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ABSTRACT	

Synthetic	lethal	screens	have	the	potential	to	identify	new	vulnerabilities	incurred	by	specific	cancer	

mutations	but	have	been	hindered	by	lack	of	agreement	between	studies.	Using	KRAS	as	a	model,	we	

identified	that	published	synthetic	lethal	screens	significantly	overlap	at	the	pathway	rather	than	gene	

level.	Analysis	of	pathways	encoded	as	protein	networks	identified	synthetic	lethal	candidates	that	were	

more	reproducible	than	those	previously	reported.	Lack	of	overlap	likely	stems	from	biological	rather	

than	technical	limitations	as	most	synthetic	lethal	phenotypes	were	strongly	modulated	by	changes	in	

cellular	conditions	or	genetic	context,	the	latter	determined	using	a	pairwise	genetic	interaction	map	that	

identified	numerous	interactions	that	suppress	synthetic	lethal	effects.	Accounting	for	pathway,	cellular	

and	genetic	context	nominates	a	DNA	repair	dependency	in	KRAS-mutant	cells,	mediated	by	a	network	

containing	BRCA1.	We	provide	evidence	for	why	most	reported	synthetic	lethals	are	not	reproducible	

which	is	addressable	using	a	multi-faceted	testing	framework.	

	

STATEMENT	OF	SIGNIFICANCE	

Synthetic	lethal	screens	have	the	power	to	identify	new	targets	in	cancer,	although	have	thus	far	come	up	

short	of	expectation.	We	use	computational	and	experimental	approaches	to	delineate	principles	for	

identifying	robust	synthetic	lethal	targets	that	could	aid	in	the	development	of	effective	new	therapeutic	

strategies	for	genetically	defined	cancers.		
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INTRODUCTION	

Synthetic	lethality	is	a	type	of	genetic	interaction	that	occurs	when	the	simultaneous	perturbation	of	two	

genes	results	in	cell	death.	Such	an	approach	has	been	used	to	define	new	vulnerabilities	in	cancer	cells	

harboring	defined	mutations,	such	as	the	case	of	BRCA1-	or	BRCA2-	mutant	cells	which	are	sensitive	to	

PARP	 inhibition	 (Bryant	 et	 al.,	 2005;	 Farmer	 et	 al.,	 2005).	 In	 search	 of	 such	 vulnerabilities,	 functional	

genomic	 screens	 have	 enabled	 the	 rapid	 mapping	 of	 potential	 synthetic	 lethal	 relationships	 using	

isogenic	or	collections	of	cell	lines	harboring	specific	mutations	of	interest.	Historical	screens	using	RNAi	

technologies	have	been	widely	 suggested	 to	 suffer	 from	 library	quality	 and	off	 target	 effects	 that	have	

limited	the	reproducibility	of	published	synthetic	lethal	candidates	(Downward,	2015;	Mullard,	2017).	It	

has	been	suggested	 that	CRISPR	pooled	screens	may	overcome	these	 issues.	Another	possibility	 is	 that	

the	predominant	barrier	to	identifying	reproducible	synthetic	lethals	is	that	of	interaction	penetrance,	or	

resiliency	 against	 modulation	 by	 additional	 genetic	 changes	 found	 in	 cancers	 (Ashworth	 et	 al.,	 2011;	

Ryan	et	al.,	2018).	Computational	and	experimental	strategies	geared	towards	resolving	and	overcoming	

challenges	in	synthetic	lethal	identification	are	largely	unexplored.	

	 	

KRAS	is	the	most	commonly	mutated	oncogene	in	cancer.		It	is	as	yet	undruggable,	activates	a	variety	of	

signaling	pathways,	and	is	exemplary	to	the	challenges	in	identifying	synthetic	lethals.	While	a	multitude	

of	studies	have	sought	to	define	KRAS	synthetic	lethal	genes	(Costa-Cabral	et	al.,	2016;	Kim	et	al.,	2013,	

2016;	Luo	et	al.,	2009;	Scholl	et	al.,	2009;	Steckel	et	al.,	2012),	 they	have	been	notable	 for	 the	 fact	 that	

they	hardly	overlap,	which	has	been	attributed	 to	 the	use	of	different	cell	 lines	and	screening	 libraries	

that	may	suffer	from	off-target	effects	and	partial	knockdowns	(Downward,	2015).	As	a	result,	many	of	

the	 published	 synthetic	 lethal	 genes	 that	 have	 been	 explored	 independently	 have	 failed	 to	 reproduce	

(Fröhling	and	Scholl,	2011;	Tessema	et	al.,	2014).	 	While	a	meta-analysis	of	published	synthetic	 lethals	

could	be	an	effective	way	to	identify	more	robust	candidates,	a	systematic	integration	and	re-testing	has	

not	yet	been	performed	(Christodoulou	et	al.,	2017;	Downward,	2015).		
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The	 bulk	 of	 our	 knowledge	 of	 the	 organization	 of	 genetic	 interactions	 comes	 from	 model	 organisms	

through	 single	 and	 combination	 knockout	 studies	 (Rancati	 et	 al.,	 2018).	 	 Large	 scale	mapping	 of	 such	

interactions,	including	synthetic	lethals,	have	been	found	to	link	functionally	related	proteins	and	used	to	

delineate	pathway	structure	(Collins	et	al.,	2007;	Costanzo	et	al.,	2010).	Genetic	 interactions	have	been	

shown	 to	 be	 highly	 context	 specific	 with	 changes	 in	 environment	 and	 strain	 dramatically	 altering	

pathway	usage	and	synthetic	 lethal	relationships	 in	yeast	(Bandyopadhyay	et	al.,	2010;	Galardini	et	al.,	

2018).	 The	 plasticity	 of	 genetic	 interactions	 present	 in	 single-celled	 organisms	 likely	 foreshadows	 the	

challenges	 in	 the	 identification	 of	 clinically	 relevant	 synthetic	 lethal	 interactions	 in	 a	 heterogeneous	

disease	such	as	cancer.	

	

We	 hypothesized	 that	 challenges	 in	 identifying	 synthetic	 lethal	 interactions	 stems	 from	 the	 fact	 that	

differences	 in	 gene	 dependencies	 among	 cancer	 cells	 parallel	 the	 widespread	 differences	 in	 gene	

essentiality	 observed	 in	 model	 organisms	 that	 are	 exposed	 to	 environmental	 or	 genetic	 changes	

(Galardini	et	al.,	2018;	Rancati	et	al.,	2018).	Integrating	across	studies,	we	show	that	previously	published	

KRAS	synthetic	lethal	screens	contain	significant	information	regarding	the	pathways	required	for	KRAS	

mutant	cells	in	a	manner	that	extends	beyond	the	single	gene	that	is	often	reported.	 	Genes	involved	in	

these	 pathways	were	more	 likely	 to	 be	 recapitulated	 in	 confirmatory	 studies,	 indicating	 that	 they	 are	

more	likely	to	be	context-independent.	Further	testing	of	synthetic	lethal	genes	identified	that	most	were	

profoundly	 influenced	 by	 changes	 in	 cellular	 conditions	 and	 presence	 of	 genetic	 modifiers,	 likely	

explaining	why	published	synthetic	 lethals	have	had	 limited	utility.	Accounting	 for	context	highlights	a	

DNA	 repair	 pathway	 as	 a	 dependency	 in	 KRAS	 mutant	 cancers,	 which	 was	 reproducibly	 observed	 in	

multiple	studies	but	not	always	 the	 top	hit	and	therefore	not	 immediately	apparent.	We	delineate	why	

most	 synthetic	 lethal	 interactions	 are	 not	 reproducible,	 and	 define	 a	 new	 approach	 to	 process	 and	

integrate	synthetic	lethal	screens	to	identify	context-independent	genetic	interactions	that	operate	at	the	

level	of	a	pathway	rather	than	a	single	gene.	
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RESULTS	

Meta-analysis	of	published	KRAS	synthetic	lethal	screens	identifies	reproducible	synthetic	lethal	

networks	

The	 concept	 of	 synthetic	 lethality	 is	 a	 powerful	 tool	 to	 identify	 new	dependencies	 and	 gene	 targets	 in	

cancer,	 but	 despite	 their	 potential	 their	 utility	 has	 been	 limited	 by	 challenges	 in	 robustness	 and	

reproducibility	 related	 to	 cellular	 context	 (Ashworth	 and	 Lord,	 2018;	 Downward,	 2015;	 Lord	 and	

Ashworth,	2016;	Ryan	et	al.,	2018).	We	hypothesized	that	integrating	multiple	independent	studies	may	

reveal	synthetic	lethal	interactions	that	are	independent	of	cellular	context	and	hence	more	reproducible.	

