these 

averages, much as only the average area per polygon type follows Lewis’ law (Eq. 2, Fig. 5e, black 

line). There are two sources for the observed irregularity. For one, the cellular processes result in a 

spatial distribution of apical areas in epithelia that are not consistent with the requirements of regular 

polygonal lattices (Fig. 3a). Secondly, apical areas in epithelia follow a continuous area distribution 

(Fig. 5f, black line) while the quadratic law (Eq. 3) specifies discrete optimal areas for each polygon 

type (Fig. 5f, yellow lines). With regard to the second point, we indeed observe that cell shape, side 

lengths, and angles deviate the least from that of a regular polygon when a cell’s neighbour number 

corresponds to the apical area according to the linear Lewis’ law (Eq. 2, Fig. 5g-i, black line) or the 

quadratic law (Eq. 3, Fig. 5g-i, yellow line).  

 

 

 

CONCLUSION 

 

We conclude that the AW law, like Lewis’ law, emerges in epithelial tissues because cells minimise 

the overall lateral surface energy and thus the combined cell perimeter. By following the relationship 

between polygon area and polygon type as stipulated by Lewis' law (Eq. 2) or the quadratic law (Eq. 

3), the difference in side lengths is minimised between cells. By following the neighbour relationships 

that are described by the phenomenological AW law, the internal angles are closest to that of a regular 

polygon while adding to 360° at each vertex. Both the linear Lewis’ law and the AW law deviate from 

the curve predicted for a regular polygonal lattice. Regular polygonal lattices, however, require strict 

patterns of correctly sized cells. Given that cell growth and cell division processes result in a more 
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variable spatial distribution of apical cell sizes, these cannot give rise to a regular polygonal lattice. 

The observed lattices therefore represent a trade-off to achieve the most regular cell shapes in a 

contiguous lattice with differently-sized apical areas.  

 

 

METHODS 

 

Image Processing 

Cell boundaries and cell properties (cell area, polygon type, ellipse fit axes) were obtained in (Kokic 

et al., submitted). In addition, the side lengths and the internal angles of all cells were extracted using 

EpiTools [5] and the Fiji [17] plugin Tissue Analyzer [18]. To this end, the EpiTools source code was 

modified to also export the IDs of the 𝑛𝑖 neighbours of a cell to permit the calculation of 𝑚𝑛. R 

scripts were used to extract and analyse data, calculate statistics, and plot the results. 

 

Set-Up of the LBIBCell simulations 

The LBIBCell simulations were set up as described in detail before (Kokic et al, submitted) and is 

summarised in the Supplementary Material.  

 

Data and Software availability 

All source codes are freely available at: 

 

https://git.bsse.ethz.ch/iber/Publications/2019_vetter_kokic_aboav-weaire-law. 
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Figure legends 

 

Figure 1: Principles of Epithelial Organisation 

(a) A cartoon of an epithelial tissue. The tissue is polarized with an apical and basal side. At the apical 

side cells adhere tightly via adhesion junctions (green). Nuclei are depicted in pink.  

(b) The epithelial cells (denoted as faces - f) form a contiguous polygonal lattice on the apical side. 

Typically, three edges, e, meet in a vertex, v.  

(c) Tissues differ widely in the frequency of neighbour numbers. The legend provides the measured 

average number of cell neighbours for each tissue and the references to the primary data [1-7]. Data 

points for n < 3 were removed as they must present segmentation artefacts. The tissue samples are: 

Chick neural tube epithelium (cNT) [2],  Drosophila eye disc (EYE) [2],  Drosophila peripodal 

membrane from the larval eye disc (dPE), Drosophila larval wing disc (dWL) [1-6, 19] (Kokic et al, 

submitted), Drosophila pre-pupal wing disc (dWP) [1, 2], Drosophila mutant wing pre-pupa (dMWP: 

the expression of myosin II was reduced in the wing disc epithelium by expressing an UAS-zipper-

RNAi using the C765-Gal4 line) [2], and Drosophila pupal wing disc (dPW) [1]. In case of the 

Drosophila peripodal membrane from the larval eye disc (dPE), the numbers indicate the 

developmental age as the number of ommatidial rows that have formed. In case of the Drosophila 

pupal wing disc (dPW) [2], TPx indicates subsequent, but not further specified pupal time points [1]; 

30h and 48h specifies the time post puparium formation.  

