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Abstract 12 

There is a lack of pharmacological interventions available for sarcopenia, a progressive age-13 

associated loss of muscle mass, leading to a decline in mobility and quality of life. We found 14 

mTORC1 (mammalian target of rapamycin complex 1), a well-established critical positive 15 

modulator of mass, to be hyperactivated in sarcopenic muscle. Furthermore, inhibition of the 16 

mTORC1 pathway counteracted sarcopenia as determined by observing an increase in muscle 17 

mass and fiber type cross sectional area,  surprising because mTORC1 signaling has been shown 18 

to be required for muscle mass gains in some settings.  Additionally, several genes related to 19 

senescence were downregulated, while gene expression indicators of neuromuscular junction 20 

denervation were diminished using a low dose of a rapalog. Therefore mTORC1 inhibition may 21 

delay the progression of sarcopenia by directly and indirectly modulating multiple age-associated 22 

pathways, implicating mTORC1 as a therapeutic target to treat sarcopenia.   23 
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Introduction 24 

Skeletal muscle size is physiologically regulated by load and activity, and can decrease when 25 

load is reduced. Muscle also atrophies, or decreases in size, in pathological conditions such as 26 

cancer, immobilization and denervation (1).  One setting where muscle mass and function are 27 

diminished is old age.  This loss of muscle is called sarcopenia, and it is associated with a 28 

decrease in the ability to move, leading to morbidity and ultimately mortality (2); indeed, a 29 

decrease in walking speed is one of the strongest predictors of mortality in humans, and this 30 

finding is associated with sarcopenia (3, 4). In addition to frailty and sarcopenia, aging of course 31 

affects every tissue system and greatly increases susceptibility to other serious diseases and co-32 

morbidities, such as cancer, heart failure, chronic kidney disease, loss of vision, dementia and 33 

Alzheimer’s disease (1, 5, 6).            34 

Experimental data strongly suggest the coordinated regulation of aging by distinct 35 

molecular pathways (7); modulation of these pathways can counteract several age-related 36 

diseases and co-morbidities, and prolong life (7-10). Of these signaling pathways, genetic or 37 

pharmacological inhibition of the mammalian target of rapamycin (mTORC1) is thus far the 38 

best-validated intervention to delay age-related pathophysiological changes (11). For instance, 39 

the use of an mTORC1 inhibitor, rapamycin, even when administered at later stages in life, has 40 

been shown to extend lifespan in mice (12-15). Pharmalogical agents related to rapamycin are 41 

called "rapalogs".  Use of a rapalog for aging-like indications has recently been translated to 42 

human beings, where it was shown to improve responses to vaccinations in the elderly, 43 

coincident with decreasing signs of immune-senescence (16). The low dose rapalog treatment 44 

used in the human study was reverse-translated to rats, where it was shown that intervention late 45 

in life could prevent signs of age-related kidney pathology (17).  However, there has always been 46 
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concern about the potential effects of rapamycin and rapalogs on skeletal muscle.  For example, 47 

inhibition of the mTORC1 pathway was shown to entirely block responses to compensatory 48 

hypertrophy in mice (18).  This certainly gave the impression that activation of mTORC1 49 

signaling was desireable for the maintenance of muscle mass.  Most recently it was shown that 50 

rapamcyin treatment inhibited muscle mass increase caused by myostatin loss (19).  Thus it 51 

seemed reasonable that inhibition of the pathway was not desireable in settings of muscle loss (1, 52 

18, 20).  53 

As to the pathway, Akt induces protein synthes in part  by activation of  mTORC1 54 

signaling (18, 21).  mTOR exists in the distinct complexes, mTORC1 and mTORC2.  mTORC1 55 

is characterized by the presence of RAPTOR (regulatory-associated protein of mTOR) (22), 56 

while TORC2 binds to RICTOR (rapamycin-insensitive partner of mTOR) (23, 24).  The 57 

mTORC1 complex induces downstream signaling responsible for protein synthesis through 58 

phosphorylation and activation of S6 Kinase 1 (S6K1), and via inhibition of 4E-BP1 (24, 25), 59 

and is sensitive to inhibition by rapamycin and rapalogs. In addition to the anabolic function, Akt 60 

also limits muscle protein degradation and atrophy by phosphorylating and thereby inhibiting the 61 

