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Abstract 

Many studies showed that anatomical connectivity supports both anatomical and functional 

hierarchies that span across the primary and association cortices in the cerebral cortex. 

However, it remains unclear whether a hierarchy of connectivity-function relationship (CFR) 

exists across the human cortex as well as how to characterize the hierarchy of this CFR if it 

exists. We first addressed whether anatomical connectivity could be used to predict functional 

activations across different functional domains using multilinear regression models. Then we 

characterized the CFR by predicting activity from anatomical connectivity throughout the 

cortex. We found that there is a hierarchy of CFR across the human cortex. Moreover, this 

CFR hierarchy was correlated to the functional and anatomical hierarchy reflected in 

functional flexibility, functional variability, and the myelin map. Our results suggest a shared 

hierarchical mechanism in the cortex, a finding which provides important insights into the 

anatomical and functional organization of the human brain. 
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Introduction 

Converging evidence indicates that spatial–temporal hierarchical organizations that span 

between the primary and association cortices exist in the primate cerebral cortex1, 2. This 

hierarchy strongly affects both the functional and anatomical organization of the cortex. A 

spatial hierarchy has been found using the laminar patterns of anatomical projections3 and 

was further indicated by the macroscale cortical myelin estimated using magnetic resonance 

imaging (MRI)4. Recently, two parallel modeling studies also indicated that heterogeneity of 

the anatomical cortical organization shapes the large-scale hierarchies of neural dynamics5, 6. 

As a temporal counterpart, a hierarchy of different timescales across the cortex has also been 

observed and modeled based on invasive tract-tracing connectivity in the macaque neocortex2, 

which indicated the presence of a functional spectrum from early sensory to cognitive cortical 

areas. In other words, the various functions of the brain, from simple sensory-motor 

processing to complex cognitive processing, appear to be mediated in parallel with these 

anatomical and functional hierarchies. At the same time, the above studies indicate that 

extrinsic anatomical connectivity plays an important role in supporting such inter-areal 

hierarchical heterogeneity. In addition, it is well known that the function of a cortical region is 

constrained by the underlying extrinsic anatomical connectivity7. However, the extent that 

function is shaped by anatomical connectivity, which can be termed as the 

connectivity-function relationship (CFR), has not been fully characterized across the whole 

cortex. Moreover, whether there is a hierarchy in the CFR across different cortical areas 

remains unclear. 

Anatomical connectivity is regarded as the basis for brain functions in the cortex7 and 

can provide a more powerful framework than physical location for describing brain functions8. 

Several studies on the characterization of CFR have already been made. The early studies 

investigated whether the boundaries of distinct brain regions characterized by anatomical 

connectivity coincide with boundaries of functionally distinct regions9-12. However, rich 

functional differentiations exist even within a region13, 14. Other researchers further suggested 

that variations in the connectivity profile can explain functional activations at a fine scale7, 15. 

Recent studies assessed the CFR by investigating the extent to which the functional activation 
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of a few visual contrasts could be predicted from anatomical connectivity at a voxel-wise 

scale16, 17, but most of the brain regions that are activated in a few visual contrasts are only 

specialized for face processing or visual functions18-22.  

However, it is well known that the primary sensory and motor cortices differ from the 

association cortices in terms of their laminar organization and afferent and efferent 

connections23. The primary cortices are organized in a topographic fashion, forming 

preferentially local networks, whereas the association cortices are organized in a widely 

distributed manner that yields complex zones24, 25. The existence of anatomical and functional 

organizational properties that differ between the primary and association cortices may indicate 

that the CFR in the association cortices differs from that in the primary cortices. Therefore, 

whether anatomical connectivity can predict functional activations to the same degree along 

the cortical hierarchy is still unknown, especially in the association cortices, which are 

functionally flexible26-28 and highly variable across individuals29. Furthermore, it remains 

unclear how this inter-areal heterogeneity in the connectivity organization affects the CFR.  

The current study addressed the above questions by investigating the relationship 

between anatomical connectivity and functional activation in different regions along the 

cortical hierarchy, based on the Brainnetome atlas30. We used a prediction model to assess the 

CFR to ensure that the CFR captured by the multilinear model was not a result of over fitting. 