(d) The measured average number of cell neighbours is close to the topological requirement 𝑛̅ = 6 in 

all tissues; see panel c for the colour code.  

(e) The relative average cell area, 
𝐴𝑛̅̅ ̅̅

𝐴̅
, is linearly related to the number of neighbours, n, and follows 

Lewis’ law (Eq. 2, black line) in all reported tissues. The colour code is as in panel c, but data is 

available only for a subset of those tissues. Few cells with more than 7 neighbours have been 

measured and estimates of the mean areas are therefore unreliable (shaded part).  

(f) The normalised side length of a regular polygon with n vertices for a fixed area.   

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 27, 2019. ; https://doi.org/10.1101/591461doi: bioRxiv preprint 

https://doi.org/10.1101/591461
http://creativecommons.org/licenses/by-nc/4.0/


 17 

(g) The AW law formulates a relationship between the number of neighbours, n, that a cell has and 

the average number of neighbours, 𝑚𝑛, that its direct neighbours have. The product 𝑚𝑛 ∙ 𝑛 can be 

determined by summing over all 𝑛 neighbours. 

(h) The epithelial tissues follow the AW law (black line). The colour code is as in panel c, but data is 

available only for a subset of those tissues.  

Panels a-f are reproduced with modifications from (Kokic et al, submitted). 

 

 

Figure 2: The AW law emerges in LBIBCell Simulations  

(a) Representation of the apical epithelial surface as a 2D simulation plane in LBIBCell. The cartoon 

shows a cubical section of a simple columnar pseudostratified epithelium. LBIBCell simulates the 

tissue mechanics and morphodynamics of the 2D plane (indicated in pink) that goes through the 

adherens junctions (marked in green), which are located below the apical surface. Cell boundaries are 

geometrically highly resolved and cell boundaries and cell-cell junctions are modelled with elastic 

springs. The cartoon and legend are reproduced with modifications from (Kokic et al, submitted). 

(b) The AW law plotted for LBIBCell simulations with random cell division (blue) or cell division 

perpendicular to the longest axis (red).   

(c) The estimated coefficients a, b when fitting 𝑚𝑛 ∙ 𝑛 = 𝑎 ∙ 𝑛 + 𝑏 to the data (Fig. 1h) and the 

LBIBCell simulations (Fig. 2b).   

(d) The estimated coefficient b when fitting 𝑚𝑛 ∙ 𝑛 = 𝑎 ∙ 𝑛 + 𝑏 does not positively correlate with 6 +

𝑉𝑎𝑟(𝑛) in epithelia. 𝜌 is the Pearson correlation coefficient. 

(e) The hexagon fraction versus the variance in the polygon distribution 𝑉𝑎𝑟(𝑛) for all available data. 

 

 

Figure 3: The AW law does not emerge in perfect lattices 

(a) In case of appropriate relative sizes and positions, adherence of circles results in perfect lattices 

(grey), as confirmed in LBIBCell simulations.   
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(b) The angles at each tricellular junction have to add up to 360°.  

(c) Interior angles of regular polygons.  

(d) In case of inappropriate relative sizes and positions, adherence between circles results in imperfect 

lattices.   

(e) The products of 𝑚𝑛 ∙ 𝑛 versus neighbour number 𝑛 for the perfect lattices in panel a deviate from 

Aboav’s law (Eq. 4, black line), but match Weaire’s law (Eq. 5, coloured lines; colour code as in 

panel a) rather well. Results from LBIBCell simulations (triangles) are close to analytic results 

(circles). 