FOXO (also known as Forkhead) family of transcription factors. Activation of FOXO3 is 62 

sufficient to induce atrophy (26, 27); transgenic expression of FOXO1 also lead to an atrophic 63 

phenotype (28, 29). Dephosphorylated FOXO1 and FOXO3 proteins translocate to the nucleus 64 

where they induce transcription (30), upregulating the expression of the muscle-atrophy 65 

associated E3 ligases, muscle RING finger 1 (MuRF1) and muscle atrophy F-box 66 

(MAFbx)/Atrogin-1 (31-33). Both MuRF1 and MAFbx/Atrogin-1 are specifically upregulated in 67 

atrophic conditions (34, 35), and target proteins that are critical for muscle structure and protein 68 

synthesis for degradation, thereby inducing muscle loss (36-40).   69 
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 mTORC1 inhibition has been widely suggested as a way to improve function in the 70 

elderly in various tissues. However, its potential as a therapeutic intervention for the treatment of 71 

sarcopenia has not been considered. Upon examination, we were surprised to learn that 72 

mTORC1 signaling is upregulated rather than downregulated coincident with signs of sarcopenia 73 

in rats, We therefore explored the effects of rapalog treatment in this setting. The results 74 

demonstrate that the inhibition of mTORC1 is helpful in preventing pathological changes related 75 

to sarcopenia. 76 

  77 
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Results 78 

Increased activation of the mTORC1 pathway with age 79 

Given prior reports that mTORC1 inhibition was helpful to treat a variety of age-related 80 

disorders, but also the data that mTORC1 activation is required for muscle hypertrophy, we 81 

conducted a time course analysis of the mTORC1 pathway to get a full scope of how its activity 82 

changes with age. In laboratory settings, Sprague Dawley rats have an average lifespan of up to 83 

2.5 to 3 years (41). In our study, male rats ranging from 6-months to 27-months were used. 84 

Protein lysates from gastrocnemius muscles were probed for the downstream effector of 85 

mTORC1, phosphorylated ribosomal protein S6 (rpS6), as a determinant of pathway activity. 86 

Basal (6 hours fasted) levels of phosphorylated rpS6 gradually increased as the rats aged, with a 87 

substantial increase of about 10-fold in the oldest animals aged 27-months compared with 6-88 

months. (Fig. 1A, B). The age-related increase in mTORC1 signaling coincided with a decrease 89 

in muscle mass.  At 21-months gastrocnemius muscle weights declined and progressively 90 

atrophied at each later time point (Fig. 1C). Though muscle loss at this age is not a surprise, the 91 

coincidence of this loss with mTORC1 activation was quite unexpected, given that it favors 92 

muscle growth and hypertrophy. 93 

Skeletal muscle mass and quality is improved in sarcopenic rats treated with the rapalog 94 

RAD001  95 

Experimental evidence shows that the use of rapalogs as therapeutic agents is beneficial in 96 

extending lifespan and counteracting age-related morbidities in humans and other evolutionarily 97 

diverse species (reviewed in (42)). We sought to determine whether rapalog treatment could 98 

counter the pathophysiological changes associated with sarcopenia. Aging rats display signs of 99 

sarcopenia beginning at 18-months (43). In the present study, aged rats (22-months) were dosed 100 
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daily with either vehicle or 0.15mg/kg RAD001 for 6-weeks. This dose of RAD001 is equivalent 101 

to a clinical dose of 0.5mg in humans, ensuring therapeutic relevance (16). Vehicle treated young 102 

adult rats (7-months) served as a comparative baseline for aging effects. At the end of the 103 

treatment, aged and young adult rats were 24-months and 9-months old respectively, and will be 104 

referred to as such.  105 

To determine if we were able to ameliorate age-related muscle loss with rapalog 106 

treatment, we measured the wet weights of the tibialis anterior (TA), plantaris, gastrocnemius, 107 

and soleus muscles. Consistent with previous data, all muscles, except for the soleus muscle 108 

from 24-month old vehicle treated rats had considerably reduced mass compared to 9-month old 109 

rats (Fig. 2A). RAD001 treatment did not lead to further atrophy in any of these muscles. On the 110 

contrary, rapalog appeared to be protective for aged animals, and reduced extensive muscle mass 111 

loss. Plantaris and TA muscles showed a surprising increase in mass, with the TA muscle being 112 

significantly increased compared to vehicle treated animals (Fig. 2A). Our data provide strong 113 

evidence that when administered to sarcopenic rats, low dose rapalog treatment is not detrimental 114 

to muscle mass. Rather, it allows for animals to maintain or gain muscle. 115 

Changes in muscle mass often reflect morphological alterations in tissue. We performed 116 

histological analysis on H&E stained plantaris muscle cross-sections. Tissue from 9-month old 117 

rats had normal morphology, typical of healthy muscle (Fig. 2B). In contrast, we detected several 118 

indicators of distressed muscle in aged animals that received only vehicle. A high proportion of 119 

fibers had a smaller cross-sectional area, a phenotype associated with muscle atrophy (Fig. 2D, 120 