We adopted the Human Connectome Project (HCP) dataset, which includes seven functional 

domains, for two reasons: First, we aimed to test whether the CFR would be consistent across 

different task states. Second, because different tasks might activate different cortical regions, 

we wanted to include as many cortical regions as possible. Finally, to determine whether the 

pattern of the CFR had a specific meaning, we investigated whether the pattern of the CFR 

was also reflected in the functional and anatomical hierarchy of the cortex. 

Results 

Comparison between actual activation and predicted activation 

Since the CFR was assessed via the similarity between predicted activation and actual 
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activation, we first investigated the anatomical connectivity’s predicted activation visually. 

We selected several representative contrasts and plotted the actual and predicted activation of 

subject 120111 on the brain surface in Fig. 1; more examples are shown in Fig. S1. The 

threshold values for the individual activation maps were based on a Gaussian-two-gamma 

mixture model31, 32, where the Gaussian represented the distribution of noise and the two 

gammas represented the distributions of the positive and negative activations. The positive 

and negative thresholds were chosen to be the medians of the two gammas. The overall 

pattern of the predicted activation was very similar to that of the actual activation. The 

similarities (evaluated by correlation) are quantitatively presented in the third column of Table 

S2. Anatomical connectivity predicted the overall patterns of task activation in various 

functional domains. To ensure that the prediction results were not completely driven by the 

parcellation adopted, a direct quantitative comparison of the predictions based on the 

Brainnetome atlas30 and the HCP_MMP1.0 parcellation33 is shown in the fourth column of 

Table S2. The similarities (evaluated by correlation) between the predicted activations based 

on the Brainnetome atlas and on the HCP_MMP1.0 parcellation were very high; thus the 

parcellation scheme had little influence on the prediction results. 

 

Figure 1. Comparison between the actual and predicted activations. The left column represents the 
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predicted activation and the right column represents the actual activation. Different rows represent 

activations of different contrasts. We mapped the 98 percentiles of the most positive and negative data 

values to 1 and -1. The overall patterns of the predicted activation were very similar to those of the 

actual activation. 

Statistical tests of the CFR 

The previous section showed that anatomical connectivity predicted the overall pattern of 

task activation, but to compare the CFR for each region, we must first examine the CFR of 

each region statistically. Statistical analyses using a permutation test that shuffled the parings 

between connectivity features and task activations were performed to assess the reliability of 

the connectivity model. If the mean prediction accuracy of the connectivity model was higher 

than the 95th percentile of the mean prediction accuracy of the random models, we regarded 

the connectivity model as statistically better than random. We calculated the number of 

regions that had connectivity models statistically better than random (Table S3). We found 

that the CFR was statistically better than random in many regions across most contrasts. We 

did two sample t-tests and found that in all the contrasts the regions that had predictions better 

than random had task activations (defined in the methods part) significantly higher (p < 1e-3) 

than regions that had predictions that were not better than random. The CFR for a few 

contrasts, such as PUNISH-REWARD, were better than random in only a few regions because 

these contrasts had a very low activation level throughout the whole cortex.  

Additionally, distance may influence the connectivity model since regions that are closer 

together are more likely to be connected and co-activated. Therefore, an additional control 

analysis using a distance model was conducted to ensure that the performance of the 

connectivity model was not driven by the spatial relationships. Instead of using the 

connectivity strength of various vertices to other brain regions, the distance model used the 

Euclidian distance from the vertices to the center of other brain regions as features. A 

comparison of the prediction accuracy between the distance model and the connectivity 

model is shown in Fig. S2. Anatomical connectivity had a better prediction accuracy than the 

distance model. After regressing out distance from the connectivity profile, anatomical 
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connectivity still had a prediction accuracy that was better than random in many regions 

(Table S3). 

Hierarchy in the CFR 

The previous section indicated that the CFR was statistically meaningful across different 

domains, but regional differences in the CFR still existed. We investigated the regional 

differences based on the Brainnetome atlas and on the seven functional networks25 (See Fig. 