 

 

Figure 4: The AW law in epithelial tissues arises because of an angle constraint. 

(a) The product of 𝑚𝑛 ∙ 𝑛 versus neighbour number 𝑛 for the AW law (black), 𝑚𝑛 = 6 (green), 𝑚𝑛 =

 
4𝑛

𝑛−2
 (yellow). 

(b) Interpolation between the angles of regular polygons, 𝜃𝑛 =  
𝑛−2

𝑛
∙ 180°, versus the number of 

vertices n. Inset: A cartoon of the angles at a tricellular junction between a cell with n neighbours and 

its two neighbours with angles 𝜃1 and 𝜃2.  

(c) Comparison of an analytical approximation for regular polygons (Eq. 8, grey) and its asymptote 

(𝑎 ≈ 4.6 and 𝑏 = 7.2) (blue) to Aboav–Weaire’s law (black).  

(d) Comparison of an analytical approximation for irregular polygons (red) to Aboav–Weaire’s law 

(black).  Inset: A cartoon of the angles at a tricellular junction in case of an irregular central polygon 

with angle 𝜃𝑛 + 𝜃i. 

 

 

Figure 5: Individual apical areas in epithelia are irregular.  

(a) The product of 𝑚𝑛 ∙ 𝑛 versus neighbour number 𝑛 for cells in the Drosophila wing disc follows 

the AW law on average (black line), and is approximated very well by the analytical approximation 

for irregular polygons (red line) when optimizing the angle bounds (𝜃min = 360° − 𝜃𝑛 − 𝜃i −
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𝜃max, 𝜃max = 151.3°, |𝜃i
−| = 𝜃i

+ = 0.59
2𝜋

𝑛
) to match the AW law (a=4.76, b=8.34) that best matches 

the data (Fig. 2c). 

(b) Angle versus polygon type for cells in the Drosophila wing disc. The observed average angles are 

those of regular polygons (yellow lines). The red solid lines mark 𝜃𝑛 ±  𝜃i
+, the predicted angle range 

of the irregular central polygon with 𝜃i
+ = 0.59

2𝜋

𝑛
. 

(c) Ellipticity of cells in the Drosophila wing disc as measured by the ratio of the axes of fitted 

ellipses. A ratio of 1 (yellow line) corresponds to regular polygons. 

(d) Normalised side length versus polygon type for cells in the Drosophila wing disc. The mean 

deviates from the ideal curve 
𝑆𝑛
̅̅̅̅

𝑆̅ = 1 (yellow line). 

(e) The relative average cell area, 
𝐴𝑛
̅̅ ̅̅

𝐴̅
, for cells in the Drosophila wing disc. The average is linearly 

related to the number of neighbours, n, in the Drosophila wing disc, and follows the linear Lewis’ law 

(Eq. 2, black line) rather than the quadratic law (Eq. 3, yellow line). 

(f) Normalised area distribution for cells in the Drosophila wing disc. The yellow vertical lines mark 

the areas for each polygon type required to form a regular polygon lattice (Eq. 3).  

(g-i) Ellipticity, as measured by the ratio of the axes of fitted ellipses, (f), variation of side length (g), 

and variation in the angles (h) of single cells in the Drosophila wing disc versus the fold-deviation of 

their apical area, 𝐴𝑖 , from that appropriate for their polygon type, 𝐴𝑛
̅̅̅̅ , according to either the linear 

Lewis’ law (Eq. 2, black line) or the quadratic law (Eq. 3, yellow line). Variability in side length and 

angles was calculated for each cell as 
𝑥𝑗−<𝑥>

<𝑥>̅̅ ̅̅ ̅̅
, where 𝑥𝑗 refers to side length or angle, respectively, of 

each cell j, and  < 𝑥 > indicates the expected value for the particular polygon type of the cell.  
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1 Analytical approximation to Aboav–Weaire’s law

1.1 Approximation for regular polygons

n

n1

n2

θn
θ1
θ2

Figure S1: Illustration of a cell neighbourhood with regular central cell.