E). Moreover, about 23% of myofibers from vehicle treated 24-month old muscles presented 121 

with central nuclei, indicative of prior degeneration and ongoing regeneration (Fig. 2B, C). There 122 

was a striking reduction in the number of myofibers with central nuclei in 24-month old plantaris 123 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/591891doi: bioRxiv preprint 

https://doi.org/10.1101/591891


 8 

muscles treated with RAD001 compared with aged matched muscles treated with vehicle (Fig. 124 

2B, C). In addition, consistent with the observed trend of increased plantaris muscle mass in 125 

RAD001 treated rats, the average myofiber cross-sectional area tended to increase (Fig. 2D) - the 126 

most obvious change was a reduced frequency of very small, mis-shaped atrophic myofibers 127 

(Fig. 2E). Taken together, these data show that a low dose rapalog treatment for 6 weeks can 128 

counteract age-related morpho-pathological changes in sarcopenic skeletal muscle - especially 129 

signs of degeneration requiring regeneration, as measured by the presence of central nuclei. 130 

Chronic activation of the mTORC1 pathway by muscle-specific deletion of Tsc1, a 131 

negative regulator of mTORC1, has been shown to cause a late-onset myopathy, with muscle 132 

atrophy in young adult mice (44). Inhibition of mTORC1 activity using rapamycin was able to 133 

reverse the observed pathological changes and normalize muscle mass in these animals (44). 134 

Despite evidence of similarly sustained mTORC1 signaling in aged muscle, its inhibition has not 135 

yet been studied in the context of sarcopenia. Given the positive phenotypic changes in aged 136 

RAD001-treated muscle, we assessed perturbation of mTORC1 pathway activity. Western blot 137 

analyses confirmed that RAD001 treatment significantly reduced phosphorylation of S6K1, a 138 

downstream target of mTORC1, in the muscles of old rats (Fig. 3A, B; Fig. S1). Phosphorylation 139 

of rpS6, a direct downstream target of S6K1 was also reduced with RAD001 treatment (Fig. 3A, 140 

C; Fig. S1). These data confirm that the relatively low dose of the rapalog used in the present 141 

study was sufficient to inhibit mTORC1 signaling in aged skeletal muscle.  142 

mTORC1 inhibition reverses molecular changes associated with sarcopenia 143 

We previously reported on age-related gene expression changes that help to demonstrate the 144 

molecular pathogenesis of sarcopenia (43). These data revealed the transcriptional upregulation 145 

of several pathways, including pathways related to innate inflammation and senescence, cellular 146 
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processes modulated by mTORC1. Because RAD001-treated animals displayed a remarkable 147 

sparing of muscle morho-pathology and mass with mTORC1 inhibition, we sought to determine 148 

the molecular changes that could account for this.  149 

The E3 ligase MuRF1 is an important regulator of atrophy (1, 34). MuRF1 gene 150 

expression was analyzed in young and old muscles treated with vehicle, and in old muscles 151 

treated with RAD001 (Fig. 4A). Old muscles treated with vehicle had significantly higher level 152 

of MuRF1 mRNA compared with young muscles (Fig. 4A). RAD001 treatment reduced MuRF1 153 

gene expression in old muscles (Fig. 4A). MaFbx, like MuRF1, is an E3 ubiquitin ligase that is 154 

transcriptionally upregulated under atrophic conditions (34). There was a significant increase in 155 

MaFbx expression in muscle from 24-month vehicle-treated animals compared to young 156 

controls. However, its expression was not impacted by RAD001 treatment (Fig. 4A). 157 

Additionally, expression of the metallothioneins, MT1 and MT2, increases during 158 

atrophy and is elevated in sarcopenic muscle (45). Genetic silencing of these genes promotes 159 

muscle hypertrophy in vivo (45). Interestingly, RAD001 treatment suppressed the MT1 gene 160 

expression level in old muscles, while levels of MT2 though variable within either treatment 161 

group, remained unchanged between groups (Fig. 4A).Together with the observed increase in 162 

muscle mass (Fig. 2A), these data demonstrate that mTORC1 inhibition by RAD001 can prevent 163 

further muscle loss by suppressing expression of atrophy markers.   164 

The onset of senescence with age is associated with the inability to efficiently repair and 165 

recover muscle, a contributing factor to the progressive decline in muscle mass in sarcopenia. 166 

