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Abstract 33 

Major depression is a common and severe psychiatric disorder with a highly polygenic genetic 34 

architecture. Genome-wide association studies have successfully identified multiple 35 

independent genetic loci that harbour variants associated with major depression, but the exact 36 

causal genes and biological mechanisms are largely unknown. Tissue-specific network 37 

approaches may identify molecular mechanisms underlying major depression and provide a 38 

biological substrate for integrative analyses. We provide a framework for the identification of 39 

individual risk genes and gene co-expression networks using genome-wide association 40 

summary statistics and gene expression information across multiple human brain tissues and 41 

whole blood. We developed a novel gene-based method called eMAGMA that leverages multi-42 

tissue eQTL information to identify 99 biologically plausible risk genes associated with major 43 

depression, of which 58 are novel. Among these novel associations is Complement Factor 4A 44 

(C4A), recently implicated in schizophrenia through its role in synaptic pruning during 45 

postnatal development. Major depression risk genes were enriched in gene co-expression 46 

modules in multiple brain tissues and the implicated gene modules contained genes involved 47 

in synaptic signalling, neuronal development, and cell transport pathways. Modules enriched 48 

with major depression signals were strongly preserved across brain tissues, but were weakly 49 

preserved in whole blood, highlighting the importance of using disease-relevant tissues in 50 

genetic studies of psychiatric traits. We identified tissue-specific genes and gene co-expression 51 

networks associated with major depression. Our novel analytical framework can be used to 52 

gain fundamental insights into the functioning of the nervous system in major depression and 53 

other brain-related traits. 54 

  55 
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Author summary 56 

Although genome-wide association studies have identified genetic risk variants associated with 57 

major depression, our understanding of the mechanisms through which they influence disease 58 

susceptibility remain largely unknown. Genetic risk variants are highly enriched in non-coding 59 

regions of the genome and affect gene expression. Genes are known to interact and regulate 60 

the activity of one another and form highly organized (co-expression) networks. Here, we 61 

generate tissue-specific gene co-expression networks, each containing groups of functionally 62 

related genes or “modules”, to delineate interactions between genes and thereby facilitate the 63 

identification of gene processes in major depression. We developed and applied a novel 64 

research methodology (called “eMagma”) which integrates genetic and transcriptomic 65 

information in a tissue-specific analysis and tests for their enrichment in gene co-expression 66 

modules. Using this novel approach, we identified gene modules in multiple tissues that are 67 

both enriched with major depression genetic association signals and biologically meaningful 68 

pathways. We also show gene modules are strongly preserved across brain regions, but not in 69 

whole blood, suggesting blood may not be a useful tissue surrogate for the genetic dissection 70 

of major depression. Our novel analytical framework provides fundamental insights into the 71 

functional genetics major depression and can be applied to other neuropsychiatric disorders.  72 
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Introduction 73 

 74 

Major Depression is a highly disabling mental health disorder that accounts for a sizable 75 

proportion of the global burden of disease. The global lifetime prevalence of major depression 76 

is around 12% (17% of women and 9% of men) (1), and ranks as the fourth most disabling 77 

disorder in Australia in terms of years lived with disability (2). Major Depression has a complex 78 

molecular background, driven in part by a highly polygenic mode of inheritance. A recent 79 

genome-wide association study (GWAS) meta-analysis of 135,458 major depression cases and 80 

344,901 controls identified 44 loci associated with the disorder (3). Detailed functional studies 81 

showed these loci to be enriched in multiple brain tissues and neuronal cell types and to contain 82 

common (minor allele frequency, MAF > 0.01) single nucleotide polymorphisms (SNPs) that 83 

regulate the expression of multiple genes with putative roles in central nervous system 84 

development and synaptic plasticity. These results suggest disease-associated SNPs modify 85 

major depression susceptibility by altering the expression of their target genes in the brain. 86 

Genes are known to interact and regulate the activity of one another in large gene-co-expression 87 

networks. Therefore, SNPs may not only affect the activity of single target gene, but multiple 88 

biologically related genes within the same tissue-specific co-expression network. The 89 

integration of GWAS SNP genotype data with gene co-expression networks across multiple 90 

tissues may be used to elucidate biological pathways and processes underlying highly 91 

polygenic complex disorders such as major depression. 92 

 93 

Genome-wide gene expression data has been successfully integrated with SNP genotype data 94 

to prioritise risk genes and reveal possible mechanisms underlying susceptibility to a range of 95 

psychiatric disorders (4–6). This approach is most appropriate when performed in 96 

phenotypically affected cases and healthy controls for whom both gene expression and SNP 97 
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genotype data are available. In practice, however, phenotype, SNP genotype, and gene 98 

expression data measured from the same individuals are difficult to obtain due to cost and tissue 99 

availability, and identifying causal variants can be difficult due to linkage disequilibrium (LD) 100 

and confounding from environmental and technical factors. Recent approaches address these 101 

limitations by integrating GWAS summary statistics with independent gene expression data 102 

provided by large international consortia, such as the multi-tissue Genotype-Tissue Expression 103 