To	determine	the	degree	to	which	this	was	the	case,	we	analyzed	three	seminal	studies	which	sought	to	

define	KRAS	synthetic	lethal	genes	through	loss	of	function	screens,	hereafter	called	the	Luo,	Barbie	and	

Steckel	studies	(Barbie	et	al.,	2009;	Luo	et	al.,	2009;	Steckel	et	al.,	2012).	The	Luo	and	Steckel	studies	used	

unique	pairs	of	isogenic	cells	whereas	the	Barbie	study	used	a	panel	of	KRAS	mutant	and	wild-type	cell	

lines.	As	a	basis	 for	 comparison	we	selected	 the	 top	250	KRAS	synthetic	 lethal	 genes	 reported	 in	each	

study	as	hits	(KSL	genes,	Table	1),	and	found	that	there	was	marginal	overlap	between	any	pair	of	studies	

based	on	a	hypergeometric	test	accounting	for	total	number	of	tested	genes	in	each	study,	consistent	with	

previous	reports	(Fig.	1A)	(Christodoulou	et	al.,	2017;	Downward,	2015).	We	next	explored	whether	each	

screen	 could	 have	 identified	 distinct	 but	 related	 genes,	 indicating	 shared	 essentiality	 at	 the	 pathway	

rather	 than	gene	 level.	For	example,	different	 subunits	of	 the	26S	proteasome	(PSMB6,	PSMD14)	were	

identified	 by	 different	 studies	 (Downward,	 2015),	 suggesting	 convergence	 between	 studies	 at	 the	

pathway	level	(Fig.	1A).	We	integrated	these	gene	lists	with	a	protein-protein	interaction	(PPI)	network	

comprising	 known	 protein	 complexes	 from	 CORUM	 and	 high	 confidence	 physical	 and	 functional	

interactions	 from	 HumanNet	 (Lee	 et	 al.,	 2011;	 Ruepp	 et	 al.,	 2010).	 In	 total	 we	 identified	 6,830	

interactions	involving	a	protein	product	of	a	KSL	gene	from	any	of	the	three	studies	(Fig.	1B).	Overall	we	

found	260	interactions	connecting	KSL	genes	found	in	different	studies.	To	assess	if	this	was	a	significant	

number	we	 compared	 the	number	of	 interactions	 spanning	between	pairs	of	 studies	 to	 the	number	of	

interactions	expected	among	randomly	selected	gene	sets,	controlling	for	sample	size	and	test	space	(see	
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Methods).	 In	 all	 cases,	 we	 observed	 significantly	 more	 connections	 between	 KSL	 genes	 from	 two	

independent	studies	than	expected	at	random	(Fig.	1C).	For	example,	we	observed	162	PPIs	between	the	

top	 250	 genes	 in	 the	 Luo	 and	 Steckel	 studies,	 which	 was	 approximately	 8-fold	 higher	 than	 expected	

between	250	random	genes,	representing	a	p<0.0001.	In	contrast,	the	gene	level	overlap	between	these	

two	studies	was	not	significant	(p=0.17)	(Fig.	1A).		

	

Since	 KSL	 genes	 from	 different	 studies	were	 enriched	 to	 interact	 functionally	 and	 physically,	 we	 next	

asked	 if	 they	 converge	 into	 molecular	 sub-networks	 representing	 known	 pathways	 and	 protein	

complexes.	We	applied	a	network	clustering	algorithm	called	MCODE	on	this	network	to	identify	dense	

gene	sub-networks,	or	modules,	enriched	with	KSL	genes	spanning	multiple	studies	(Bader	and	Hogue,	

2003).	Based	on	our	requirement	that	a	subnetwork	must	include	a	gene	found	in	two	or	more	studies,	

we	identified	7	functionally	distinct	KRAS	synthetic	lethal	networks,	all	of	which	could	be	traced	back	to	a	

specific	protein	complex	or	pathway	(Fig.	1D,	Table	2A).	For	example,	one	of	the	networks	corresponds	to	

the	 Proteasome	 and	 Anaphase	 promoting	 complex	 (CORUM	 ID:	 181	 &	 96),	 which	 includes	 subunits	

encoded	 by	 genes	 identified	 in	 the	 Luo,	 Barbie	 and	 Steckel	 studies	 (Fig.	 1D).	 Other	 complexes	 and	

pathways	we	identified	in	this	study	were	the	Nop56p-associated	pre-rRNA	complex	(containing	Steckel	

and	Luo	genes),	BRCA1-RNA	polymerase	II	complex	(Steckel	and	Barbie),	the	RC	complex	during	S-phase	

of	 the	 cell	 cycle	 (all	 three	 studies),	 LCR-associated	 remodeling	 complex	 also	 called	 LARC	 (all	 three	

studies),	 the	 Chaperonin	 containing	 TCP1	 complex	 also	 called	 CCT	 (Luo	 and	 Steckel)	 and	 the	 Insulin	

signaling	 pathway	 (Steckel	 and	Barbie).	 In	 all	 cases,	 these	 complexes	 and	 pathways	were	 significantly	

enriched	 for	 KSL	 genes	 (Fig.	 1D).	 In	 total	 we	 predicted	 105	 KRAS	 synthetic	 lethal	 network	 genes	

(Network	SL	genes),	of	which	65%	(68/105)	were	not	covered	in	our	original	KSL	lists	(Fig.	1D,	Table	2,	

3).	Hence,	despite	 the	 limited	gene	 level	overlap	 in	published	studies,	network	 integration	reveals	 that	

independent	KRAS	synthetic	lethal	studies	converge	on	shared	protein	complexes	and	pathways.	

	

KRAS	synthetic	lethal	networks	gene	are	more	like	to	be	hits	in	other	published	studies	
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Since	our	network	analysis	highlighted	shared	pathways	and	complexes	across	studies,	we	hypothesized	

that	Network	SL	genes	may	represent	synthetic	lethals	that	are	more	robust,	and	hence	more	likely	to	be	

reproduced	in	follow	up	studies.	To	address	this	we	asked	if	they	were	more	likely	to	be	recovered	in	a	

series	 of	more	 recent	 RNAi	 screens	 that	were	 not	 used	 for	 network	 identification	 as	 compared	 to	 26	

previously	published	KRAS	synthetic	lethal	genes	curated	from	the	literature	(Literature	SL)	(Table	2B)	

(Costa-Cabral	et	al.,	2016;	Kim	et	al.,	2013,	2016).	Both	Kim	et	al.	2013	(Kim	et	al.,	2013)	and	Kim	et	al.	

2016	(Kim	et	al.,	2016)	studies	used	panels	of	KRAS	mutant	versus	wild-type	lung	cancer	lines,	and	the	

Costa-Cabral	 study	 (Costa-Cabral	 et	 al.,	 2016)	 used	 an	 isogenic	 panel	 of	 colorectal	 cancer	 lines.	 To	

facilitate	 comparison,	we	 independently	 ranked	 genes	 identified	 from	 each	 of	 these	 three	 studies	 into	

percentiles,	 with	 genes	 in	 the	 lowest	 percentile	 showing	 the	 strongest	 evidence	 of	 KRAS	 synthetic	

lethality	(see	Methods).		Network	SL	genes	were	more	likely	to	be	among	the	top	percentile	of	hits	than	

Literature	SL	genes	previously	published.	For	example,	in	the	Kim	et	al	2016	study,	15%	of	the	Network	

SL	genes	tested	were	in	the	top	one	percentile	of	hits	as	compared	to	3%	of	Literature	SL	genes,	a	5-fold	

increase	 (Fig.	2).	 Similarly,	9%	of	Network	SL	genes	were	 in	 the	 top	1%	of	hits	 in	 the	Kim	et	 al.	 2013	

study,	 compared	 to	 0%	using	 Literature	 SL	 genes.	Network	 SL	 genes	 also	 predicted	 the	 top	 candidate	

from	the	Costa-Cabral	study,	CDK1.	Taken	together	as	a	meta-analysis	of	six	studies,	these	data	provide	

additional	 support	 for	 genes	 involved	 in	 the	RC	 complex	 during	 S-phase	 (CDK1,	 RPA1,	 RPA2)	 and	 the	

BRCA1-RNA	 polymerase	 II	 complex	 (POLR2B,	 POLR2D,	 POLR2G,	 BRCA1)	 as	 KRAS	 synthetic	 lethal	

candidates	that	were	repeatedly	replicated	in	multiple	studies.	Hence	a	network	approach	to	identifying	

synthetic	 lethal	 genes	 based	 on	 their	 pathway	 context	 identifies	 reproducible	 synthetic	 lethals	 in	 a	

manner	that	is	superior	to	the	standard	single	study,	single	gene	approach.		