Cell cycle proteins Cdkn1a (p21) and Cdkn2a (p16) are known cellular senescence markers that 167 

are upregulated with age in several tissues, including skeletal muscle (43, 46, 47). Relative to 9-168 

month old rats, Cdkn1a (p21) and Cdkn2a (p16) are both highly expressed at the mRNA level in 169 
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muscle from aged vehicle treated rats (Fig. 4B). RAD001 significantly reduced Cdkn1a and 170 

Cdkn2a mRNA levels in 24-month old muscles compared to age-matched vehicle treated 171 

controls (Fig. 4B).   172 

RAD001 treatment protects from age-associated signs of denervation   173 

Along with the deterioration of muscle tissue, the breakdown of the neuromuscular junction 174 

(NMJ) also contributes to muscle weakness; abrogation of the NMJ is associated with aging in 175 

rodents (48-50). Previous work identified the transcriptional perturbation of several genes 176 

associated with functional denervation and the loss of motor neurons in the rat sarcopenic muscle 177 

(43). We therefore investigated whether mTORC1 inhibition could reverse these transcriptional 178 

changes. The expression levels of a panel of select genes, Chrna1, Chrne, MuSK, Myogenin and 179 

Gadd45a, known to be markers of functional denervation (43), were determined by RT-qPCR. In 180 

agreement with our previous observations, all of these genes were significantly upregulated in 181 

muscles from vehicle treated 24-month old animals compared to 9-month old controls (Fig. 5). 182 

Interestingly, treatment of aged animals with RAD001 reduced the transcriptional upregulation 183 

of these denervation-associated gene markers in relation to their vehicle treated age-matched 184 

counterparts (Fig. 5). These data suggest that suppressing the mTORC1 pathway in aged animals 185 

could be protective against age-associated denervation.  186 

187 
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Discussion 188 

Age-associated diseases comprise many of the most serious conditions afflicting human beings:  189 

sarcopenia and frailty, cancer, heart disease, Alzheimer's disease, and chronic kidney disease. 190 

The mTORC1 inhibitor rapamycin and its analogs (rapalogs) have been shown to extend lifespan 191 

(12-15) and delay many of these age-related conditions (9-11).  These findings have even been 192 

extended to human beings, where a rapalog reversed immune-senescence and increased 193 

responses to vaccines that normally decline with age in the elderly (16). One area which caused 194 

some concern when it came to giving mTORC1 inhibitors to aged subjects was skeletal muscle, 195 

since mTORC1 activation mediates protein synthesis (51)  and mTORC1 inhibition blocks load-196 

dependent hypertrophy (52).  However, when we examined mTORC1 signaling in skeletal 197 

muscles in rats, at ages where sarcopenia occurs (43), we were surprised to see that signaling was 198 

increased rather than decreased - there was an age-related increase in the phosphorylation of 199 

rpS6, a readout of mTORC1 activity. Coincident with elevated mTORC1 signaling, there was a 200 

progressive decrease in skeletal muscle mass. These findings at least established that activation 201 

of mTORC1 was coincident with atrophy, and therefore was not sufficient to prevent muscle loss 202 

in sarcopenic conditions.  We therefore asked whether counter-regulating this age-associated 203 

increase in mTORC1 signaling may perhaps be beneficial for skeletal muscle, and thus we 204 

treated aged rats for six weeks with a rapalog, RAD001, at a clinically relevant low dose (we 205 

reverse-translated the low dose that had been used in a human study) (16). Treatment with a 206 

similar low dose of the rapalog RAD001, although with a distinct dosing regimen (intermittent 207 

dosing) had recently been shown to delay age-related changes in the kidney (17).    208 

 We were surprised to see that skeletal muscle mass increased rather than decreased as a 209 

result of mTORC1 inhibition.  This was not due to adverse events such as edema; muscles - 210 
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particularly the TA, showed increased mass, and examination of individual myofibers showed a 211 

trend towards increased cross-sectional area; very small atrophic fibers that are found with age 212 

were in particular absent with rapalog treatment.  With age, there is a dramatic increase in fibers 213 

with central nuclei - a sign of muscle undergoing degeneration followed by regeneration. 214 

Treatment with the rapalog for six weeks decreased the number of myofibers with central nuclei 215 

by almost half, which is a marker that there was less functional degeneration, requiring 216 

subsequent regeneration. In line with this, there were also signs that functional denervation 217 

occured with age; this impression was bolstered molecularly by the demonstration that gene 218 

markers associated with denervation, including MuSK and several of the acetyl choline receptor 219 

genes, were increased with age - consistent with a prior report (43). These denervation markers 220 

were each counter-regulated by the rapalog, indicating that rapalog treatment prevented 221 

functional denervation, providing an additional mechanism for preservation of muscle mass.   222 