(GTEx) project (7–9). The most recent release of the GTEx project (version 7) contains SNP 104 

genotype data linked to gene expression across 53 tissues from 714 donors, including 13 brain 105 

tissues from 216 donors. This represents a valuable resource with which to study gene 106 

expression and its relationship with genetic variation, known as expression quantitative trait 107 

loci (eQTL) mapping (10).  108 

 109 

Recent genetic studies have leveraged GTEx data in gene-based analyses to prioritise 110 

individual risk genes whose expression is associated with major depression (11,12). While 111 

these analyses identified individual risk genes for major depression, they provide little insight 112 

into the molecular context within which the risk genes operate. We propose the use of GTEx 113 

data to build gene co-expression networks consisting of highly correlated modules—or 114 

groups—of genes in multiple tissues. The gene network modules provide a detailed map of 115 

gene interactions in a given tissue, and provide a biological substrate to test the enrichment of 116 

major depression GWAS signals. Enriched gene modules can be characterised using gene 117 

pathway analysis, and provide a valuable resource for the integration of additional molecular 118 

data.  This approach may characterise the broader molecular context of risk genes in major 119 

depression and thereby facilitate the identification of gene pathways for diagnostic, prognostic, 120 

and therapeutic intervention. 121 

 122 
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Results  123 

Genes form co-expression networks enriched in distinct biological processes 124 

We built gene co-expression networks using RNA-Seq data from 13 brain tissues and whole 125 

blood in GTEx (v7). In total, 464 tissue samples (including 216 brain samples) and 17793 126 

protein-coding genes were used to build the co-expression networks, although the number of 127 

samples (range: 80-369) and genes (range: 14834-16892) differed by tissue (Table 1). The 128 

number of gene co-expression modules within each gene network ranged from 11 modules in 129 

brain cortex to 24 modules in amygdala, and the number of genes within a module ranged from 130 

as few as 30 (0.18% of network genes, amygdala) to 9144 (55% of network genes, anterior 131 

cingulate cortex). We used gene pathway analysis to characterise biological processes in each 132 

co-expression module (Table S1). Co-expression networks were largely enriched for a single 133 

type of biological process (e.g. transcriptional regulation or immune response). These data 134 

suggest the network gene co-expression modules represent biologically homogeneous units. 135 

 136 

Identification of risk genes for major depression 137 

To assign major depression risk SNPs to genes, we applied two gene-based strategies: first, 138 

proximity-based gene mapping with MAGMA, which assigns SNPs to the nearest gene within 139 

a genomic window; and second, eQTL gene mapping using eMAGMA, which uses tissue-140 

specific SNP-gene associations from GTEx to assign SNPs to genes based on their association 141 

with gene expression. To further prioritise gene-level results, we performed a transcriptome-142 

wide association study using S-PrediXcan. Both tissue-specific and P value thresholds for each 143 

gene-based method, calculated using Bonferroni correction for the number of associations, are 144 

shown in Table 1. We identified 137 unique mapped depression-associated genes with 145 

MAGMA (Table S2), 217 significant tissue-specific gene associations with eMAGMA 146 

(representing 99 unique mapped genes) (Table S3), and 86 tissue-specific gene associations 147 
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with S-PrediXcan (Table S4). A total of 41 genes were implicated by both MAGMA and 148 

eMAGMA mapping strategies in at least one tissue (Figure 1; Table S5). Among significant 149 

eMAGMA associations, 35 (16%) also had a significant S-PrediXcan association in the same 150 

tissue (Table S6), and 16 associations were significant across all three gene-based methods 151 

(Table 2). Taken together, these results point to potential functional links for the GWAS-152 

associated variants and give higher credibility to genes with convergent evidence of association 153 

from multiple sources. 154 

 155 

Major depression risk genes are enriched in brain gene co-expression network modules 156 

We tested for the enrichment of MAGMA (Table S2; N=137) and eMAGMA associations 157 