2). We mapped each of the 210 cortical regions to one of the seven functional networks that 

achieved maximum overlap, and the CFRs in each of the seven functional networks were 

averaged. As shown in the previous section, the CFR was not statistically significant in 

regions that had a low task activation; thus we only included regions that had a task activation 

that was higher than a given threshold. The calculation of the task activation and the 

determination of the threshold are provided in the Methods section. The results show that the 

CFR in the sensory-motor networks was stronger than that in the association networks, with 

an exception that the CFR in the visual network was weak under the language story contrast 

because this task only included an auditory stimulus but not a visual stimulus. Since different 

task contrasts activated different brain regions, we could not directly compare the CFR 

between two regions that had totally different activation levels in the same contrast, such as 

between the motor and prefrontal brain regions in the motor contrast. Therefore, to allow for 

the comparison of the CFR between any two regions, we focused on the consistency of the 

CFR in all the contrasts instead of in a single one and averaged the CFR across all the 

contrasts (in Fig. 3), including only the activated regions (the same regions as in Fig. 2) in the 

averaging process. To assure that this selective averaging result was not dramatically driven 

by the threshold level, we verified that the result was consistent across different threshold 

levels (Fig. S3). We found that a hierarchy existed in the CFR: the CFR was relatively high in 

the sensory-motor networks, moderate in the dorsal and ventral attentional networks, and 

relatively low in the frontoparietal, default, and limbic networks. The sensory-motor networks 

included regions such as the motor, auditory, and visual cortices, and the association 

frontoparietal and default networks included regions such as the lateral prefrontal cortex and 
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temporal-parietal junction. The CFR in the sensory-motor networks was significantly (p<1e-6) 

higher than that in the association networks under a two sample t-test.  

 

Figure 2. Spatial distribution of the CFR in different contrasts. (a) The seven functional networks 

of the cortex. The colors represent the mapping of the seven networks, namely the frontoparietal 

control (FPN), ventral and dorsal attention (vATN, dATN), default (DN), and limbic (LMB) networks 

that constitute the association networks and the motor-auditory (Mot) and visual (Vis) networks that 

constitute the sensory-motor networks. The spatial distribution of CFR and the rank of the CFR in the 

seven networks are shown in different subplots, with (b) EMOTION FACES, (c) GAMBLING 

PUNISH, (d) LANGUAGE STORY, (e) MOTOR T(Tongue), (f) RELATIONAL REL, (g) SOCIAL 

TOM, and (h) WM 2BK. 
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Figure 3. Spatial distribution of the average CFR. (a) Spatial distribution of an average CFR in the 

Brainnetome atlas. (b) The average CFR was ranked, and the color represented the mapping of the 

seven networks. The CFR was highest in regions that are located mostly in the Vis and Mot networks. 

(c) Rank of the average CFR in the seven networks. The star symbol indicates that the CFR in the 

sensory-motor networks was significantly (p<1e-6) higher than that in the association networks under a 

two sample t-test. 

Hierarchy in the CFR was related to functional flexibility 

We revealed the hierarchy in the CFR in the previous section. Next, we explored the 

connectivity features that contributed to the CFR in the multilinear regression model. We 

extracted the significant (p<1e-4) connectivity features of each cortical region in predicting 

each task’s activations, and these connectivity features were further used to investigate the 

functional flexibility of each region. The functional flexibility was defined as the variation in 

connectivity features across different tasks, which was to assess whether a cortical region 

utilized similar or different patterns of connectivity features in predicting its task activations 

across different tasks. The calculation of functional flexibility is provided in detail in the 

Method section, and the same threshold levels as in the previous section were used to identify 

the activated regions in each task. Examples of two regions are presented in Fig. 4. The region 

A37lv (in the fusiform, lateroventral Area 37) had a flexibility of 0.37 and had relatively 

similar patterns of connectivity features across different tasks, and the region A46 (in the 

lateral prefrontal cortex, Area 46) had a flexibility of 0.63 and had relatively different patterns 

of connectivity features across different tasks. The functional flexibility was also assessed in 

the seven functional networks, and the flexibility of the sensory-motor networks was 

significantly (p<1e-6) lower than that of the association networks under a two sample t-test. 