 Rapalog treatment decreased mTORC1 signaling detected by de-phosphorylation of 223 

S6K1 and its downstream target rpS6.  Coincident with this, mRNA levels of the putative 224 

atrophy marker MuRF1 were significantly reduced. In addition to MuRF1, the metallothionein 225 

MT1 was downregulated by mTORC1 inhibition.  We had previously shown that this is a high-226 

fidelity marker of atrophy, and knocking out the MT genes in mice causes muscle hypertrophy 227 

(45).  This finding too is consistent with the increase in mass observed in the present study, and 228 

provides further mechanistic rationale.  As for the senescence markers p16 and p21, they were 229 

elevated in aged muscle when compared to young muscle, and reversed towards the "younger 230 

level" following rapalog treatment, consistent with what had been shown previously in geriatric 231 

satellite cells (46, 53). This reversal of senescent markers suggest the possibility of improved 232 
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satellite cell function necessary for muscle homeostasis, reflected by the positive morphological 233 

changes we observed in rapalog treated muscles.  234 

 In summary, mTORC1 signaling is hyper-activated in aged muscle, and this apparently is 235 

causal of sarcopenia, since inhibition of this signaling can increase muscle mass.  The inhibition 236 

of denervation and senescence markers, and the subsequent decline in atrophy markers gives a 237 

therapeutic rationale for treating aged sarcopenic patients with an mTORC1 inhibitor. 238 

 239 

  240 
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Materials and Methods 241 

Animal maintenance and RAD001 treatment 242 

Male Sprague Dawley rats were obtained from Envigo (Indianapolis, IN), and housed at their 243 

facility under specific pathogen-free (SPF) conditions until the appropriate age. When transferred 244 

to our facility, rats continued to be maintained under SPF conditions, with regulated temperature 245 

and light cycles (22°C, 12-hour light/12-hour dark cycle: lights on at 0600hours/lights off at 246 

1800 hours), and unrestricted access to food (2014 Teklad Global 14% Protein diet (Envigo)) 247 

and water. Animals were acclimated for a minimum of 4 weeks before being used for 248 

experiments. For age time course studies, rats ranging from 6 to 27-months (n = 6-8 249 

animals/group) were fasted from 0600 hours to 1200 hours (during the light on cycle) before 250 

being anesthetized and euthanized for end of study analysis.. Gastrocnemius muscles were 251 

collected for molecular analysis. For other studies, RAD001 (Novartis) was prepared as a 252 

microemulsion pre-concentrate at 2% (w/w). Prior to dosing, it was diluted to a working 253 

concentration in water. Vehicle control consisted of microemulsion pre-concentrate (equivalent 254 

to a dose), diluted in water. At 22-months, animals were dosed daily for 6 weeks with either 255 

RAD001 or vehicle per os. In parallel, rats aged 7-months received vehicle as young adult 256 

controls. Four hours after the last dose of RAD001 or vehicle, rats were anesthetized with 3.5% 257 

isofluorane, and euthanized by exsanguination and thoracotomy. Gastrocnemius, soleus, 258 

plantaris and tibialis anterior (TA) muscles were collected and weighed; TA and plantaris 259 

muscles were processed as described below further assessment. All animal studies were done in 260 

accordance with institutional guidelines for the care and use of laboratory animals as approved 261 

by the Institutional Animal Care and Use Committee (IACUC) of the Novartis Institutes of 262 

Biomedical Research, Cambridge MA. 263 
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 264 

Protein extraction and Western Blot analysis 265 

Protein extracts were prepared from tibialis anterior muscles. In short, snap frozen tissue was 266 

pulverized in liquid nitrogen by mortar and pestle to a fine powder. Approximately 30mg of 267 

tissue powder was homogenized in MSD lysis buffer (#R60TX, Meso Scale Discovery,) 268 

supplemented with Protease and Phosphatase inhibitor cocktail (Thermo Fisher Scientific, MA). 269 

Following a 30 min incubation at 4
o
C with agitation, protein lysates containing the cytoplasmic 270 

fraction were collected via microcentrifugation. Protein concentration was determined by BCA 271 

protein assay (Thermo Fisher Scientific, MA), prior to Western blot analysis. Diluted proteins 272 

were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on a 273 

4-20% gradient Criterion TGX Precast Midi Protein gel (Bio-Rad, CA), and subsequently 274 

transferred onto nitrocellulose membranes (Bio-Rad, CA) with the Trans Turbo Blot system 275 