(Table S3; N unique=99) in gene co-expression modules from the brain and whole blood. Gene 158 

modules in four brain tissues (amygdala, cerebellar hemisphere, frontal cortex, and nucleus 159 

accumbens) were enriched with MAGMA association signals, while one module in 160 

hypothalamus and one module in putamen were enriched with eMAGMA associations (Table 161 

4). Gene modules enriched with MAGMA remained significant after removal of genes in the 162 

MHC region (Table S7), however modules enriched with eMAGMA associations were no 163 

longer significant after empirical multiple testing correction (Table S8). No enrichment of 164 

gene-based association signals was observed for modules identified in whole blood, despite the 165 

larger sample size (and hence increase power) compared to brain tissues. We plotted the 166 

overlap in gene modules enriched with gene-based MD associations (Figure S1). A total of 217 167 

genes overlapped across four modules enriched with MAGMA associations, suggesting similar 168 

biological processes may underlie the modular enrichments. On the other hand, we observed 169 

little overlap in genes between modules enriched eMAGMA associations, suggesting tissue-170 

specific eQTL effects may underlie these modular enrichments and highlighting the importance 171 

of using both proximity- and eQTL-based gene-based tests. 172 
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 173 

In gene pathway analyses of the major depression enriched modules, we found enrichment of 174 

neuronal and synaptic signalling pathways in amygdala, frontal cortex, nucleus accumbens, 175 

putamen (e.g. trans-synaptic signalling in frontal cortex, P=2.81 × 10-24), as well as membrane 176 

trafficking related pathways in cerebellar hemisphere (e.g. Membrane Trafficking, P=2.19 × 177 

10-13) and vascular-related pathways in hypothalamus (e.g. blood vessel morphogenesis, 178 

P=5.67 × 10-15) (Figure 2, Table S9). Pathway analysis of 217 genes overlapping four modules 179 

enriched with MAGMA gene-based associations revealed chemical synaptic transmission 180 

(GO:0007268; P=1.24 × 10-14) and the neuronal system (R-HSA-112316; P=6.62 × 10-10) 181 

pathways (Table S10).  182 

 183 

Gene co-expression modules enriched with major depression risk genes are preserved 184 

across brain tissues 185 

Our network-based approach allows the discovery of major depression associated gene 186 

modules as well as the preservation (or reproducibility) of those associated modules across 187 

tissues. We assessed the preservation of gene co-expression modules across brain tissues and 188 

whole blood using the WGCNA modulePreservation algorithm, highlighting the preservation 189 

of modules enriched with major depression GWAS signals. Strong modular preservation (Z 190 

score > 10) was observed across all brain regions, while weak to moderate preservation was 191 

observed in whole blood (Z score < 10) (Supplementary Figure 2). Major depression modules 192 

enriched with synaptic signalling pathways (Modules M1 [Amygdala], M3 [Frontal cortex], 193 

M4 [Nucleus accumbens], and M6 [Putamen]) showed particularly strong preservation across 194 

brain tissues, while module M2 (cerebellar hemisphere), enriched with cellular localisation and 195 

transport pathways, and module M5 (Hypothalamus), enriched with vascular related pathways, 196 

showed relatively weak preservation (Figure 2). 197 
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Discussion 198 

Genome-wide association studies have provided important insight into the genetic architecture 199 

of major depression. The next critical step is to leverage these genetic data to identify higher 200 

order biological processes underlying the disorder, and to ultimately identify molecular targets 201 

for risk prediction, diagnosis, and therapeutic intervention. To this end, we integrated multi-202 

tissue gene expression data with major depression GWAS summary statistics using an 203 

integrative network-based approach. We first applied a weighted gene co-expression network 204 

analysis to gene expression data from multiple tissues in GTEx to measure the correlation 205 

structure between protein-coding genes. The gene networks, which represent the 206 

“connectedness” of genes in a given tissue, were divided into modules (or groups) of highly 207 

correlated genes, under the assumption that correlated genes are involved in the same or similar 208 

biological processes. The gene modules subsequently formed the unit of analysis for a) tests of 209 

enrichment with major depression GWAS summary statistics; b) gene pathway analyses using 210 

curated gene sets; and c) modular preservation (or replication) analyses across multiple tissues. 211 