Consider the case of a regular polygon with n edges in the centre of a local epithelial cell
neighbourhood. The interior angles of a regular polygon are given by

θn = π
n− 2

n
. (1)

Inversely, the number of edges can be obtained from the interior angles as

n =
2π

π − θn
. (2)

Assuming that all junctions are tri-cellular as illustrated in Fig. S1, and given θn, the average angle
left for the two neighbouring cells is

θm =
θ1 + θ2

2
=

2π − θn
2

(3)

at each vertex. If θ1 = θ2 and also both neighbour cells are regular polygons, the mean neighbour
number of all neighbours of a cell with n neighbours follows as

mn =
2π

π − θm
=

4n

n− 2
. (4)

However, in most polygonal lattices, θ1 and θ2 differ. We are therefore now averaging over all
allowed values of θ1:

mn =

〈
n1 + n2

2

〉
θ1

(5)

where

n1 =
2π

π − θ1
, n2 =

2π

π − θ2
(6)

with
θ2 = 2π − θn − θ1. (7)

The average is taken over a physiological range [θmin, θmax] (to be specified later):

mn =

〈
π

π − θ1
+

π

π − θ2

〉
θ1

=
1

θmax − θmin

∫ θmax

θmin

πθn
(π − θ1)(π − θ2)

dθ1. (8)

2
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Notice that this definition is symmetric in θ1, θ2, i.e., one could also average over θ2 instead. The
integral in Eq. 8 can be cast into the form∫

1

Aθ2 +Bθ + C
dθ (9)

with coefficients

A = − 1

π
, B = 2− θn

π
=
n+ 2

n
, C = θn − π = −2π

n
, (10)

which evaluates to ∫
1

Aθ2 +Bθ + C
dθ =

1√
−D

ln

∣∣∣∣2Aθ +B −
√
−D

2Aθ +B +
√
−D

∣∣∣∣+ const, (11)

where

D = 4AC −B2 = −
(
n− 2

n

)2

< 0. (12)

Therefore, after some basic algebra, Eq. 8 can be evaluated to

mn =
π

θmax − θmin
ln

∣∣∣∣ π − θmin

π − θmax

θn − (π − θmax)

θn − (π − θmin)

∣∣∣∣. (13)

Eq. 13 requires careful selection of the integration bounds θmin, θmax, which can be functions of
n in general. Trigons are the polygons with the lowest possible neighbour number, and assuming
regular polygons, a consistent choice for the minimum allowable angle is

θ =
π

3
. (14)

For the upper bound, a natural choice appears to be

θ =
2π − θ

2
=

5

6
π (15)

(corresponding to n = 12), as cells with more than 12 edges are hardly ever observable in epithelial
tissue. Since this rationale applies to both angles θ1 and θ2 alike, and since they are coupled via
Eq. 7, the bounds must be applied symmetrically, yielding

θmin = max
{
θ, 2π − θn − θ

}
θmax = min

{
θ, 2π − θn − θ

}
.

(16)

As long as n ≤ 12, this evaluates to θmin = 7π/6 − θn and θmax = 5π/6 (Fig. S2). With these
integration bounds, Eq. 13 becomes

mn =


3n

n− 3
ln

[
5− 12

n

]
for 3 < n ≤ 12

2 ln

[
10n− 24

n− 6

]
for n ≥ 12

. (17)

This relationship approximates Aboav–Weaire’s empirical law very well for n ≥ 6 (Fig. S3). Aboav–
Weaire’s law can thus be explained for large n by the cell’s tendency toward a regular shape under
the constraint that the three angles at cell junctions must sum up to 2π.

3
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Figure S2: Integration bounds as defined in Eq. 16. The blue region indicates the integration
domain.
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Figure S3: Comparison of analytical approximations to Aboav–Weaire’s law for regular polygons.