(Bio-Rad). Membranes were blocked in 5% milk in TBST for 1 h at room temperature, and 276 

incubated with primary antibodies overnight at 4
o
C. After three washes in TBST, membranes 277 

were incubated in the appropriate HRP conjugated secondary antibodies (Cell Signaling 278 

Technologies) for 1 h at room temperature. The following primary antibodies were used: anti-279 

GAPDH (#5174, Cell Signaling Technologies, MA) , anti-rpS6 (#2217), anti-p-rpS6(S240/244) 280 

(#2215), anti-S6K1 (#2708), anti-pS6K1(T389) (#9234), all from Cell Signaling Technologies. 281 

Anti-rabbit and anti-mouse IgG HRP-conjugated secondary antibodies were also from Cell 282 

Signaling Technologies. Densitometric analysis was performed using Fiji 1.51n software. 283 

 284 

 285 
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Cryosectioning of frozen tissue 286 

Plantaris muscles were removed, embedded in OCT (Tissue-Tek) and flash frozen in chilled 2-287 

methylbutane (Fisher Scientific). Muscles were sectioned transversely with the Leica CM3050 S 288 

microtome and 10μm thick sections were collected for Hematoxylin and Eosin (H&E) staining 289 

and immunohistochemistry.  290 

 291 

Hematoxylin and Eosin staining 292 

Muscle sections were fixed in 4% paraformaldehyde on ice for 10 mins and rinsed briefly with 293 

water five times. H&E staining was done using the Tissue-Tek Prisma automated slide stainer 294 

(Sakura Finetek). Images were captured using the Aperio ScanscopeAT (Leica Biosystems), and 295 

used to determine morphological changes, including the incidence of central nuclei.  296 

 297 

Immunohistochemistry  298 

Myofiber cross-sectional area was measured on muscle cross-sections immuno-stained with the 299 

anti-Laminin antibody. Briefly, tissue sections were fixed in 4% paraformaldehyde on ice for 10 300 

mins, and washed in 1X PBS prior to permeabilization in 0.3% Triton-X 100 in PBS. Non-301 

specific sites were blocked in 16% goat serum diluted in 0.01% Triton-X 100 in PBS (blocking 302 

buffer) for 1 h at room temperature. Sections were incubated in anti-Laminin (Sigma Aldrich, 303 

L9393) antibody diluted at 1:1000 in blocking buffer overnight at 4
o
C. Primary antibody was 304 

detected by a 1h incubation with AlexaFluor-conjugated goat anti-rabbit secondary antibody 305 

(Life Technologies, A-11072) diluted in blocking buffer. Following a series of washes in 0.01% 306 
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Triton-X in PBS, slides were mounted with Fluoromount-G (SouthernBiotech). Images were 307 

captured using the VS120 Virtual Slide Microscope (Olympus).     308 

 309 

RNA extraction, cDNA synthesis and Quantitative RT-PCR (RT-qPCR) 310 

Tibialis anterior muscle was ground to powder as described above. Approximately 30mg of 311 

tissue powder was then processed using the miRNeasy Micro kit (Qiagen) according to the 312 

manufacturer’s protocol. RNA concentration was quantified by NanoDrop Spectrophotometer 313 

(NanoDrop Technologies), and quality was confirmed by the OD260/OD280 absorption ratio 314 

(>1.8). Following the manufacturer’s protocol, cDNA was synthesized from 1μg of RNA using 315 

the High Capacity cDNA Reverse Transcription kit (Applied Biosystems by Thermo Fisher 316 

Scientific). cDNA was diluted 1:10 in Ultra Pure Distilled RNase-free water (Invitrogen) prior to 317 

being used for further steps. The Standard TaqMan Gene Expression Master Mix (Applied 318 

Biosystems by Thermo Fisher Scientific) was used for all RT-qPCR reactions, and samples were 319 

run using a 384-well optical plate format. Reactions were performed using the ViiA 7 RT-qPCR 320 

System (Life Technologies), and data analyzed by the ΔΔcT method. TaqMan probes were 321 

optimized by Applied Biosystems: TATA-box binding protein (TBP) (Rn01455646_m1), 322 

Vps26a (Rn01433541_m1), MurF1 (Rn01639111_m1), MaFbx (Rn00591730_m1), Mt1 323 

(Rn00821759_g1), Mt2A (Rn01536588_g1), Cdkn1a (Rn00589996_m1), Cdkn2a 324 

(Rn00580664_m1), Chrna1 (Rn01278033_m1), Chrne (Rn00567899_m1), MuSK 325 

(Rn00579211_m1), Myogenin (Rn00567418_m1) and Gadd45a (Rn01425130_g1). 326 

 327 

 328 
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Statistical analysis 329 