	

Evaluation	of	published	and	predicted	KRAS	SLs	in	an	isogenic	KRAS	dependency	model.	

We	next	sought	to	obtain	independent	experimental	evidence	that	the	incorporation	of	pathway	context	

could	 identify	 robust	 KRAS	 synthetic	 lethals.	 We	 established	 an	 isogenic	 model	 using	 MCF10A	 cells	

expressing	 KRAS	 G12D	 or	 eGFP	 as	 control	 and	 screened	 them	 in	 parallel	 using	 an	 arrayed	 gene	
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knockdown	library	independently	targeting	28	Literature	SL	genes,	40	Network	SL	genes	and	128	genes	

in	KRAS	pathway	(Fig.	3A,	Supplementary	Fig.	S1,	Table	3).	MCF10A	cells	are	non-transformed	and	have	

been	used	extensively	to	model	RAS	signaling	(Martins	et	al.,	2015;	Stolze	et	al.,	2015)	and	mutant	KRAS	

is	often	amplified	in	human	cancer,	indicating	the	relevance	of	our	approach	(Ding	et	al.,	2008;	Modrek	et	

al.,	2009).	KRAS	G12D	cells	did	not	proliferate	significantly	more	than	control	eGFP	expressing	cells	and	

KRAS	cells	were	growth	factor	independent	and	sustained	MAPK	activity	in	the	absence	of	growth	factor,	

a	hallmark	of	oncogenic	transformation	and	key	feature	of	KRAS	biology	(Fig.	3B,C).	As	positive	control,	

we	 observed	 that	 knockdown	 of	 KRAS	 only	 reduced	 the	 proliferation	 of	 KRAS-expressing	 cells	 in	 the	

absence	of	all	media	supplements	and	growth	factors	(minimal	media),	demonstrating	KRAS	dependency	

in	 this	 model	 	 (Fig.	 3D).	 Comparison	 of	 the	 proliferative	 impact	 of	 gene	 knockdown	 in	 control	 eGFP	

versus	KRAS	mutant	cells	grown	in	minimal	media	was	used	to	define	an	interaction	score	related	to	the	

significance	of	effect	over	four	replicates,	with	negative	scores	representing	putative	synthetic	lethal	hits	

(see	Methods).	Using	a	False	Discovery	Rate	(FDR)	cutoff	of	5%,	we	identified	28	hits	including	KRAS	(Fig.	

3E).	Among	the	top	10	genes	were	predicted	Network	SL	genes	BRCA1	(S=-6.3)	and	RPA3	(S=-4.2),	and	

previously	described	Literature	SL	genes	GATA2	(S=-4.9),	YAP1	(S=-2.9)	and	RHOA	(S=-5.4)	(Fig.	3F).	At	

the	pathway	level	KRAS	cells	were	notably	dependent	on	genes	in	the	RAS,	ribosomal	protein	S6	kinase	

(S6K),	cell	cycle	and	YAP	pathway	(Fig.	3G).	Inhibition	of	receptor	tyrosine	kinase	(RTK)	signaling	had	the	

least	effect	on	 the	KRAS	cells,	 as	 typified	by	knockdown	of	GRB2,	which	 links	RTKs	and	RAS	signaling,	

that	 was	 more	 toxic	 to	 eGFP	 than	 KRAS	 cells	 (S=5.9)	 (Fig.	 3F,G).	 Most	 hits	 were	 independent	 of	 the	

particular	KRAS	allele	used	as	 screening	 results	between	G12V	and	G12D	expressing	 cells	were	highly	

correlated	 (r=0.81,	 Supplementary	Fig.	 2,	 Table	4).	With	 respect	 to	previously	published	 Literature	 SL	

genes,	 we	 found	 that	 6/27	 (22%)	were	 recovered	 at	 an	 FDR<10%	 but	 on	 average	 they	 did	 not	 have	

negative	 interaction	scores	consistent	with	 synthetic	 sickness	or	 lethality	as	a	group	 (p=0.48	based	on	

Student’s	t-test)	(Fig.	3I).	 In	contrast,	 the	39	predicted	Network	SL	genes	as	a	group	had	overall	strong	

negative	scores	(p=4.6e-5	based	on	Student’s	t-test)	that	were	overall	more	negative	than	Literature	SL	

genes	 (p=0.046),	 and	 33%	 were	 synthetic	 lethal	 hits	 (13/39	 at	 a	 FDR	 of	 10%)	 (Fig.	 3I).	 Taking	 our	
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retrospective	analysis	and	new	experimental	data	 together,	our	 findings	 indicate	 that	a	network	meta-

analysis	approach	is	an	effective	strategy	to	identify	robust	and	reproducible	synthetic	lethal	genes.	

	

Dependency	of	KRAS	synthetic	lethals	on	genetic	context	

Limitations	 in	 gene	 knockdown	 technologies	 have	 been	 suggested	 to	 contribute	 to	 the	 lack	 of	

reproducibility	 of	 KRAS	 synthetic	 lethals	 and	 potentially	 resolved	 using	 CRISPR-based	 approaches	

(Downward,	2015).	Another	explanation	could	be	that	synthetic	lethal	effects	are	incompletely	penetrant	

and	do	not	manifest	equally	in	cells	with	different	genetic	backgrounds	(Ryan	et	al.,	2018).	To	establish	

the	degree	to	which	genetic	context	influences	synthetic	lethal	identification	and	to	elucidate	targets	that	

are	 resilient	 to	 this	 effect,	we	 systematically	 screened	 for	 secondary	perturbations	 that	 alter	 synthetic	

lethal	 phenotypes.	 We	 generated	 a	 quantitative	 epistasis	 map	 (E-MAP)	 through	 the	 systematic	

measurement	 and	 comparative	 analysis	 of	 the	 fitness	 of	 single	 and	 pairwise	 gene	 perturbations	 using	

RNA	interference	(Roguev	et	al.,	2013).	In	this	system,	positive	scoring	interactions	constitute	buffering	

or	 epistatic	 interactions	 and	 occur	 when	 the	 effect	 of	 combination	 knockdown	 is	 less	 than	 what	 is	

expected	given	the	two	gene	knockdowns	separately,	in	the	extreme	case	causing	a	complete	suppression	

of	 the	 phenotype	 of	 one	 perturbation	 by	 the	 another	 (Boone	 et	 al.,	 2007;	 Guarente,	 1993).	 	 Negative	

interactions	 indicate	 gene	 pairs	 that	 operate	 independently	 and	when	 co-depleted	 produce	 a	 stronger	

phenotype	than	expected	(Boone	et	al.,	2007).	We	generated	an	E-MAP	in	MCF10A	KRAS	G12D	cells	by	

knocking	 down	 the	 31	 of	 the	 top	 synthetic	 lethal	 genes	we	 identified	 in	 our	 single	 gene	 study	 (query	

genes)	 in	 combination	with	188	genes	mostly	 involved	 in	 the	broader	RAS	signaling	pathway	 (Fig.	4A,	

Table	5).	Together,	we	measured	 interactions	among	5,828	gene	pairs	 and	 identified	170	positive	 and	

105	negative	interactions	at	a	score	cutoff	of	2	(Z>|2|)	corresponding	to	two	standard	deviations	from	the	

mean	(Fig.	5b).	At	this	score	cutoff	we	found	strong	interactions	occurring	between	4.6%	of	gene	pairs,	

consistent	with	observed	genetic	interaction	rates	in	yeast	(Costanzo	et	al.,	2016).		
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For	 the	31	query	genes	we	 tested,	we	 identified	170	genetic	 interactions	 that	 suppress	 their	 synthetic	

lethal	 phenotype	 in	 KRAS	 mutant	 cells	 (Z>2,	 average	 of	 5.5	 per	 gene).	 We	 validated	 several	 of	 the	

strongest	hits	in	small-scale	studies.	For	example,	while	CCND1	knockdown	was	selectively	toxic	to	KRAS	

cells,	co-knockdown	of	RASSF5	reverted	KRAS	mutant	cells	back	to	normal	proliferation	(Z=3.9)	(Fig.	4C).	