Our network-based approach identified novel gene candidates for major depression, and 212 

identified co-expression networks enriched with biologically meaningful gene pathways that 213 

were preserved across brain tissues. 214 

A gene module approach based on gene co-expression patterns was used to identify groups of 215 

functionally related genes associated with major depression. This approach reduced the 216 

dimensionality of genome-wide gene expression data across multiple brain tissues and whole 217 

blood without the loss of important biological information, and thereby alleviated the multiple 218 

testing burden associated with traditional single gene-based methods. A similar network-based 219 

approach has been applied to gene expression data for other brain-related disorders, including 220 

post-traumatic stress syndrome (13), schizophrenia (14), and psychosis (15). However, these 221 

studies typically included a small number of individuals (fewer than 100) from a single brain 222 
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region and are therefore limited in their statistical power and generalisability across different 223 

tissues. Our approach used a total of 216 individuals with a tissue sample from at least one of 224 

13 brain regions, and 464 individuals with the inclusion of whole blood, thereby improving the 225 

resolution and robustness of gene networks. Our network approach identified between 11 226 

(Cortex) and 24 (Amygdala) mutually exclusive modules within tissues, and ranged in size 227 

from 30 to 9144 genes. Each module was enriched with distinct and highly significant 228 

biological pathways (e.g. immune signalling), suggesting our approach generated robust 229 

modules of functionally related genes.  230 

To identify genes and gene-sets associated with major depression, we assigned disease-231 

associated SNPs to their nearest gene using both proximity and multi-tissue eQTL information. 232 

We first used MAGMA, a proximity-based approach that assigns SNPs to their nearest gene. 233 

This approach appropriately corrects for correlated SNPs (i.e. linkage disequilibrium [LD]), 234 

and also adjusts for correlated gene expression in gene-set analysis and multiple-testing 235 

correction. However, SNPs are simply assigned to their nearest gene based on an arbitrary 236 

genomic window. It is well known that such proximity-based approaches often miss the 237 

functional SNP-gene association (16). Therefore, we modified the MAGMA pipeline to 238 

integrate SNPs with a significant (FDR<0.05) association with the expression of one or more 239 

genes (eQTLs) from the multi-tissue GTEx resource. In doing so, we generated a tissue-240 

specific, eQTL-informed MAGMA, or “eMAGMA”, for the functional (i.e. biologically 241 

meaningful) annotation of GWAS summary statistics.  242 

Our eMAGMA approach identified novel and biologically meaningful candidate risk gene 243 

associations for major depression across multiple tissues. Of 99 significant eMAGMA genes 244 

(representing 217 unique gene-tissue associations), 58 were not identified by (proximity-based) 245 

MAGMA. Noteworthy among these associations is Complement Factor 4A (C4A), recently 246 

implicated in the development of schizophrenia through its role as a mediator of synaptic 247 
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pruning during postnatal development (17). C4A was significant in 12 of 14 investigated 248 

tissues, including whole blood, and was one of 24 significant eMAGMA genes located on 249 

chromosome 6p21—a region with complex LD structure that flanks the centromeric end of the 250 

major histocompatibility complex. While we cannot identify the causal gene due to the 251 

complex LD pattern of the MHC region, this result suggests partially shared biological 252 

pathways underlie both major depression and schizophrenia. 253 

We tested for the enrichment of candidate risk genes in tissue-specific network co-expression 254 

modules, while adjusting for correlated gene expression, gene size, and gene density. We 255 

identified six co-expression modules across six individual brain tissues, four of which were 256 

enriched in synaptic signalling and neuronal development pathways (Amygdala, Putamen, 257 

Frontal cortex, and hypothalamus). These results align with recent pathway analyses of genetic 258 

associations in major depression, which identified genes and gene-sets involved in synaptic 259 

transmission and neuronal mechanisms, among other pathway groupings (3,18). Furthermore, 260 

structural changes in frontal cortex have been identified in a recent meta-analysis of brain 261 

magnetic resonance imagining findings in adult major depression cases (19), highlighting the 262 

central role of frontal cortex in major depression aetiology. It is important to note that co-263 

expression networks across all (N=13) brain tissues contained a gene co-expression module 264 

enriched with synaptic and neuronal pathways, but only four were enriched with major 265 

depression association risk genes. This suggests risk genes underlying major depression 266 

susceptibility manifest their effect in specific brain regions, consistent with tissue-specific gene 267 

expression (20) and highlighting the importance of studying multiple tissues in integrated 268 

studies of complex traits such as major depression. 269 

We assessed the preservation (or reproducibility) of connectivity patterns (i.e. correlations) 270 

between genes across multiple brain tissues and whole blood. This approach may determine 271 

whether the connectivity between genes within a network module enriched with major 272 
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depression signals differs both across brain tissues and between brain and whole blood, and 273 

may therefore identify (peripheral) surrogate tissues for molecular studies of major depression. 274 