Further, the flexibility of each region was negatively correlated (p<1e-6) with the average 
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CFR. Therefore, functional flexibility exhibited a hierarchy that was the inverse of the 

hierarchy in the CFR. 

 

 

Figure 4. The flexibility of the connectivity features was related to the CFR. (a) The blue arrows 

represent the significant connectivity features of region A37lv (in the fusiform, lateroventral Area 37) 

in two tasks. The cortical region name is viewed in an anti-clockwise manner, with each name labeling 

the following cortical regions in the block. The abbreviations are included in the Methods section. (b) 

The blue arrows represent the significant connectivity features of region A46 (in the lateral prefrontal 

cortex, Area 46) in two tasks. (c) The functional flexibility was ranked in the seven functional networks. 

The star symbol indicates that the flexibility of the sensory-motor networks was significantly (p<1e-6) 

lower than that of the association networks under a two sample t-test. (d) The flexibility of each region 

was negatively correlated (p<1e-6) with the average CFR. 

Hierarchy in the CFR was related to functional variability 

After revealing that the hierarchy in the CFR was related to functional flexibility, we 

investigated whether the hierarchy in the CFR was related to another index of functional 

hierarchy of the cortex. We explored each region’s inter-subject task variation, as a previous 

study indicated that the inter-subject functional variability reflected a hierarchical architecture 
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of the cortex29, and we used task activation as a control variable to ensure that the result was 

not a byproduct of the activation level. Each region’s task activation profile and inter-subject 

task variation are plotted in Fig. 5, with the same threshold method used as that in Fig. 2; all 

regions are color coded by their CFR. The CFR was relatively lower in regions with a larger 

inter-subject task variation and a lower task activation, and the CFR was relatively higher in 

regions with a smaller inter-subject task variation and a higher task activation. We 

quantitatively calculated the amount of variance in the CFR that could be explained by the 

task activation or the inter-subject task variation, and the results are provided in Table 1 and 

Table S4. Task activation was positively correlated with the CFR across all contrasts, whereas 

inter-subject task variation was negatively correlated with the CFR. However, task activation 

could barely explain any of the variance in the CFR after the inter-subject task variation was 

regressed out. These results indicated that the CFR was mainly dominated by inter-subject 

task variation: the CFR was high in regions with a small task variation and was low in regions 

with a large task variation. The spatial distribution of the average inter-subject task variation 

across all contrasts (calculated in the same way as the average CFR) is provided in Fig. 6. The 

inter-subject task variation had an inverse hierarchy to the CFR and was negatively correlated 

with the CFR; the inter-subject task variation was lowest in the sensory-motor networks, 

modest in the dorsal and ventral attentional networks, and highest in the frontoparietal and 

default networks. 

 

Figure 5. Analysis of the factors that affected the CFR. Each region’s task activation profile was 
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plotted against that region’s inter-subject task variation, and all the regions are color coded according to 

their CFR. The CFR was low in the regions that had a large inter-subject task variation and a low task 

activation and was high in the regions that had a small inter-subject task variation and a high task 

activation. Different subplots represent the results of different contrasts, with (a) EMOTION FACES, 

(b) GAMBLING REWAED, (c) LANGUAGE STORY, (d) MOTOR T, (e) RELATIONAL REL, (f) 

SOCIAL TOM, and (g) WM 2BK. 

 

Contrasts Task activation(+) Inter-subject task variation(-) 

CFR CFR-variation CFR CFR-activation 

EMOTION FACES 0.16 0.05 0.60 0.29 

GAMBLING REWARD 0.13 0.04 0.59 0.33 

LANGUAGE STORY 0.19 0.01 0.67 0.38 

MOTOR T 0.32 0.05 0.67 0.17 

RELATIONAL REL 0.04 0.07 0.58 0.46 

SOCIAL TOM 0.05 0.03 0.53 0.40 

WM 2BK 0.07 0.06 0.56 0.39 

Table 1. Quantitative analysis of the factors that affected the CFR. CFR-variation represents the 

CFR after the inter-subject task variation was regressed out, and similarly for the CFR-activation. The 

plus sign indicates positive correlation with the CFR, and the minus sign indicates negative correlation. 