We now consider the asymptotic behavior in the limit of large n. Aboav’s empirical law reads

mn = an+ b (18)

with coefficients a = 5, b = 8 originally observed in polycrystals [1]. Weaire derived the coefficients
a = 5, b = 6 under a mean field approximation of polygonal regularity, which led him to suggest
that b = 6 + Var(n) [17]. Taking the limit in Eq. 13, we find a linear asymptote with

a = lim
n→∞

mn =
π

θmax − θmin
ln

[
π − θmin

π − θmax

θmax

θmin

]
= 2 ln 10 ≈ 4.605... (19)

and

b = lim
n→∞

mn− an = 2

(
π

θmin

)(
π

θmax

)
=

36

5
= 7.2. (20)

Both of these values lie remarkably well within the experimentally observed range of the coeffi-
cients for epithelial tissue (see Fig. 2c in the main article). Other values can be obtained if the
physiological range over which the average is taken is chosen differently. The dependence of a and

4
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b on the integration bounds is shown in Fig. S4 along with the inverse relationship. As an example,
Aboav’s empirical values a = 5, b = 8 are obtained if θmin ≈ 50.4◦ and θmax ≈ 160.7◦, which are
physiologically plausible values for epithelial tissue. Taking the mean epithelial coefficients a = 4.8,
b = 8 (Fig. 2c) as a reference, we find the slightly tighter bounds θmin ≈ 51.9◦ and θmax ≈ 156.0◦.
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Figure S4: Asymptotic behavior of the analytical approximation in the limit n → ∞. (a-b) Line
coefficients a and b as a function of the integration bounds θmin and θmax. Typical values for a and
b are highlighted as blue contour lines. Aboav–Weaire’s linear law can be obtained asymptotically
by intersecting the contours for the desired values of a and b, yielding the physiological range for
the angles. (c-d) Inverse relationship, obtained by numerical inversion of Eqs. 19 and 20.
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1.2 Generalisation to irregular polygons

n

θn

θ1
θ2

2π
n

θi

Figure S5: Illustration of the neighbourhood of an irregular polygon. The internal angle deviates
from that of a regular polygon, θn, by the angle θi. The dashed lines mark the outline of a regular
pentagon in the centre, as well as the maximal angle θ+i < 2π

n for θi to maintain convexity. The
angles of the three polygons, θn + θi, θ1, θ2, must add to 2π.

Evidently, the regularity assumption on the polygonal cell shape breaks down for small n. Eq. 17
predicts higher polygon types around triangles, quadrilaterals and pentagons than can be observed
in many cellular arrangements (Fig. S3). In real epithelial tissue, cells with large area are not avail-
able discretionarily, as required for the regularity assumption to hold for small n. Additionally, side
lengths between neighbouring cells must match at shared edges, posing further limitations on the
attainable cell regularity in a contiguous lattice. Therefore, a generalisation of the above formalism
is proposed here for irregular central polygons.

We now consider a deviation θi from the internal angle of a regular polygon (Eq. 1) (Fig. S5),
and calculate the expected neighbour number of direct neighbours by averaging over a physiological
range θi ∈ [θ−i , θ

+
i ], yielding

mn =
1

Vol(I)

∫
I

1

θmax − θmin

∫ θmax

θmin

π

(π − θ1)
+

π

(π − θ2)
dθ1 dθi (21)

subject to the modified angle sum constraint

θ2 = 2π − θn − θi − θ1 (22)

and modified integration bounds

θmin = max
{
θ, 2π − θn − θi − θ

}
θmax = min

{
θ, 2π − θn − θi − θ

}
.