We observed strong preservation of network modules across all brain regions, but not whole 275 

blood, suggesting blood-based molecular studies of major depression may fail to capture 276 

important disease-related processes in brain. Our findings therefore support the use of brain 277 

tissues from large international consortia, such as the GTEx study or the CommonMind 278 

consortium, for the characterisation of genetic association signals, despite reduced sample sizes 279 

compared to blood-based datasets and the potential for technical biases associated with the use 280 

of post-mortem samples.  281 

Current results support a common variant genetic architecture of major depression, where 282 

variants with relatively high frequency (e.g. minor allele frequency > 0.01) in the general 283 

population, but low penetrance, are the major contributors to genetic susceptibility to the 284 

disorder. Therefore, as sample sizes grow larger, thousands of lead SNPs associated with major 285 

depression are likely to be identified. With these impending data, new methods for the 286 

interpretation of genetic signals for major depression and other common complex disorders 287 

will be required. Our network-based approach provides a gene expression substrate across 288 

multiple human tissues for the integration and characterisation of GWAS signals. By exploiting 289 

the connectivity between genes, this approach will allow the identification of perturbations in 290 

the activity of a system rather than individual genes. Furthermore, network-based methods may 291 

identify regulatory hubs whose perturbation may have wider consequences for major 292 

depression and other (co-morbid) psychiatric and/or neurological disorders by virtue of their 293 

interaction with other genes. Finally, gene co-expression networks can be integrated with other 294 

molecular phenotypes, such as epigenetic DNA methylation, proteomics, and metabolomics 295 

data, for ‘omics-based analyses. Such ‘omics-based analyses are critical for understanding the 296 

properties of biological systems underlying complex disorders such as major depression. 297 
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Methods 298 

 299 

The Genotype-Tissue Expression (GTEx) project 300 

An overview of our analytical pipeline is shown in supplementary Figure 1. Fully processed, 301 

filtered and normalised gene expression data for 13 brain tissues and whole blood (Table 1) 302 

were downloaded from the Genotype-Tissue Expression project portal (version 7) 303 

(http://www.gtexportal.org) (Table 1). Only genes with ten or more donors with expression 304 

estimates > 0.1 Reads Per Kilobase of transcript (RPKM) and an aligned read count of six or 305 

more within each tissue were considered significantly expressed. Within each tissue, the 306 

distribution of RPKMs in each sample was quantile-transformed using the average empirical 307 

distribution observed across all samples. Expression measurements for each gene in each tissue 308 

were subsequently transformed to the quantiles of the standard normal distribution.  309 

 310 

Genome-wide association study of major depressive disorder 311 

Detailed methods, including a description of population cohorts, quality control of raw SNP 312 

genotype data, and association analyses for the major depression GWAS is described elsewhere 313 

(11). The major depression GWAS included a mega-analysis of 29 samples (PGC29) (16,823 314 

major depression cases and 25,632 controls) of European ancestry and additional analyses of 315 

six independent European ancestry cohorts (118,635 cases and 319,269 controls). Cases in 316 

the PGC29 cohort satisfied diagnostic criteria (DSM-IV, ICD-9, or ICD-10) for lifetime major 317 

depression. Cases in the expanded cohort were collated using a variety of methods: Generation 318 

Scotland employed direct interviews; iPSYCH (Denmark) used national treatment registers; 319 

deCODE (Iceland) used national treatment registers and direct interviews; GERA used Kaiser-320 

Permanente (health insurance) treatment records (CA, US); UK Biobank combined self-321 

reported major depression symptoms and/or treatment for major depression by a medical 322 
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professional; and 23andMe used self-report of treatment for major depression by a medical 323 

professional. Controls in PGC29 were screened for the absence of major depression. A 324 

combination of polygenic scoring and linkage disequilibrium score regression showed strong 325 

genetic homogeneity between the PGC29 and additional cohorts and between samples within 326 

each cohort. SNPs and insertion-deletion polymorphisms were imputed using the 1000 327 

Genomes Project multi-ancestry reference panel (21). Logistic regression association tests 328 

were conducted for imputed marker dosages with principal components covariates to control 329 

for population stratification. Ancestry was evaluated using principal components analysis 330 

applied to directly genotyped SNPs. Summary statistics for 10,468,942 autosomal SNPs were 331 

made available by the PGC and were utilized in our study.  332 

 333 

Identification of gene expression modules 334 

Gene co-expression modules were individually constructed for 13 brain tissues and whole 335 

blood using the weighted gene co-expression network analysis (WGCNA) package in R (22). 336 