Task activation was positively correlated with the CFR, whereas inter-subject task variation was 

negatively correlated with the CFR. Task variation explained significantly (p < 1e-6) more variance in 

the CFR than task activation did under a paired-t test across all contrasts. Task activation could barely 

explain any of the variance in the CFR after the inter-subject task variation was regressed out. The 

results for all contrasts are shown in Table S4. 

 

Figure 6. Spatial distribution of the inter-subject task variation. (a) Spatial distribution of the 

average inter-subject task variation in the Brainnetome atlas. Regions such as the lateral prefrontal 

cortex and temporal-parietal junction had large inter-subject variations, and regions such as the motor 
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and visual cortices had small inter-subject variations. (b) The rank of the inter-subject task variation in 

the seven networks. The sensory-motor networks had small inter-subject variations, and the association 

networks had large inter-subject variations. The star symbol indicates that the inter-subject variation of 

the sensory-motor networks was significantly (p<1e-6) lower than that of the association networks 

under a two sample t-test. (c) The inter-subject task variation was negatively correlated with the CFR. 

Hierarchy in the CFR was related to the myelin map 

To test whether the hierarchy in the CFR was related to the anatomical hierarchy of the 

cortex, we compared the pattern of CFR with that of myelin, as a previous study indicated 

that the myelin map reflects the anatomical hierarchy of the cortex4. The spatial distribution 

of the myelin map is shown in Fig. 7. The myelin map was an average result from all subjects 

in the HCP S1200 release. A similar pattern of hierarchy in the CFR was also exhibited in the 

myelin map. The myelin map exhibited significantly (p<1e-6) higher values in the 

sensory-motor networks than in the association networks, and the myelin map was 

significantly (p<1e-6) correlated with the CFR. These results indicate that the hierarchy in the 

CFR is also a reflection of the anatomical hierarchy of the cortex. 

 

Figure 7. Spatial distribution of the myelin map. (a) Spatial distribution of an average myelin map 

on the cortex. (b) Rank of the seven functional networks in the myelin map. The star symbol indicates 

that the myelin in the sensory-motor networks was significantly (p<1e-6) higher than that in the 
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association networks under a two sample t-test. (c) Spatial distribution of an average myelin map on the 

Brainnetome atlas. (d) The myelin was positively correlated with the average CFR based on the 

Brainnetome atlas. 

Discussion 

In the present study, we investigated whether a cortical hierarchy of the CFR exists 

throughout the cortex. Specifically, our results showed that the CFR was statistically better 

than random models in most regions across seven functional domains. Moreover, we revealed 

that the CFR in the sensory-motor networks was higher than the CFR in the association 

networks and that similar regional differences between the sensory-motor and association 

cortices were also reflected in the organization of functional flexibility, functional variability, 

and the myelin map, a finding which suggests that the CFR has a hierarchical structure 

throughout the cortex. 

The CFR was assessed via the predictive ability of anatomical connectivity, and the 

rationality of this assessment was confirmed by the following points. Since the connectivity 

model outperformed the random control model in most regions across seven functional 

domains, the statistical significance of the CFR was confirmed in most cases. The regions in 

which the CFR failed to pass the statistical test had statistically lower activation levels than 

the regions in which the CFR passed the statistical test. Therefore, testing the CFR in 

task-relevant regions is necessary, so we adopted an HCP task fMRI dataset that incorporates 

a wide range of functional domains to cover as many region’s functions as possible. Previous 

studies have already showed that a close relationship exists between anatomical connectivity 

and visual functions via the predictive ability of anatomical connectivity16, 17. Our result 

demonstrates that this CFR is not restricted to visual functions and that brain function is 

closely related to anatomical connectivity from the primary sensory and motor functional 

domain to the high order cognitive functional domain, a finding which supports the 

assessment of CFR in high order functions. 