The	impact	of	knockdown	of	CDK6	was	also	significantly	rescued	by	knockdown	of	RASSF5	(Z=3.8)	and	

ERBB2	(Z=3.3).	Genetic	modifiers	 could	also	modulate	dependency	on	published	KRAS	synthetic	 lethal	

targets.	For	example,	while	knock	down	of	STK33	was	selectively	toxic	in	KRAS	G12D	but	not	eGFP	cells	it	

was	suppressed	by	simultaneous	knockdown	of	SHP2	(Z=5.1)	or	ARID1B	(Z=3.0)	 (Fig.	4C).	A	pathway-

based	analysis	identified	32	connections	between	query	genes	and	cellular	pathways	where	interactions	

could	be	organized	as	a	bundle	that	were	significantly	positive	or	negative	(p=0.05,	Fig.	4D,	see	Methods).	

For	 example,	 we	 identified	 that	 knockdown	 of	 RALGDS-Like	 1	 (RGL1)	 displayed	 positive	 interactions	

with	 genes	 involved	 in	 stress-linked	 MAPK,	 RHO,	 and	 RAC	 pathways	 (Fig.	 4D,E)	 and	 found	 largely	

negative	 interactions	 between	 DNA	 Methyltransferase	 3	 Alpha	 (DNMT3A)	 and	 the	 spliceosome	 and	

anaphase	and	proteasome	complex	(Fig.	4E).	These	results	demonstrate	that	KRAS	synthetic	lethal	gene	

inhibition	may	be	 suppressed	by	 loss	of	 secondary	genes	 and	pathways,	 in	 some	 instances	 completely	

rescuing	lethal	phenotypes.	

	

Dependency	of	KRAS	synthetic	lethals	on	media	complexity	

Environmental	differences	such	as	variation	in	the	growth	factors	and	nutrients	available	in	serum	and	

media	 can	 alter	 cell	 biology	 (McGillicuddy	 et	 al.,	 2018;	 Stein,	 2007)	 and	 have	 been	 postulated	 to	

contribute	to	challenges	in	validating	candidate	therapeutic	targets	in	cancer	(Settleman	et	al.,	2018).	We	

postulated	 that	 such	 changes	 in	 cellular	 context	may	 be	 a	 potential	 source	 of	 the	 lack	 of	 durability	 in	

reported	 synthetic	 lethal	 genes	 in	 vitro.	 If	 correct,	 this	 could	 be	 a	 significant	 detriment	 to	 advancing	

synthetic	 lethal	 targets	 in	 vivo	 and	 in	 humans	 where	 such	 variability	 certainly	 exists	 in	 the	 complex	

tumor	 microenvironment.	 To	 model	 such	 changes,	 we	 iteratively	 added	 supplements	 back	 into	 the	

minimal	media	 that	was	used	 in	our	 initial	 screen	 to	MCF10A	KRAS	G12D	cells.	To	minimal	media	we	
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added	insulin,	cholera	toxin,	and	hydrocortisone	(termed	intermediate	media)	and	found	that	it	partially	

rescued	 cellular	 dependency	 on	 KRAS	 and	 further	 addition	 of	 EGF	 (full	 media)	 completely	 abolished	

KRAS	 dependency	 (Fig.	 5A).	We	 performed	 parallel	 single	 gene	 knockdown	 screens	 using	 these	 three	

different	conditions	and	found	dramatic	differences	in	the	synthetic	lethal	interactions	we	observed	(Fig.	

5B,	 Table	 4).	 Strikingly,	 genetic	 interaction	 scores	 between	 experiments	 performed	 in	 minimal	 or	

intermediate	media	were	weakly	correlated	and	not	significant	(r	=	0.11)	(Fig.	5B,	Table	4).		

	

We	next	explored	 the	degree	 to	which	media	 conditions	modulate	 the	dependency	on	published	KRAS	

synthetic	lethal	genes.	We	observed	that	synthetic	lethality	with	members	of	the	proteasome	(e.g.	PSMA2,	

PSMA5)	(Luo	et	al.,	2009;	Steckel	et	al.,	2012)	was	only	evident	in	cells	that	were	grown	in	more	complex	

media	 (and	KRAS	 independent)	 suggesting	 that	 this	 pathway	may	only	 be	necessary	 for	KRAS-mutant	

cells	 when	 both	 KRAS	 and	 growth	 factor	 signaling	 are	 present	 (Condition	 Specific	 SLs,	 Fig.	 5C,D).	

Similarly,	 two	 published	 KRAS	 synthetic	 lethal	 genes,	 STK33	 and	 YAP1,	 were	 only	 a	 dependency	 in	

minimal	media	conditions,	but	not	in	others	providing	a	possible	basis	for	why	STK33	has	been	difficult	

to	 reproduce	 (Fig.	 5D)	 (Babij	 et	 al.,	 2011;	 Luo	 et	 al.,	 2012;	 Scholl	 et	 al.,	 2009).	 Of	 the	 26	 literature	

synthetic	 lethal	 genes	 we	 analyzed,	 the	 vast	 majority	 (92%)	 demonstrated	 synthetic	 lethality	 only	 in	

specific	media	conditions	or	not	at	all	in	the	conditions	we	tested.	Although	most	of	the	synthetic	lethal	

relationships	 were	 specific	 to	 certain	 conditions,	 some	 were	 independent	 of	 condition	 and	 were	

consistent	synthetic	lethal	interactions	the	strongest	and	most	consistent	of	which	were	BRCA1	and	RGL1	

(Fig.	 5B,D).	 Together	 with	 our	 combinatorial	 genetic	 interaction	 map,	 these	 results	 demonstrate	 the	

dependence	of	most	reported	synthetic	lethal	genes	on	cellular	and	genetic	context.		

	

KRAS	mutant	cells	are	DNA	repair	deficient	and	PARP	inhibitor	sensitive	

Our	 studies	 suggest	 that	 considering	 pathway,	 cellular	 and	 genetic	 context	may	 help	 delineate	 robust	

synthetic	 lethal	 effects.	We	 first	 developed	 a	 composite	 score	 based	 resiliency	 of	 a	 candidate	 SL	 gene	

based	 cellular	 and	 genetic	 context	 screens	 (Fig.	 6A,	 see	 Methods).	 Ranking	 31	 single	 synthetic	 lethal	
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genes	 from	 our	 initial	 isogenic	 screen,	we	 found	 that	 Network	 SL	 genes	 trended	 towards	 being	more	

context	 independent	 than	 Literature	 SL	 genes	 (p=0.05	 via	 rank	 sum	 test).	 This	 analysis	 identified	 the	

Network	SL	gene	BRCA1	as	a	top	candidate.	Supporting	this	finding,	our	network	meta-analysis	identified	

two	complexes	involved	in	DNA	repair	and	replication	that	included	top	hits	from	all	three	original	RNAi	

studies	 including	BRCA1	as	well	as	POLR2G,	POLR2D,	POLR2B,	RPA1,	RPA2,	RPA3	(Fig.	1D).	Six	out	of	

seven	genes	in	this	network	were	also	found	in	the	top	5%	of	hits	from	three	additional	studies	(Fig.	2).	

BRCA1	was	the	top	hit	in	our	single	gene	synthetic	lethal	screen,	was	a	consistent	synthetic	lethal	across	

media	conditions	(Fig.	5B),	and	had	a	lower	than	average	number	of	genetic	suppressors	(Suppl	Fig	3).	

Based	on	the	function	of	BRCA1,	we	hypothesized	that	KRAS	mutant	cells	harbor	a	unique	dependence	on	

DNA	repair.	We	confirmed	 the	dependency	on	BRCA1	 in	MCF10A-KRAS	cells	using	 independent	siRNA	

reagents	(Supplementary	Fig.	S4).	We	next	sought	further	corroborative	evidence	of	a	DNA	repair	defect	

by	 identifying	 related	 chemically	 addressable	 vulnerabilities.	 An	 independent	 screen	 of	 91	 anti-cancer	

compounds	 highlighted	 several	 drugs	 targeting	 the	 DNA	 repair	 pathway	 as	 top	 hits	 in	MCF10A	 KRAS	

G12D	cells	including	WEE1,	CHK1/2	and	PARP	inhibitors	(Fig.	6B,	Table	6).	We	validated	PARP	inhibitor	

sensitivity	 using	 three	 different	 PARP	 inhibitors,	with	 talazoparib	 showing	 a	~1,000	 fold	 difference	 in	

IC50	between	parental	and	KRAS	mutant	cells,	and	with	rucaparib	and	olaparib	demonstrating	2-5-fold	

sensitization	(Fig.	6C,	D).	These	PARP	inhibitors	equally	inhibit	PARP	enzymatic	activity,	but	talazoparib	

most	 strongly	 traps	 it	onto	DNA	causing	DNA	double	 strand	breaks	 that	are	preferentially	 repaired	by	

homologous	recombination	via	BRCA1	(Murai	et	al.,	2012).	 	Hence	these	KRAS	cells	have	a	dependence	

on	BRCA1	that	creates	a	vulnerability	to	PARP	inhibition	and	are	preferentially	sensitive	to	agents	that	

trap	PARP	onto	chromatin.	