An unsigned pairwise correlation matrix – using Pearson’s product moment correlation 337 

coefficient – was calculated. An appropriate “soft-thresholding” value, which emphasises 338 

strong gene-gene correlations at the expense of weak correlations, was selected for each tissue 339 

by plotting the strength of correlation against a series (range 2 to 20) of soft threshold powers. 340 

The correlation matrix was subsequently transformed into an adjacency matrix, where nodes 341 

correspond to genes and edges to the connection strength between genes. Each adjacency 342 

matrix was normalised using a topological overlap function. Hierarchical clustering was 343 

performed using average linkage, with one minus the topological overlap matrix as the distance 344 

measure. The hierarchical cluster tree was cut into gene modules using the dynamic tree cut 345 

algorithm (23), with a minimum module size of 30 genes. We amalgamated modules if the 346 
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correlation between their eigengenes – defined as the first principal component of their genes’ 347 

expression values – was greater or equal to 0.8.  348 

 349 

Gene-level analysis of Major Depression GWAS signals 350 

We identified and prioritised risk genes for major depression using three approaches. First, we 351 

performed gene-level analyses using MAGMA v1.06 (24). This approach assigns SNPs to their 352 

nearest gene using a pre-defined genomic window (here a 35 kb upstream or 10 kb downstream 353 

of a gene body) and computes a gene-based statistic based on the sum of the assigned SNP –354 

log(10) P values while accounting for the correlation (i.e. linkage disequilibrium) between 355 

nearby SNPs. Second, we modified the MAGMA approach by integrating eQTL information 356 

from the GTEx project. That is, for a given interrogated tissue, we assigned SNPs to target 357 

genes based on significant (FDR<0.05) SNP-gene associations in GTEx. This approach, which 358 

we will refer to as “eMAGMA”, is a tissue-specific, eQTL-informed method for assigning 359 

SNPs to genes. Gene-based statistics were subsequently computed using the sum of the 360 

assigned SNP –log(10) P values, in a similar manner to proximity-based MAGMA. Third, we 361 

used S-PrediXcan to integrate eQTL information from GTEx with major depression GWAS 362 

summary statistics to identify genes whose genetically predicted expression levels are 363 

associated with major depression. For S-PrediXcan, we used expression weights for 13 brain 364 

tissues and whole blood generated from GTEx (v7) (25), and LD information from the 1000 365 

Genomes Project Phase 3 (26). These data were processed with beta values and standard errors 366 

from the GWAS of major depression (3) to estimate the expression-GWAS association statistic. 367 

For each gene-level approach, we corrected for multiple testing using Bonferroni correction. 368 

For MAGMA, we corrected for the total number of genes tested (i.e. 0.05/18,041 = 2.77 × 10-369 

6). For the multi-tissue eMAGMA and S-PrediXcan, we applied two correction thresholds 370 

(Table 1): a “liberal” threshold, which corrected for the number of tests within each tissue (i.e. 371 
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ignoring the number of tissues tested), and a “conservative” threshold, which corrected for the 372 

total number of tests performed (i.e. all tests across all tissues).  373 

 374 

Gene-set analysis of gene co-expression modules 375 

To identify gene co-expression modules enriched with major depression risk genes, we 376 

performed gene-set analysis of both (proximity) MAGMA and eMAGMA gene-level results 377 

in tissue-specific gene co-expression modules using the gene-sets analysis function in 378 

MAGMA v1.06. The competitive analysis tests whether the genes in a gene-set (i.e. gene co-379 

expression module) are more enriched with major depression risk genes than other genes while 380 

accounting for gene size and gene density. We applied an adaptive permutation procedure (24) 381 

(N=10,000 permutations) to obtain P values corrected for multiple testing. The 1000 Genomes 382 

European reference panel (Phase 3) was used to account for Linkage Disequilibrium (LD) 383 

between SNPs. For each tissue and gene-based enrichment method, a quantile-quantile plot of 384 

observed versus expected P values was generated to assess inflation in the test statistic. Gene-385 

set enrichment analyses were re-performed after excluding genes in the MHC region. 386 

 387 

Characterisation of gene expression modules 388 

Gene expression modules enriched with major depression GWAS association signals were 389 

assessed for biological pathways and processes using g:Profiler (https://biit.cs.ut.ee/gprofiler/) 390 