Statistical significance was determined by a one way ANOVA followed by Dunnett’s multiple 330 

comparison tests. Means from all groups were compared to the mean of the aged vehicle treated 331 

group, except where specified. All data are displayed as means with standard deviation. 332 

GraphPad Prism 7.04 software was used for calculations and graphing. 333 
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Figure legends 506 

Figure 1. mTORC1 signaling is hyper-activated in sarcopenic skeletal muscle. (A) Immunoblots 507 

for phosphorylated (p) and total (t) protein for rpS6 in gastrocnemius muscles of rats aged 6 (n = 508 

5), 21 (n = 6), 24 (n = 6) and 27 (n = 8) months. Glyceraldehyde-3-phosphate dehydrogenase 509 

(GAPDH) is shown as a loading control. (B) p-rpS6(S240/244) protein amounts were quantified 510 

relative to their respective total rpS6 protein amounts by densitometry. (C) Gastrocnemius 511 

muscle weights in rats aged 6 (n = 12), 9 (n = 8), 12 (n = 10), 18 (n = 11), 21 (n = 8), 24 (n = 8) 512 

and 27 (n = 10) months. Data are mean ± standard deviation of the mean. Statistical significance 513 

was determined by a one way ANOVA followed by Dunnett’s multiple comparison tests. Means 514 

from all groups were compared to the mean of 12-month old animals. Asterisk (*) denotes 515 

significance at **P< 0.01; ***P< 0.001 and ****P< 0.0001. Y-axis in (B) represents arbitrary 516 

units, and in (C), milligrams (mg). 517 

 518 

Figure 2. Skeletal muscle mass and quality is improved with RAD001 treatment. (A) Weights of 519 

tibialis anterior (TA), plantaris, gastrocnemius and soleus muscles from 9- and 24-month old rats 520 

treated with vehicle and 24-month old rats treated with RAD001 (n = 7-12 animals per group). 521 

Y-axes represent weight units in milligrams (mg). (B) Representative images of transverse 522 

sections of plantaris muscles stained with H&E from 9- and 24-month old rats treated with 523 

vehicle ( n = 4 and n = 5 animals per group respectively) and 24 month old rats treated with 524 

RAD001 (n = 5 animals). Open arrows depict mis-shaped, flattened myofibers. Closed arrows 525 

show central nuclei. Scale bar is 100 μm. (C) Quantification of myofibers withcentral  nuclei in 526 

plantaris muscles. Myofibers with central nuclei are shown as a percentage of total myofibers (n 527 

> 1200 myofibers assessed per animal). (D) Average myofiber cross-sectional area (CSA) in 528 
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plantaris muscles (n > 1200 myofibers assessed per animal). Y-axes represent area units in 529 

microns squared (µm
2
). (E) Histogram depicting the distribution of myofiber cross-sectional 530 

areas from data shown in (D). Myofiber cross-sectional area frequencies are shown as a 531 

percentage of total myofibers in the given treatment group. All other data are mean ± standard 532 

deviation of the mean. Asterisk (*) denotes significance at *p< 0.05; **p< 0.01; ***p< 0.001 and 533 

****p< 0.0001. 534 

 535 

Figure 3. Confirmed mTORC1 inhibition following rapalog treatment. (A) Representative 536 

immunoblots for phosphorylated (p) and total (t) protein for S6K1 and rpS6 in tibialis anterior 537 

muscles of 9- and 24-month old rats treated with vehicle and 24-month old rats treated with 538 

RAD001. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is shown as a loading control. 539 

(B) p-S6K1(T389) and (C) p-rpS6(S240/244) protein amounts were quantified relative to their 540 

respective total S6K1 and rpS6 protein amounts by densitometry ( n = 10 – 12 animals per 541 

group). Data are mean ± standard deviation of the mean. Asterisk (*) denotes significance at 542 

***p< 0.001.Y-axes represent arbitrary units.  543 

 544 

Figure 4. mTORC1 inhibition blunts molecular changes associated with sarcopenia. (A) mRNA 545 

amounts for MuRF1, MaFbx, MT1 and MT2, and (B) Cdkn1a and Cdkn2a in tibialis anterior 546 

muscles of 9- and 24- month old rats treated with vehicle and 24-month old rats treated with 547 

RAD001 ( n = 10 – 12 animals per group). mRNA amounts were standardized to a geometric 548 

mean of TBP and Vps26a, used as reference genes (A and B). Data are mean ± standard 549 
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deviation of the mean. Asterisk (*) denotes significance at *p< 0.05; **p< 0.01; ***p< 0.001; 550 