	

We	hypothesized	that	KRAS	mutant	cells	are	defective	 in	DNA	repair	resulting	 in	a	dependency	on	this	

pathway	to	maintain	genome	fidelity.	 	At	baseline,	KRAS-mutant	cell	 lines	harbored	more	γH2AX	foci,	a	

marker	of	DNA	double	strand	breaks,	compared	to	control	cells	indicating	that	mutant	KRAS	induces	DNA	

damage	(Fig.	6E,	F).	These	results	were	independent	of	proliferation,	as	control	and	mutant	cells	grew	at	
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the	same	rate	(Fig.	3D).	Treatment	for	18	hours	with	talazoparib	led	to	approximately	equivalent	amount	

of	total	DNA	damage	indicating	that	PARP	inhibitors	do	not	simply	increase	the	induction	double	strand	

breaks	in	KRAS	mutant	cells	(Fig.	6G).	In	contrast,	after	wash	out	of	the	PARP	inhibitor,	KRAS	cells	had	a	

delay	in	the	resolution	of	double	strand	breaks	that	persisted	for	at	least	24	hours	indicating	that	KRAS	

causes	a	deficiency	in	the	repair	of	double	strand	breaks	caused	by	PARP	inhibition	(Fig.	6G).		

	

We	 sought	 to	 determine	 if	 sensitivity	 to	 PARP	 inhibitors	was	 resilient	 against	 changes	 in	 cellular	 and	

genetic	 context,	 the	 same	key	 features	 that	 led	us	 to	 focus	on	BRCA1.	Sensitivity	 to	PARP	 inhibition	 in	

KRAS	 cells	 was	 independent	 of	 media	 conditions	 (Supplementary	 Fig.	 5).	 Knockdowns	 of	 191	 genes	

against	 talazoparib	 treatment	 identified	 one	 suppressor,	 far	 lower	 than	 the	 number	 of	 suppressors	

associated	 with	 most	 of	 the	 genetic	 knockdowns	 in	 our	 study	 (Supplementary	 Fig.	 3).	 Hence,	 PARP	

inhibition	demonstrates	KRAS	 synthetic	 lethality	 that	 is	 robust	 to	 changes	both	 in	 genetic	 and	 cellular	

context	in	this	system.	To	determine	if	these	findings	extended	to	other	models	of	RAS	mutant	cancer	we	

analyzed	 cells	derived	 from	skin	 tumors	 initiated	 in	mice	using	a	dimethylbenz[a]anthracene	 (DMBA)-

initiated	 and	 a	 12-O-tetradecanoylphorbol-13-acetate	 (TPA)-promoted	 two-stage	 skin	 carcinogenesis	

protocol	resulting	in	tumors	that	characteristically	harbor	an	oncogenic	HRAS	mutation	(Balmain	et	al.,	

1984;	 Bonham	 et	 al.,	 1989).	 HRAS-mutant	 CCH85	 carcinoma	 cells	 were	 sensitive	 to	 all	 three	 PARP	

inhibitors	as	compared	 to	C5N	keratinocytes	controls	with	a	10-25	 fold	change	 in	 IC50	 for	 talazoparib	

(Supplementary	 Fig.	 6A)	 which	 was	 also	 corroborated	 in	 long	 term	 colony	 formation	 assays	

(Supplementary	Fig.	6B).	Next,	we	analyzed	PARP	inhibitor	sensitivity	in	panels	of	cell	lines	derived	from	

tumor	 types	where	RAS	mutations	 are	 prevalent	 enough	 for	 statistical	 comparison	 in	 the	 genomics	 of	

drug	sensitivity	(GDSC)	dataset	which	include	colorectal,	 lung	and	ovarian	cancer	cell	 lines	(Yang	et	al.,	

2013).	 Among	 these	 tumor	 types,	 we	 identified	 numerous	 significant	 associations	 between	 KRAS	

mutation	and	olaparib	 sensitivity	 (p<0.002	 for	Colorectal	 and	ovarian,	p=3e-6	overall,	 (Supplementary	

Fig.	 6C).	 Compared	 to	 other	 mutations	 or	 copy	 number	 associations	 present	 in	 the	 genome,	 KRAS	

mutation	was	often	among	the	top	genomic	features	associated	with	olaparib	sensitivity	(Supplementary	
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Fig.	6D).	We	conclude	that	considering	pathway,	cellular	and	genetic	context	identifies	a	dependency	on	

DNA	repair	that	is	targetable	with	PARP	inhibitors	warranting	further	investigation	in	other	RAS-mutant	

cancers.			

	

DISCUSSION	

The	concept	of	synthetic	lethality	is	an	exciting	approach	to	target	cancer	cells	harboring	specific	cancer	

mutations	that	may	otherwise	be	undruggable.	We	provide	evidence	for	why	most	results	from	synthetic	

lethal	 studies	 have	 proven	 difficult	 to	 reproduce	 and	 offer	 a	 framework	 for	 identifying	 more	 robust	

synthetic	 lethal	 candidates.	 Recently	 improved	 genetic	 perturbation	 techniques	 such	 as	 those	 using	

CRISPR/Cas9	have	 led	 to	 renewed	 interest	 in	 synthetic	 lethal	 screening	 (Wang	et	 al.,	 2016).	We	argue	

that	these	technologies	alone	cannot	intrinsically	overcome	limitations	due	to	differences	in	cellular	and	

genetic	context	present	between	cancer	models.	We	provide	key	experimental	evidence	for	and	strategies	

to	resolve	the	differences	in	genetic	context	that	have	been	thought	to	contribute	to	failures	in	synthetic	

lethal	identification	(Ashworth	et	al.,	2011;	Ryan	et	al.,	2018).	

	

Here	we	 show	 that	most	 synthetic	 lethals	 are	highly	dependent	 on	 cellular	 and	 genetic	 context.	While	

testing	 published	 synthetic	 lethals	 we	 found	 that	 most	 were	 highly	 modified	 by	 cellular	 and	 genetic	

perturbations.	For	example,	STK33	and	GATA2	displayed	synthetic	 lethality	with	KRAS	only	 in	a	single	

isolated	 media	 condition	 and	 had	 among	 the	 most	 number	 of	 genetic	 suppressors.	 KRAS	 specific	

dependence	on	both	these	proteins	has	been	disputed	(Babij	et	al.,	2011;	Luo	et	al.,	2012).	We	propose	

computational	and	experimental	approaches	that	we	anticipate	will	identify	more	robust	synthetic	lethal	

interactions	for	further	study.	First,	we	provide	a	computational	approach	that	enables	the	identification	

of	synthetic	 lethals	 that	are	more	context	 independent.	This	retrospective	approach	 leverages	pathway	

information	 to	 integrate	 functional	 genomics	 data	 as	 opposed	 to	 previous	 work	 based	 on	 gene	 list	

analyses	(Christodoulou	et	al.,	2017;	Downward,	2015).	Second,	we	propose	an	experimental	framework	

to	 rigorously	 test	 synthetic	 lethal	 effects	 using	 a	 panel	 of	 changes	 in	 cellular	 conditions	 as	 well	 as	
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screening	against	a	panel	of	secondary	perturbations	to	determine	genetic	resiliency,	potentially	using	an	

E-MAP	 approach.	 In	 addition	 to	 changes	 in	 media	 conditions,	 variation	 may	 also	 be	 achieved	 by	

modulating	the	environment	(e.g.	hypoxia),	growth	density	and	batch	of	cell	lines	used	(Ben-David	et	al.,	

2018).	While	our	framework	attempts	to	model	the	genetic	and	environmental	heterogeneity	present	in	

cancers	in	a	manner	that	is	still	amenable	to	high-throughput	screening,	future	work	could	extend	these	

approaches	 to	 vastly	 more	 secondary	 genetic	 perturbations	 as	 well	 as	 modulate	 the	 environment	 in	

different	ways.	