(27). Ensembl gene identifiers within enriched gene modules were used as input; we tested for 391 

the over-representation of module genes in Gene Ontology (GO) biological processes, as well 392 

as KEGG(28) and Reactome(29) gene pathways. The g:Profiler algorithm uses a Fisher’s one-393 

tailed test for gene pathway enrichment; the smaller the P value, the lower the probability a 394 

gene belongs to both a co-expression module and a biological term or pathway purely by 395 

chance. Multiple testing correction was done using g:SCS; this approach accounts for the 396 
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correlated structure of GO terms and biological pathways, and corresponds for an experiment-397 

wide threshold of α=0.05. 398 

 399 

Preservation of gene co-expression networks across tissues 400 

To examine the tissue-specificity of biological pathways, we assessed the preservation (i.e. 401 

replication) of network modules across GTEx tissues using the “modulePreservation” R 402 

function implemented in WGCNA (30). Briefly, the module preservation approach takes as 403 

input “reference” and “test” network modules and calculates statistics for three preservation 404 

classes: i) density-based statistics, which assess the similarity of gene-gene connectivity 405 

patterns between a reference network module and a test network module; ii) separability-based 406 

statistics, which examine whether test network modules remain distinct in reference network 407 

modules; and iii) connectivity-based statistics, which are based on the similarity of connectivity 408 

patterns between genes in the reference and test networks. For simplicity, we report two density 409 

and connectivity composite statistics: “Zsummary” and “medianRank”. A Zsummary value 410 

greater than 10 suggests there is strong evidence a module is preserved between the reference 411 

and test network modules, while a value between 2 and 10 indicates weak to moderate 412 

preservation and a value less than 2 indicates no preservation. The median rank statistic ranks 413 

the observed preservation statistics; modules with lower median rank tend to exhibit strong 414 

preservation than modules with higher median rank. 415 

  416 
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Tables and Figures 535 

Table 1: Summary of GTEx gene expression information used to build the gene-expression networks with descriptive statistics and P value 

thresholds for gene-based analyses 
 Gene Network  Modules Gene Module Size  eMAGMA  S-PrediXcan 

Tissue Samples Genes  N  Min Median Max  Genes Threshold  Genes Threshold 

Amygdala 88 16547  24  30 362 4125  1214 4.12E-05  2338 2.14E-05 

Anterior cingulate cortex 109 16568  16  55 391 9144  2356 2.12E-05  3269 1.53E-05 

Caudate basal ganglia 144 16612  16  75 483 6971  3272 1.53E-05  4142 1.21E-05 

Cerebellar Hemisphere 125 16505  13  163 741 8662  4075 1.23E-05  4726 1.06E-05 

Cerebellum 154 16607  15  86 613 8133  5386 9.28E-06  6044 8.27E-06 

Cortex 136 16665  11  126 582 6188  3625 1.38E-05  4299 1.16E-05 

Frontal Cortex 118 16642  22  51 345 4965  2952 1.69E-05  3565 1.40E-05 

Hippocampus 111 16634  17  84 388 4168  1830 2.73E-05  2788 1.79E-05 

Hypothalamus 108 16892  17  60 613 5322  1605 3.12E-05  2819 1.77E-05 

Nucleus accumbens  130 16652  20  68 471 5346  2842 1.76E-05  3593 1.39E-05 

Putamen 111 16399  15  53 695 7371  2401 2.08E-05  3153 1.59E-05 

Spinal cord cervical c-1 83 16809  20  56 577 3017  1470 3.40E-05  2501 2.00E-05 

Substantia nigra 80 16612  19  73 475 5266  989 5.06E-05  2015 2.48E-05 

Whole Blood 369 14834  14  57 293 6939  5946 8.41E-06  6249 8.00E-06 
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Table 2: Significant major depression candidate risk genes for three gene-based methods (MAGMA, eMAGMA, S-PrediXcan) 

MAGMA  eMAGMA  S-PrediXcan 

NAME P  NAME TISSUE P  GENE TISSUE P  

CACNA1E 2.18E-14  VARS2 Whole Blood 3.40E-13  NEGR1 Whole Blood 2.05E-17 

OLFM4 6.21E-14  NEGR1 Whole Blood 7.75E-13  RPL31P12 Brain Cerebellar Hemisphere 4.01E-15 

NEGR1 3.57E-13  PRSS16 Brain Cerebellum 2.78E-12  RPL31P12 Brain Cerebellum 4.30E-15 

TMEM161B 1.28E-12  HLA-G Whole Blood 5.20E-12  NEGR1 Brain Putamen basal ganglia 1.67E-12 