****p< 0.0001. Y-axes represent arbitrary units. 551 

 552 

Figure 5. mRNA expression of denervation markers are reduced by rapalog treatment. (A) 553 

mRNA amounts for Chrna1, Chrne, Musk, MyoG and Gadd45a  in tibialis anterior muscles of 9- 554 

and 24-month old rats treated with vehicle and 24-month old rats treated with RAD001 ( n = 10 – 555 

12 animals per group). mRNA amounts were standardized to a geometric mean of TBP and 556 

Vps26a, used as reference genes. Data are mean ± standard deviation of the mean. Asterisk (*) 557 

denotes significance at *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001. Y-axes represent 558 

arbitrary units. 559 

 560 

Figure S1. Rapalog treatment blocks mTORC1 pathway activity. Immunoblots of additional 561 

samples that were included in the analysis of phosphorylated (p) and total (t) protein for S6K1 562 

and rpS6 in tibialis anterior muscles of 9- and 24-month old rats treated with vehicle and 24-563 

month old rats treated with RAD001 in Fig. 3B, C. Glyceraldehyde-3-phosphate dehydrogenase 564 

(GAPDH) is shown as a loading control. 565 

 566 
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Figure 1. mTORC1 signaling is hyper-activated in sarcopenic skeletal muscle. (A) Immunoblots for 

phosphorylated (p) and total (t) protein for rpS6 in gastrocnemius muscles of rats aged 6 (n = 5), 21 (n = 

6), 24 (n = 6) and 27 (n = 8) months. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is shown 

as a loading control. (B) p-rpS6(S240/244) protein amounts were quantified relative to their respective 

total rpS6 protein amounts by densitometry. (C) Gastrocnemius muscle weights in rats aged 6 (n = 12), 

9 (n = 8), 12 (n = 10), 18 (n = 11), 21 (n = 8), 24 (n = 8) and 27 (n = 10) months. Data are mean ±
standard deviation of the mean. Statistical significance was determined by a one way ANOVA followed 

by Dunnett’s multiple comparison tests. Means from all groups were compared to the mean of 12-month 

old animals. Asterisk (*) denotes significance at **P< 0.01; ***P< 0.001 and ****P< 0.0001. Y-axis in 

(B) represents arbitrary units, and in (C), milligrams (mg).
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Figure 3. Confirmed mTORC1 inhibition following rapalog treatment. (A) Representative 

immunoblots for phosphorylated (p) and total (t) protein for S6K1 and rpS6 in tibialis anterior muscles 

of 9- and 24-month old rats treated with vehicle and 24-month old rats treated with RAD001. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is shown as a loading control. (B) p-

S6K1(T389) and (C) p-rpS6(S240/244) protein amounts were quantified relative to their respective total 

S6K1 and rpS6 protein amounts by densitometry ( n = 10 – 12 animals per group). Data are mean ±
standard deviation of the mean. Asterisk (*) denotes significance at ***p< 0.001.Y-axes represent 

arbitrary units. 
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Figure 4. mTORC1 inhibition blunts molecular changes associated with sarcopenia. (A) mRNA 

amounts for MuRF1, MaFbx, MT1 and MT2, and (B) Cdkn1a and Cdkn2a in tibialis anterior muscles 

of 9- and 24- month old rats treated with vehicle and 24-month old rats treated with RAD001 ( n = 10 –
12 animals per group). mRNA amounts were standardized to a geometric mean of TBP and Vps26a, 

used as reference genes (A and B). Data are mean ± standard deviation of the mean. Asterisk (*) denotes 

significance at *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001. Y-axes represent arbitrary units.
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Figure 5. mRNA expression of denervation markers are reduced by rapalog treatment. (A) mRNA 

amounts for Chrna1, Chrne, Musk, MyoG and Gadd45a  in tibialis anterior muscles of 9- and 24-month 

old rats treated with vehicle and 24-month old rats treated with RAD001 ( n = 10 – 12 animals per 

group). mRNA amounts were standardized to a geometric mean of TBP and Vps26a, used as reference 

genes. Data are mean ± standard deviation of the mean. Asterisk (*) denotes significance at *p< 0.05; 

**p< 0.01; ***p< 0.001; ****p< 0.0001. Y-axes represent arbitrary units.
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Figure S1. Rapalog treatment blocks mTORC1 pathway activity. Immunoblots of additional samples 

that were included in the analysis of phosphorylated (p) and total (t) protein for S6K1 and rpS6 in 

tibialis anterior muscles of 9- and 24-month old rats treated with vehicle and 24-month old rats treated 

with RAD001 in Fig. 3B, C. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is shown as a 

loading control.
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