(23)

Here, I denotes the set of possible irregularity angles

I =
{
θi | θmin < θmax, θ

−
i ≤ θi ≤ θ

+
i

}
(24)

which depends on n through Eqs. 23 and 1, and

Vol(I) =

∫
I

dθi (25)
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Figure S6: Comparison of analytical approximations to Aboav–Weaire’s law for irregular polygons.

is its volume (in the present one-dimensional case, its length). A natural choice for the permitted
degree of irregularity appears to be to set the bounds θ−i , θ+i to a certain fraction of the turning
angle of regular polygons, π − θn = 2π/n, which represents the maximum excess angle that will
maintain convexity of the polygon (Fig. S5). It is therefore reasonable to set

θ−i = −α2π

n
, θ+i = β

2π

n
(26)

with free (but possibly interrelated) coefficients α, β ∈ [0, 1).
The inner integral in Eq. 21 can be evaluated using Eq. 13, yielding

mn =
1

Vol(I)

∫
I

π

θmax − θmin
ln

∣∣∣∣ π − θmin

π − θmax

θn + θi − (π − θmax)

θn + θi − (π − θmin)

∣∣∣∣ dθi. (27)

However, Eq. 27 is a non-elementary integral as it can be expressed in terms of dilogarithm functions
[7]. Taking also the complicated integration domain I into account, a closed-form solution appears
to be inaccessible. Nevertheless, with the assumptions used for the irregularity bounds in Eq. 26,
it is easy to recognize that the same asymptotic slope a as for the regular case is recovered, since
Eq. 27 converges to Eq. 13 as θ−i , θ

+
i → 0, which is the case for n→∞. The asymptotic intercept

b, on the other hand, depends on the granted range of irregularity.
In order to calculate mn for given n, we evaluate the double integral numerically using the

acceptance-rejection method with uniform sampling in the domain [θ−i , θ
+
i ] × [θ, θ] in MATLAB

2018a. The integral offers sufficient parametric freedom to get very close to the linear Aboav–
Weaire relationship over the entire range of polygon types (Fig. S6), and it still does if θ = 0 is fixed,
such that the lower integration bound θmin is essentially governed by the symmetry requirement
of θ1 and θ2. Furthermore, restricting the irregularity angles to symmetric domains by setting
α = β leaves us with two free parameters, θ and β. A curve fit of our model to the empirical line
mn = an+b with a = 5 and b = 8 yields least squared errors for θ = 151.3±0.7◦ and β = 0.59±0.04

with an adjusted coefficient of determination of R
2

= 0.997 (Fig. S6). Taking the mean epithelial
coefficients a = 4.8, b = 8 (see Fig. 2c in the main article) as a reference, we find θ = 146.3± 0.5◦

and β = 0.52± 0.03 (R
2

= 0.998), both of which are physiologically plausible values for epithelial
tissue.
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In summary, the linear Aboav–Weaire law emerges naturally for geometric reasons in contiguous,
two-dimensional cellular lattices when a limitation in locally available cell areas and matching side
lengths enforce polygonal irregularity, i.e., interior angles deviating from those of regular polygons.
For high-n polygons (n > 6), it can even be explained by the cells’ tendency toward regular
polygonal shapes alone. We expect this explanation of Aboav–Weaire’s law to be applicable also
to other systems partially driven by surface minimisation and area variability, such as soap bubble
froths or polycrystals. Our theoretical results might also be appreciable in terms of contact graph
theory, of which the present polygonal space-filling packing represents a special case.

8

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 27, 2019. ; https://doi.org/10.1101/591461doi: bioRxiv preprint 

https://doi.org/10.1101/591461
http://creativecommons.org/licenses/by-nc/4.0/


2 LBIBCell Simulations

Simulation framework We used the software LBIBCell [15] to simulate the detailed epithelial
tissue dynamics. LBIBCell simulates a 2D plane of the epithelial tissue, and thus allows us to
simulate the apical cell dynamics, or more precisely a plane where cells adhere laterally (Fig. 2a,
main manuscript). LBIBCell represents the extracellular and cytoplasmic spaces of the tissue as
Newtonian fluids and incorporates the fluid-structure interaction with the elastic cell boundaries
via an immersed boundary method [10]. The Navier-Stokes equation for the fluid dynamics is
solved using the Lattice Boltzmann method, i.e., the fluid and its motion are realised by particle
ensembles which stream and collide on a 2D regular lattice [2]. Cell boundaries are geometrically
highly resolved and cell boundaries and cell-cell junctions are modelled with elastic springs.