	

Applying	 our	 meta-analysis	 approach	 to	 three	 early	 KRAS	 screens	 we	 identified	 a	 set	 of	 networks	

representing	protein	pathways	and	complexes	that	were	recurrently	identified	in	different	studies.	Many	

components	 of	 these	 networks	 were	 found	 to	 re-validate	 in	 three	 held	 out	 studies	 and	 our	 isogenic	

model.	Among	these	we	investigated	a	network	involved	in	DNA	replication	and	repair.	One	component	

of	this	network,	BRCA1,	was	a	strong	synthetic	lethal	regardless	of	cellular	condition	and	had	among	the	

lowest	number	of	genetic	suppressors	in	our	panel.	The	CCT	complex,	a	chaperone	complex	involved	in	

helping	 to	 fold	 part	 of	 the	 proteome	 (Yam	 et	 al.,	 2008),	 was	 also	 highlighted	 by	 our	 meta-analysis	

approach,	and	components	of	this	complex	were	highlighted	in	4	independent	studies	in	total,	warranting	

further	 investigation.	 This	 network	 framework	 enhances	 target	 discovery	 by	 accounting	 for	 pathway	

context	in	synthetic	lethal	screens	in	order	to	identify	robust	and	potentially	new	targets	for	genetically	

defined	cancers.	

	

Our	 data	 highlight	 a	 potential	 role	 for	 PARP	 inhibitors	 in	 KRAS	mutant	 cancers	 and	warrants	 further	

investigation.	PARP	inhibitors	inhibit	PARP	by	both	enzymatic	inhibition	as	well	as	trapping	PARP	onto	

DNA	 and	 impairing	 replication	 during	 S-phase	 (Murai	 et	 al.,	 2012).	We	 observed	 the	most	 differential	

inhibition	of	wild-type	versus	KRAS	mutant	cells	with	the	strongest	PARP	trapper,	talazoparib	suggesting	

that	KRAS	cells	are	dependent	on	unencumbered	progression	through	S-phase	which	is	consistent	with	

the	role	of	the	DNA	replication	network	we	identified.	This	interaction	was	also	evident	in	a	chemically	
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induced	murine	 tumor	model	 and	 in	 small	molecule	 profiling	 data	 across	 colorectal,	 lung	 and	 ovarian	

cancer	cell	 lines	tested	for	sensitivity	to	olaparib	(Supplementary	Fig	6).	Both	enhancement	(Sun	et	al.,	

2017)	and	suppression	(Gilad	et	al.,	2010;	Kalimutho	et	al.,	2017;	Kotsantis	et	al.,	2016)	of	DNA	repair	

processes	have	been	linked	with	mutant	KRAS.	These	differences	may	be	explained	by	the	cell	line	panel	

profiling	 results,	 where	 although	 KRAS	mutant	 cells	 tend	 to	 be	more	 sensitive	 to	 PARP	 inhibitors	 on	

average,	a	subset	are	more	drug	resistant.	Therefore,	one	possibility	 is	 that	additional	genetic	contexts	

not	 investigated	 in	 this	 study	may	 influence	 this	 synthetic	 lethal	 relationship	 and	 determining	 which	

KRAS	mutant	contexts	predict	dependence	on	specific	DNA	repair	pathways	will	require	future	work.	In	

particular,	 such	 work	 may	 define	 the	 impact	 of	 changes	 in	 genetic	 context	 in	 terms	 of	 secondary	

mutations	that	co-occur	with	mutant	KRAS,	such	as	TP53	and	LKB1,	on	PARP	inhibitor	sensitivity.		
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METHODS	
	
Synthetic	lethal	screen	analysis	

We	obtained	screen	data	from	supplementary	information	from	the	Luo,	Steckel	and	Barbie	studies	and	

ranked	all	genes	based	on	the	scoring	criterion	reported	in	the	supplementary	material	from	each	

manuscript.	Since	the	Barbie	study	only	reported	250	hits	as	significant,	this	cutoff	was	used	for	further	

analysis	and	all	other	studies	reported	>250	hits.	Significance	in	overlap	between	gene	sets	was	

determined	by	calculating	a	hypergometric	p-value	of	overlap	between	the	top	250	genes	from	each	

study,	and	setting	the	background	tested	genes.	The	hypergeometric	was	1-phyper(x,	m,	n,	k)	(R	Core	

Team,	2018)	with	x	as	the	overlap	in	hits	between	study	1	and	study	2,	m	is	the	number	of	total	genes	

tested	in	study	1,	n	is	the	number	of	hits	found	in	study	2	that	were	also	tested	in	study	1,	k	is	the	top	250	

hit	genes	in	study	1.		

	

For	the	human	protein-protein	interaction	(PPI)	dataset	we	downloaded	all	CORUM	protein	complexes	

and	HumanNet	PPIs	with	scores	>	3	to	derive	a	list	of	high	confidence	PPIs.	In	order	to	identify	highly	

connected	subnetworks	we	applied	the	MCODE	clustering	algorithm	with	default	parameters	to	this	

network	in	Cytoscape	and	considered	clusters	with	genes	that	were	reported	in	multiple	KRAS	SL	studies	

for	downstream	analysis	(Bader	and	Hogue,	2003).	Clusters	were	analyzed	using	the	gProfiler	web	tool	

(Reimand	et	al.,	2016)	against	the	CORUM	or	the	KEGG	signaling	pathway	in	order	to	functionally	

categorize	clusters,	with	p-values	of	enrichment	corrected	for	multiple	testing.	To	determine	the	

significance	in	network	based	overlap	between	two	KRAS	studies	we	randomly	selected	250	genes	from	

the	list	of	genes	tested	in	each	study	and	determined	the	number	of	interactions	spanning	genes	from	two	

studies	to	establish	a	null	distribution.	This	null	distribution	was	compared	to	the	actual	overlap	

observed	between	two	studies	to	determine	a	p-value	defined	as	the	fraction	of	10,000	random	

simulations	that	had	more	interactions	than	what	was	observed	in	the	real	data.	
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To	compare	gene	sets	in	additional	studies	we	used	a	percentile	approach	because	of	the	subjectivity	

evaluating	a	p-value	cutoff	to	select	hits	from	screening	data	of	different	types	(i.e.	isogenic	vs	cell	line	

panels).	To	perform	evaluation	in	held	out	KRAS	SL	screen	datasets	we	obtained	gene	level	screening	

data	from	three	published	KRAS	studies	(Costa-Cabral	et	al.,	2016;	Kim	et	al.,	2013,	2016).	Hits	were	

taken	as	ranked	in	the	Costa	Cabral	study.	For	the	Kim	studies	genes	were	ranked	into	percentiles	based	

on	the	average	difference	in	essentiality	scores	between	KRAS	wild-type	and	mutant	cell	lines.		

	

Pathway	Genetic	Interaction	Enrichment	Analysis	

Genes	were	assigned	to	curated	pathways	based	on	a	combination	of	the	RAS	2.0	pathway	annotations	

(https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2015/ras-pathway-v2)	and	

manual	curation.	The	significance	of	sets	of	genetic	interactions	between	a	gene	and	a	particular	pathway	

was	evaluated	using	a	two-sided	t-test	to	determine	significance	from	a	median	of	zero.		

	

Cell	Lines	&	Tissue	Culture		

MCF10A	Isogenic	cells	were	grown	in	three	conditions	for	our	experiments.	Full	Media	defined	as:	

DMEM/F12,	5%	Horse	Serum,	20ng/ml	EGF,	0.5mg/ml	Hydrocortisone,	100ng/ml	Cholera	Toxin,	and	

10ug/ml	Insulin;	Intermediate	Media	is	DMEM/F12,	5%	Horse	Serum,	0.5mg/ml	Hydrocortisone,	

100ng/ml	Cholera	Toxin,	and	10ug/ml	Insulin;	and	Minimal	Media	is	DMEM/F12	and	5%	Horse	Serum.	

Mouse	cell	lines	were	grown	DMEM	at	10%FBS	plus	1X	GlutaMAX	(ThermoFisher		#35050061).	

	

Western	Blotting	

Cells	were	lysed	with	RIPA	buffer	(25mM	Tri-HCl,	ph	7.5,	150nM	NaCl,	0.1%	SDS,	1%	Sodium	

deoxycholate,	10%	Triton-X,	5mM	EDTA,	pH	8.0	for	30	minutes	on	ice	and	cell	debris	was	pelleted	and	

supernatant	was	collected	and	BCA	protein	quantification	was	used	to	obtain	protein	concentrations.		