Moreover, we also revealed that the CFR was hierarchical across the whole cortex. The 

CFR was relatively high in the sensory-motor and visual networks, moderate in the attentional 
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networks, and relatively low in the frontoparietal and default networks. This pattern of 

hierarchy in the CFR was further found to be negatively correlated with the functional 

flexibility of the anatomical connectivity profile. While the anatomical connectivity substrate 

is fixed, the functional repertoire of the brain is diverse. This kind of many-to-one mapping 

from function to structure suggests that a fixed structure can support flexible functions, and 

directly leads to cognitive degeneracy34, 35. Our result indicated that the association cortex is 

more flexibly involved in a variety of tasks than is the sensory-motor cortex, coinciding with 

a review that suggested that the divergence between structure and function is enabled more at 

the global integration level36. This many-to-one mapping between function and anatomical 

connectivity may make the prediction of function from anatomical connectivity more difficult 

in the association cortex. In addition, hierarchy in the CFR was found to be negatively 

correlated with inter-subject functional variability and to be positively correlated with the 

myelin map. Because functional flexibility and functional variability were higher in the 

association cortex than in the sensory-motor cortex and the myelin map was negatively 

correlated with the anatomical hierarchical level of the cortex4, the above finding suggests 

that the CFR decreases along both the functional and anatomical hierarchical axes from the 

sensory-motor to the association cortex. Because the attentional networks are spatially located 

between the sensory-motor-visual networks and the frontoparietal-default networks, the 

hierarchical structure in the CFR is very similar to the large-scale hierarchical gradients37 that 

span between the sensory-motor and association areas in various cortical organizations. For 

example, a previous study showed that concrete-to-abstract semantic gradients from the 

sensory-motor to the association cortices exist in the functional processing hierarchies38. In 

addition the gradients in functional processing hierarchies were likely to be supported by the 

gradients in connectivity39 and microstructure such as myelin40 and cortical thickness41, which 

were also likely to have a genetic basis in that gene expression has been shown to separate the 

sensory-motor cortices from the association cortices42. Therefore, our finding may suggest a 

hierarchical gradient in the CFR that has genetic and microstructural bases. 

The consistency between the hierarchy in the CFR with both the functional and 

anatomical hierarchies of the cortical organization implies a shared mechanism in the 

hierarchical structure of the human brain. A plausible explanation as to why these evidences 
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are tied together is that: compared with the sensory-motor cortex, the association cortex, 

which is late-developing in evolution43 and human development44 and thus possesses more 

variability29, is essential to more complex brain functions24 and acts as a hub of integration45, 

thus flexibly participating in multiple functions. The high functional load in the association 

cortex may require greater expansion46, 47 and more complex structural substrates. For 

example, the association cortex exhibits more dendritic branching complexity and dendritic 

spine density48, which also influences the neuronal functional properties49. Using the myelin 

map as a proxy, Burt et al. verified that the number of spines on pyramidal cell dendrites 

increases along a hierarchical axis from the sensory to the association cortex4, thus endowing 

the association cortex with more recurrent synaptic excitation in local cortical microcircuits 

supporting cognitive computations50. Therefore, the complex functions in the association 

cortex cannot be solely attributed to the source of their inputs determined by extrinsic 

connectivity48, and extrinsic anatomical connectivity alone may explain the relatively fewer 

functional activations in the association cortex due to the more complex structural substrates 

that underlie its functions, suggesting that more microstructural properties should be 

considered when studying the complex functions of the association cortex. This combination 

of factors behind the hierarchy in the CFR provides important insights into the understanding 

of the anatomical and functional organization of the human brain. 