LBIBCell Simulations for Figure 2 The proliferating Drosophila larval wing disc tissue was
simulated as described in (Kokic et al, submitted); the parameter values are summarised in Table
S1. Simulations with two different cell division rules were carried out 10 times each. According to
the first cell division rule, Hertwig’s rule [5,3,8], cells divide perpendicular to their longest axis. In
the second set of simulations, the orientation of the cell division axis was randomised. Details on
the implementation of the cell division rules can be found in [15].

LBIBCell Simulations for Figure 3 To generate polygonal lattices of regular polygons, centres
of circular cells were placed at sites corresponding to the centres of regular polygons in different
Euclidean tilings by convex regular polygons (i.e., {6, 6, 6}, {4, 8, 8}, {4, 6, 12}, {3, 12, 12}). The
relative sizes of the cells followed the quadratic law (Eq. 3 in the main manuscript). In a second step,
the circular cells were enlarged uniformly until they collided at single points with their neighbours.
These start structures (LBIBCell input) were created using Inkscape [6], Fiji [13,14] and R [16]. A
detailed description of the pipeline and scripts are available on https://git.bsse.ethz.ch/iber/

Publications/2019_vetter_kokic_aboav-weaire-law. In a last step, cells were grown uniformly
until the entire lattice was filled with cells and cells thus formed a contiguous lattice. In order to
prevent gaps, the cell junction search radius was increased to its maximum value (cf. Figure S3
in Kokic et al., submitted; Table 1), and the amount of mass that was added intracellularly was
subtracted from the extracellular fluid (cf. Cell Junction and Membrane Channels in Table S1).
All other LBIBCell parameter values were set to the same values as for the Drosophila larval wing
disc (Table S1), and all subsequent quantifications were carried out as described in (Kokic et al.,
submitted).
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3 Supplementary Tables

Table S1: Parameter values for the simulation of Drosophila larval wing disc epithelia.
Parameters in grey-highlighted rows only affect the numerical accuracy of the simulations. The
other parameter values are specific to the biological problem of interest, and were determined based
on published quantitative data for the Drosophila larval wing disc pouch (Kokic et al, submitted).
This table is reproduced with modifications from (Kokic et al, submitted).
LBSolver Parameter Description Value [LB units] Value [SI units] Determination / Literature

τfluid - relaxation time 2 N/A [11]

BioSolver Parameter Description Value [LB units] Value [SI units] Determination / Literature
Cell Growth frequency of applying BioSolver 1:1 N/A (Kokic et al, submitted)

I - total number of iterations 64300 / 150000 24-96h AEL / 0-168h AEL (Kokic et al, submitted)
b - Gompertz constant 11.331 11.331 [9]
τ - Gompertz constant 0.8555 143.7773h/168h [9]

Membrane Tension frequency of applying BioSolver 1:10 N/A (Kokic et al, submitted)
Hookean spring constant 0.01 N/A [4]

Cell Junction frequency of applying BioSolver 1:10 N/A (Kokic et al, submitted)
search radius for junction building 1.0 N/A
length of intercellular cell junction 0.3 27nm 16-39nm [12]
Hookean spring constant 0.1 N/A [4]

Cell Division frequency of applying BioSolver 1:1000 N/A (Kokic et al, submitted)
maximal cell area 1771 14.1µm2 [4]
mean cell division threshold 837 7µm2 [4]
std cell division threshold 256 2µm2 [4]

Cell Extrusion frequency of applying BioSolver 1:100 N/A (Kokic et al, submitted)
minimal cell area 100 0.8µm2 [15, 4]

Membrane Channels frequency of applying BioSolver 1:1 N/A [15]
growth source 0.01 N/A [15]
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