	

RNAi	Screening	and	Scoring	
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1000	cells/well	were	reverse	transfected	in	quadruplicate	with	0.05µl/well	of	RNAiMax	and	5ng/well	of	

each	esiRNA,	72	hours	after	transfection	plates	were	fixed	with	3%	PFA,	and	permeabilized	with	0.5%	

TritonX.	Hoechst	33342	Solution	(Themo	#62249)	was	added	at	a	final	concentration	of	4µg/mL	and	

incubated	at	37°C	for	30	minutes.	Nuclei	were	counted	using	a	Thermo	CellInsight	microscope.		Cell	

counts	were	normalized	to	a	negative	control	non-targeting	targeting	esiRNA	included	in	each	plate	and	a	

Student’s	t-test	was	used	to	determine	a	p-value	of	significance	by	comparing	normalized	counts	for	each	

esiRNA	in	KRAS	versus	eGFP	cells.	Genetic	interactions	scores	were	based	on	Log10(p-value)	and	signed	

to	reflect	synthetic	sickness	(negative)	and	enhancement	(positive).	P-values	were	used	to	estimate	false	

discovery	rates	(FDR)	using	Benjamin-Hochberg	method	(Benjamini	and	Hochberg,	1995).	For	esiRNA	

studies	non-targeting	esiRNA	targeting	eGFP	(Sigma,	#EHUEGFP).	For	siRNA	studies,	siBRCA1	is	an	ON-

TARGET	SMARTpool	(Dharmacon,	#L-003461-00-0005)	and	siNT	is	ON-TARGET	NT4	(Dharmacon	

#D001810-04-05).	

	

For	the	combinatorial	E-MAP	screen	5ng	of	each	of	96	esiRNAs	(“array”)	was	plated	in	quadruplicate	into	

384	well	plates	to	which	was	added	a	second	constant	“query”	esiRNA	(5ng)	using	a	Mantis	Liquid	

Handler	to	all	wells	along	with	10	µl	of	RNAiMax	to	prepare	reverse	transfection	mix,	cells	were	plated	

and	allowed	to	grow	for	72	hours.	At	end	point	plates	were	processed	as	above	for	cell	count.	Counts	

were	normalized	to	the	median	of	each	plate	and	Z-scored.	Four	replicates	were	averaged	to	obtain	a	

mean	Z-score	per	esiRNA	combination.		

	

The	cellular	context	score	of	each	gene	was	defined	as	the	variance	of	KRAS	genetic	interaction	scores	

across	three	conditions.	The	genetic	context	score	was	based	on	the	number	of	significant	genetic	

suppressors	(E-MAP	interaction	score	Z>2)	identified	for	each	gene.	The	product	of	these	two	metrics	

was	used	to	define	the	ranking	and	then	Z-normalized	for	visualization.	

	

Drug	Screening	
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1000	cells/well	in	a	384	well	plate	were	seeded	and	exposed	to	the	drug	library	the	next	day.	Drug	plates	

were	prepared	by	diluting	stock	drug	into	a	4	replicate	4-point	dilutions	series		(500,	250,	50,	5ng/mL).	

Each	dose	was	added	in	4	replicates	using	a	Caliper	Zephyr	liquid	handler.	Cells	were	allowed	to	grow	for	

72	hours	before	nuclei	counting.	Cell	counts	were	normalized	to	DMSO	control	wells	and	area	under	the	

dose-response	curve	(AUC)	was	calculated	as	the	sum	of	proliferation	values	over	all	4	concentrations.		

	

γH2AX	Immunofluorescence		 	

Cells	were	plated	into	6-well	plates	containing	coverslips	and	allowed	to	grow	overnight	prior	to	

treatment	with	talazoparib.	For	washout,	cells	were	washed	twice	with	PBS,	and	allowed	to	grow	in	fresh	

media	without	talazoparib.	Cells	were	fixed	using	4%	PFA	for	10	minutes	at	room	temperature,	

permeabilized	using	0.3%	Triton-X	in	DPBS,	and	blocked	with	3%	BSA	in	PBS.	Cells	were	incubated	with	

the	primary	antibody	overnight	at	4	C	(Anti-Histone	γ-H2AX,	#07-627	clone	PC130,	Millipore	Sigma	

1:1000)	and	the	secondary	antibody	(Goat	anti-Mouse	Alexa	Fluor	647	Polyclonal,	Thermo	Fisher)	for	1	

hour	at	room	temperature.	Following	washes	with	PBS	and	water,	coverslips	were	mounted	using	

Prolong	Antifade	containing	DAPI	(P36931).	Foci	were	quantified	using	ImageJ	plugin	Foci	Counter	(The	

Bioimaging	Center,	University	of	Konstanz).	

	

Drug	response	curves	and	colony	formation	assays	

For	IC50	determination,	500	cells	were	seeded	into	384-well	plates	overnight,	then	exposed	to	drugs	and	

allowed	to	proliferate	for	96	hours.	Cells	were	quantified	using	nuclei	counting	and	compared	to	cell	

counts	with	DMSO	treatment.	Curves	were	fit	and	IC50	determined	using	Graphad	Prism	nonlinear	

regression	analysis.	For	colony	formation	assays,	500	cells	were	plated	onto	12-well	plates	overnight	

before	drug	addition.	Media	and	drugs	were	changed	every	72	hours.	Cells	were	fixed	and	stained	with	

1%	crystal	violet	in	20%	methanol.	Plates	were	washed	with	water,	dried	and	imaged	using	Epson	V600	

scanner.	
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FIGURE	LEGENDS	
	
Figure	1.	Meta-analysis	of	published	studies	 identifies	common	KRAS	synthetic	 lethal	networks.	

(A)	Gene	 overlap	 between	 the	 top	 250	hit	 genes	 reported	 from	 three	 published	KRAS	 synthetic	 lethal	

studies,	Luo	et	al,	Barbie	et	al.,	and	Steckel	et	al.	(Barbie	et	al.,	2009;	Luo	et	al.,	2009;	Steckel	et	al.,	2012).	

P-values	based	on	two-tailed	hypergeometric	test	calculated	between	pairwise	comparisons	taking	into	

account	 all	 tested	 genes	 per	 study.	 (B)	Data	 integration	 strategy	 for	mapping	 top	 250	KRAS	 synthetic	

lethal	 reported	 from	 each	 study	 onto	 a	 protein-protein	 interaction	 network	 composed	 on	 interactions	

from	HumanNet	and	CORUM	protein	complexes.	The	number	of	genes	that	were	tested	in	each	study,	n.	

(C)	Comparison	of	the	number	of	interactions	observed	in	the	protein-protein	interaction	(PPI)	network	

spanning	between	hits	reported	 in	 the	 two	 indicated	studies	versus	 the	number	of	similar	 interactions	

observed	between	random	genes.	Histogram	represents	results	from	10,000	simulations	conducted	from	

randomly	picking	250	 genes	 that	were	 tested	 in	 each	 respective	 study	 and	 the	p-value	 represents	 the	

fraction	 of	 simulations	 where	 the	 same	 or	 more	 interactions	 than	 the	 actual	 observed	 number	 were	

obtained.	 (D)	 The	 PPI	 network	 was	 limited	 to	 interactions	 where	 at	 least	 one	 of	 the	 proteins	 was	

identified	 in	 previous	 studies	 and	 then	 subjected	 to	 network	 clustering	 to	 identify	 densely	 connected	

components	using	MCODE.	 Individual	 subnetworks	were	 filtered	 to	 those	which	 contained	genes	 from	

multiple	studies	and	grouped	based	on	gene	function	into	7	clusters.	The	set	of	genes	identified	in	each	

subnetwork	was	assessed	for	overlap	with	the	CORUM	or	KEGG	complex	or	pathway	listed	using	a	two-

tailed	hypergeometric	test.	

	

Figure	2.		Comparison	of	genes	in	KRAS	synthetic	lethal	networks	and	previously	published	KRAS	

synthetic	lethal	genes	in	held-out	studies.	105	predicted	KRAS	synthetic	lethal	network	genes	and	26	

previously	published	KRAS	synthetic	 lethals	were	evaluated	using	data	 from	Kim	et	 al	2013,	Kim	et	 al	

2016,	and	Costa-Cabral	et	al.	(Costa-Cabral	et	al.,	2016;	Kim	et	al.,	2013,	2016).	Genes	in	each	study	were	

ranked	into	percentiles	based	on	the	difference	in	proliferation	after	knockdown	in	KRAS-mutant	versus	

wild-type	 cell	 lines.	 The	 lower	 the	 percentile	 the	more	 evidence	 for	 KRAS	 specific	 synthetic	 lethality.	
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Accuracy	 calculated	 as	 the	 number	 of	 genes	 in	 the	 top	 5%	 (pink	 dots)	out	 of	 all	 the	 tested	 genes	 per	

category.	The	number	of	genes	tested	in	each	study,	n.	