In conclusion, we verified that the brain functions were constrained by anatomical 

connectivity heterogeneously across the cortex and revealed that the hierarchical structure in 

the CFR was related to both the functional and anatomical hierarchies in cortical 

organizations. We provided an extensive delineation of the relationship between functional 

activation and anatomical connectivity in the whole cerebral cortex across various functional 

domains. Investigating the cortical function with respect to anatomical connectivity improves 

our understanding of how the cortical function emerges from connectivity constraints. Future 

work can build more complex models that incorporate microstructural properties to better 

characterize brain functions. 
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Methods 

Human Connectome Project data 

We used the minimally pre-processed data51 provided by the HCP. We randomly selected 

100 unrelated subjects from the S1200 release. The information about the 100 unrelated 

subjects is listed in Table S1. Since we performed the analysis at the vertex level rather than at 

the subject level, the number of samples was far more than 100; these 100 subjects were 

sufficient to get a reliable prediction result. See Fig. S4 for the supporting evidence. 

Acquisition parameters and processing were described in detail in several 

publications52-55. Briefly, diffusion data were acquired using single-shot 2D spin-echo 

multiband echo planar imaging on a Siemens 3 Tesla Skyra system54. These consisted of 3 

shells (b-values = 1000, 2000, and 3000 s/mm2) with 270 diffusion directions isotropically 

distributed among the shells, and six b = 0 acquisitions within each shell, with a spatial 

resolution of 1.25 mm isotropic voxels. Each subject’s diffusion data had already been 

registered to his or her own native structural space51. Task fMRI scans were acquired at 2 mm 

isotropic resolution with a fast TR sampling rate at 0.72 s using multiband pulse sequences55.  

We used the task fMRI data that were projected into 2 mm standard CIFTI grayordinates 

space, and the multimodal surface matching (MSM) algorithm56 based on areal features 

(MSMAll) was used for accurate inter-subject registration. The task fMRI contained 86 

contrasts from seven task domains, labeled as EMOTION, GAMBLING, LANGUAGE, 

MOTOR, RELATIONAL, SOCIAL, and WM (working memory). The details of the tasks 

were described in Barch et al.52. Most of the contrast maps were paired with a related negative 

contrast, which amounted to adding a minus sign to the dependent variable in a multilinear 

model and was redundant for the purpose of regression modeling since it did not change the 

model performance. We excluded the redundant contrasts and kept 47 contrasts for further 

regression analysis. 

Anatomical connectivity profile  

We calculated anatomical connectivity based on the Brainnetome atlas30, which contains 
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210 cortical regions in both hemispheres. Each of the 210 cortical regions was used as a seed 

region. For every seed region, therefore, there were 209 target cortical regions. All the 

vertices within the seed region were characterized by the anatomical connectivity of the 209 

dimensions, representing the connectivity of each vertex in the seed region to the remaining 

209 target regions. The anatomical connectivity was determined via probabilistic diffusion 

tractography. The white matter surface mesh aligned using MSMAll was used as the seed. 

Fiber orientations were estimated per voxel (three fibers per voxel), and probabilistic 

diffusion tractography was performed using FSL-FDT57 with 5000 streamline samples in each 

seed vertex to create a connectivity distribution to each of the remaining 209 target regions, 

while stopping tracking at the pial surface. 

Model training 

To avoid overfitting, we separated the 100 subjects into a training group of 80 subjects 

and a testing group of 20 subjects. We only included the significant (p<1e-4) connectivity 

features on the training group for further prediction. The testing group was used to assess the 

training model. For each of the 47 contrasts, we performed a regression analysis on each of 

the 210 cortical regions using anatomical connectivity. The regression analysis was modeled 

as: Y � Xβ � E, where Y is the z-statistical value of the contrast maps and the mean of Y is 

subtracted to remove the intercept term; X represents anatomical connectivity; β is the 

regression coefficient to be estimated from the regression model. To train the regression 

model on the i-th cortical region, we concatenated all the vertices of the i-th cortical region 

into a column across the training subjects. Assuming that the i-th cortical region has 	�  

vertices, Y is a single column vector of length �� � 80 � 	� representing the functional 

activation of all the seed vertices, and X is a matrix of �� rows and 209 columns 

representing the connectivity features of all the seed vertices to the remaining 209 target 

regions, β is a single column vector of length 209, representing how each connectivity 

feature contributed to predicting a seed region’s functional activation. Similarly, we obtained 

a connectivity feature from the testing group. After estimating the regression model’s 

coefficients from the training group, we applied these coefficients to the testing group’s 
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connectivity feature to get the predicted functional activation of the subjects in the testing 

group. To get the predicted functional activation for the entire cortex, we repeated the same 

procedure for every cortical region and then concatenated every region’s prediction.  