SORCS3 5.14E-12  MICB Brain Cerebellar Hemisphere 5.37E-12  CTC-467M3.3 Brain Frontal Cortex BA9 3.45E-10 

HIST1H2BN 1.25E-11  FLOT1 Whole Blood 5.83E-12  RP5-874C20.3 Whole Blood 5.06E-09 

DENND1A 1.39E-11  CCHCR1 Whole Blood 9.42E-12  CTC-467M3.3 Brain Cerebellar Hemisphere 5.31E-09 

BTN2A1 1.47E-11  MICB Brain Cerebellum 1.18E-11  PGBD1 Brain Cerebellum 6.76E-09 

PRRC2A 1.51E-11  FLOT1 Brain Cerebellum 1.30E-11  TMEM106B Whole Blood 1.21E-08 

TCF4 2.39E-11  BTN3A2 Whole Blood 1.53E-11  PGBD1 Brain Cerebellar Hemisphere 1.29E-08 

DCC 3.27E-11  C4B Whole Blood 1.12E-10  ZSCAN23 Brain Spinal cord cervical c-1 1.48E-08 

PXDNL 3.84E-11  NEGR1 Brain Putamen basal ganglia 1.15E-10  ZSCAN31 Brain Spinal cord cervical c-1 2.31E-08 

SHISA9 7.38E-11  NEGR1 Brain Spinal cord cervical c-1 1.16E-10  OR2B8P Brain Cerebellum 3.78E-08 

BAG6 1.59E-10  CCHCR1 Brain Cerebellum 1.23E-10  SLC30A9 Brain Hypothalamus 4.80E-08 

RSRC1 1.74E-10  C4A Whole Blood 2.03E-10  ESR2 Whole Blood 6.75E-08 

Notes: The full list of results for MAGMA, eMAGMA, and S-PrediXcan are listed in Table S2, Table S3, and Table S4, respectively. 
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Table 3: Major Depression association signals are enriched in gene co-expression network 

modules.  

Module Tissue Genes (N) Beta SE P P corr 

MAGMA      

M1 Amygdala 3681 0.0599 0.0172 0.0002 0.0055 

M2 Frontal Cortex 4507 0.0532 0.0162 0.0005 0.0127 

M3 Nucleus accumbens 4817 0.0468 0.0158 0.0015 0.0285 

M4 Cerebellar Hemisphere 994 0.0822 0.0304 0.0035 0.0433 

eMAGMA      

M5 Hypothalamus 20 0.7480 0.2510 0.0015 0.0267 

M6 Putamen 1062 0.1230 0.0434 0.0023 0.0392 

Notes: Module enrichment analyses was performed using MAGMA. Beta: regression coefficient of 

the gene set; SE, the standard error of the regression coefficient; P the competitive gene-set P value; 

P corr: P value empirically corrected for multiple testing for all the gene set. 
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Figure 1: Overlap in the number of significant gene-level associations between MAGMA, 

eMAGMA, and S-PrediXcan.  

  

Notes: Significant MAGMA genes (N=137) were selected using Bonferroni correction for the 

entire list of gene-based P values (i.e. 0.05/18042=2.77×10-6). Significant eMAGMA (N=99) 

and S-PrediXcan (N=57) results were adjusted using Bonferroni correction for the number of 

associations in each tissue (see Table 1 for tissue-specific thresholds). The overlap between 

gene-level results after correcting for all tissues and genes (N=51,501, P=9.71×10-7) is 

presented in Figure S1. Refer to Table 3 for the top (N=10) overlapping significant gene-based 

associations for MAGMA, eMAGMA, and S-PrediXcan, and Table S5 for the entire list of 

gene-based results (N=41).  
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Figure 2: Pathway analysis of major depression enriched modules 

 

Notes: A competitive gene pathway analysis was performed on tissue-specific significant gene co-expression modules using g:Profiler 

(https://biit.cs.ut.ee/gprofiler/index.cgi). The figure shows the gene ontology and biological pathways of tissue-specific modules enriched with major 

depression gene-based signals.  
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Figure 3: Preservation of major depression enriched network modules across brain tissues and 

whole blood. (A) Preservation Z score for tissue-specific modules (labelled M1 to M6 on the 

y axis) across brain tissues and whole blood. A higher Z score indicates greater preservation 

(i.e. replication) of a “reference” network in a “test” network (and vice versa). (B) Categorical 

classification of preservation Z scores across brain tissues and whole blood. A Z score less than 

2 indicates no modular preservation; a Z score between 2 and 10 indicates weak to moderate 

preservation; and a Z score greater than 10 indicates strong preservation. 
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