	

Figure	 3.	 A	 new	 isogenic	 cell	 line	 screen	 validates	 KRAS	 synthetic	 lethal	 network	 genes.	 (A)	

Overview	of	approach.	MCF10A	cells	stably	expressing	eGFP	or	a	mutant	KRAS	construct	were	reverse	

transfected	with	 esiRNAs	 targeting	 specific	 genes.	After	 72	hours,	 relative	proliferation	was	 compared	

between	eGFP	and	KRAS	mutant	cells	to	score	genetic	interactions.	(B)	Proliferation	based	on	cell	count	

of	 uniformly	 plated	 MCF10A	 cells	 expressing	 eGFP,	 KRAS	 G12V	 or	 G12D	 grown	 in	 the	 presence	 or	

absence	 of	 20ng/ml	 EGF	 for	 72	 hours.	 (C)	 Immunoblot	 of	 lysates	 from	 isogenic	 cells	 grown	 in	 the	

presence	or	absence	of	20ng/ml	EGF	for	24	hours.	(D)	Proliferation	of	eGFP	or	KRAS	G12D	cells	grown	in	

the	indicated	media	conditions	after	non-targeting	(NT)	or	KRAS	knockdown	for	72	hours,	normalized	to	

NT	 control.	 (E)	 Volcano	 plot	 of	 KRAS	G12D	 screen	 reflecting	 the	magnitude	 of	 change	 in	 proliferation	

after	gene	knockdown	in	KRAS	G12D	versus	eGFP	expressing	lines	versus	the	significance	of	this	effect	

calculated	among	replicates.	Dotted	lines	represent	the	indicated	false	discovery	rate	(FDR)	cutoffs.	(F)	

Relative	 proliferation	 of	 knockdown	 of	 listed	 genes	 in	 eGFP	 or	 KRAS	 G12D	 cells	 compared	 to	 non-

targeting	control	in	each	respective	cell	line.	Genes	selected	based	on	genetic	interactions	with	<1%	FDR.	

(G)	 Signed	 genetic	 interaction	 scores	 for	 genes	 in	 the	 broader	 RAS	 pathway	 grouped	 into	 functional	

categories.	The	most	negative	 scoring	genes	 in	 each	 category	are	 listed.	 (H)	 Signed	genetic	 interaction	

score	of	retested	literature	curated	KRAS	synthetic	lethal	genes	and	their	source.	Only	a	subset	of	genes	

from	Luo	et	al.	are	indicated	for	clarity.	(I)	Comparison	of	genetic	interaction	scores	for	genes	involved	in	

the	RAS	or	MAPK	pathway	(RAS/MAPK),	RTK	signaling,	KRAS	synthetic	lethal	genes	from	the	literature	

(green),	 or	predicted	 synthetic	 lethal	network	genes	 (purple).	P-values	based	on	 comparison	against	 a	

median	interaction	score	of	zero	(bottom)	and	between	groups	(above),	both	by	two-tailed	Student’s	t-

test.	Boxes	represent	 the	median,	hinges	span	25-75th	percentile	and	whiskers	span	10-90th	percentile.	

Error	bars	are	s.d.	
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Figure	4.	A	genetic	 interaction	map	identifies	KRAS	synthetic	 lethal	suppressors.	(A)	Overview	of	

approach	to	generate	an	epistatic	mini-array	profile	(E-MAP)	using	combinatorial	RNAi	to	measure	5,828	

pairwise	genetic	interactions	in	MCF10A	KRAS	G12D	cells.	esiRNAs	targeting	a	set	of	genes	are	arrayed	in	

a	pairwise	fashion	(in	quadruplicate)	in	tissue	culture	plates.	Reverse	transfection	is	then	performed,	and	

the	resulting	fitness	defects	are	observed	using	high-content	imaging.	Raw	data	is	normalized	and	scored	

(see	Methods)	(B)	Overview	of	genetic	interaction	map	for	30	KRAS	synthetic	lethal	genes	and	candidate	

modifiers.	 Interactions	 scoring	 >2	 or	 <-2	 are	 shown.	 (C)	 Relative	 proliferation	 of	 knockdown	 of	 three	

KRAS	synthetic	lethals	identified	or	confirmed	in	this	study,	CCND1,	CDK6	and	STK33,	in	eGFP	or	KRAS	

G12D	MCF10A	cells	alone	and	in	combination	with	their	top	positive	interaction	partners.	Proliferation	

normalized	to	mock.	P-values	based	on	a	two-sided	t-test,	error	bars	s.d.	(D)	Categorical	annotations	for	

groups	of	genes	displaying	significantly	strong	genetic	interactions	with	synthetic	lethal	query	genes	with	

p<0.01	 (see	 Methods).	 (E)	 Genetic	 interaction	 partners	 involving	 two	 KRAS	 synthetic	 lethal	 genes	

identified	 in	this	study,	RGL1	and	DNMT3A,	and	associated	pathways	enriched	for	genetic	 interactions.	

Edge	thickness	is	proportional	to	interaction	score.	

	

Figure	5.	Dependency	on	synthetic	lethal	genes	vary	based	on	cellular	conditions.	(A)	Knockdown	

of	KRAS	or	non-targeting	(NT)	in	MCF10A	eGFP	or	KRAS	G12D	cells	in	the	indicated	media	condition	for	

72	 hours.	 Proliferation	 measured	 relative	 to	 NT.	 (B)	 Heatmap	 of	 genetic	 interaction	 scores	 for	 KRAS	

G12D	cells	grown	in	full,	intermediate	or	minimal	media	conditions	compared	to	eGFP	cells.	Highlighted	

gene	sets	show	consistent	or	condition	specific	synthetic	lethality	across	conditions.	Red	arrow	highlights	

BRCA1	 as	 a	 consistent	KRAS	 synthetic	 lethal.	 (C)	Heatmap	of	 genetic	 interaction	 scores	 for	 previously	

published	KRAS	synthetic	 lethals	across	different	growth	conditions.	 (D)	Proliferation	of	cells	grown	in	

the	indicated	conditions	harboring	knockdown	of	indicated	genes	normalized	to	NT	transfection	control.	

Full	=	full	media,	Int	=	intermediate	media,	Min	=	minimal	media.	Error	bars	are	s.d.		
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Figure	 6.	 PARP	 inhibitors	 are	more	 effective	 in	 oncogenic	KRAS	 expressing	 cells.	 (A)	Ranking	of	

candidate	KRAS	synthetic	lethal	genes	based	on	integration	of	genetic	and	cellular	perturbation	screens.	

Genes	were	selected	for	analysis	based	on	evidence	of	synthetic	lethality	in	MCF10A	KRAS	cells	grown	in	

minimal	media.	 The	 conceptual	 source	 of	 each	 gene	 is	 listed.	 (B)	Drug	 screen	 of	 91	 clinically	 relevant	

compounds	ranked	by	sensitivity	based	on	difference	 in	 the	drug	area	under	 the	curve	(AUC)	between	

eGFP	 and	 KRAS	 G12D	 cells.	 DMSO	 and	 EGFR	 inhibitors	 indicated	 as	 controls	 for	 no	 effect	 and	 KRAS	

induced	 drug	 resistance,	 respectively.	 (C)	 Relative	 proliferation	 of	 control	 eGFP,	 KRAS	 G12D	 or	 G12V	

expressing	MCF10A	lines	after	treatment	with	PARP	inhibitors	talazoparib,	rucaparib	or	olaparib	for	72	

hours.	 IC50	values	are	shown.	 (D)	Long-term	clonogenic	growth	of	MCF10A	KRAS	G12D	and	eGFP	cells	

treated	 with	 DMSO	 or	 talazoparib	 for	 two	 weeks.	 (E)	 γH2AX	 immunofluorescence	 in	 eGFP	 or	 G12D	

expressing	cells,	red.	Nuclei	outlines	in	dotted	lines	based	on	DAPI	staining.	(F)	Quantification	of	γH2AX	

foci	 in	 the	 indicated	 cell	 lines	 treated	 with	 DMSO	 or	 with	 500nM	 of	 talazoparib	 for	 18	 hours.	 (G)	

Treatment	 of	 the	 indicated	 cells	 with	 500nM	 talazoparib	 for	 18	 hours	 then	 washed	 out.	 γH2AX	 foci	

quantified	 before,	 8	 and	 24	 hours	 after	washout.	 Error	 bars,	 s.d.	 except	 E	 and	 F	which	 are	 s.e.m.	 Not	

significant,	n.s.		

	

	

	 	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 27, 2019. ; https://doi.org/10.1101/591677doi: bioRxiv preprint 

https://doi.org/10.1101/591677


FIGURES	

Figure	1	

	

	

	

	 	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 27, 2019. ; https://doi.org/10.1101/591677doi: bioRxiv preprint 

https://doi.org/10.1101/591677


Figure	2	
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Figure	3	
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Figure	4	
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Figure	5	
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Figure	6
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