Assessment of the CFR 

The CFR was assessed using the prediction accuracy of each testing subject’s functional 

activation to avoid overestimation on the training data. We correlated the predicted activation 

of every subject in the testing group with the actual functional activation of the same subject 

to evaluate the accuracy of the predictions, and the prediction accuracies of all the testing 

subjects were further averaged. We used the correlation coefficients ��� to assess the CFR 

instead of the mean squared error (MSE) or mean absolute error (MAE) because, unlike MSE 

and MAE, which are not standardized and un-bounded, � is standardized and bounded 

between 0 and 1. In addition, under the least square conditions of the regression model, the 

square of the correlation coefficient equals the proportion of the variance in the functional 

activation that can be explained by the connectivity features. 

Calculation of task activation and threshold 

Each region’s task activation profile was calculated by first averaging each vertex’s 

absolute activation within a subject and then averaging each subject’s mean activation. We 

removed some regions that had a low-activation level in the process of averaging the CFR or 

inter-subject task variation within each of the seven functional networks. The threshold was 

determined by first estimating the density distribution of all regions’ task activations in each 

contrast using the “ksdensity” command in Matlab. Next, the density peak of the distribution 

was found, and finally the right endpoint of the 5% interval of the density peak was chosen to 

be the threshold for removing regions that had a relatively low activation level in each 

contrast. 

Calculation of inter-subject variation and functional flexibility 

We calculated each region’s inter-subject task variation and the functional flexibility of 
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each region in the same manner. We assessed the similarity of the task activation or 

connectivity feature between two subjects or two tasks by first reshaping the activation or 

connectivity feature into a column vector and then calculating the Pearson correlation. The 

variation in the activation or connectivity feature was calculated by averaging the similarities 

between all pairs of training subjects or tasks and then subtracting from one. If the variation in 

the task activation or connectivity feature was small, then the average similarity was close to 

one and the inter-subject variation or functional flexibility was close to zero, indicating a 

small inter-subject variation or flexibility; otherwise, if the average similarity was close to 

zero and the inter-subject variation or functional flexibility was close to one, the result 

indicated a large inter-subject variation or flexibility. 

Permutation test 

We did 1000 random permutations to test the performance of the connectivity model 

statistically. We trained the models in the same manner, but the pairings between each vertex’s 

connectivity feature and its functional activation were shuffled. We then tested how these 

random models performed on the testing group. We got one mean prediction accuracy for the 

connectivity model and 1000 mean prediction accuracies for the random models. Then we 

calculated whether the mean prediction accuracy of the connectivity model was higher than 

the 95th percentile of the mean prediction accuracy of the random models to test whether the 

performance of the connectivity model was statistically meaningful. One thing to notice here 

was that we only shuffled the data in the training group but not in the testing group. Since we 

had trained the regression model one region at a time, we shuffled the pairings within the seed 

region but not across the whole cortex. 

Abbreviations of cortical labels 

SFG, Superior Frontal Gyrus; MFG, Middle Frontal Gyrus; IFG, Inferior Frontal Gyrus; 

OrG, Orbital Gyrus; PrG, Precentral Gyrus; PCL, Paracentral Lobule; STG, Superior 

Temporal Gyrus; MTG, Middle Temporal Gyrus; ITG, Inferior Temporal Gyrus; FuG, 

Fusiform Gyrus; PhG, Parahippocampal Gyrus; pSTS, posterior Superior Temporal Sulcus; 
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SPL, Superior Parietal Lobule; IPL, Inferior Parietal Lobule; Pcun, Precuneus; PoG, 

Postcentral Gyrus; INS, Insular Gyrus; CG, Cingulate Gyrus; MVOcC, MedioVentral 

Occipital Cortex; LOcC, Lateral Occipital Cortex. 
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