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Abstract (212 words)

Precise timing is crucial for many behaviors ranging from street crossing, conversational
speech, to athletic performance. The precision of motor timing has been suggested to result
from the strength of phase-amplitude coupling (PAC) between the phase of alpha oscillations
(o, 8-12 Hz) and the power of beta activity (B, 14-30 Hz), herein referred to as a-f PAC. The
amplitude of B oscillations has been proposed to code for temporally relevant information, and
the locking of B power to the phase of a oscillations to maintain timing precision. Motor timing
precision has at least two sources of variability: variability of timekeeping mechanism and
variability of motor control. There is ambiguity to with of these two factors a-f PAC could be
ascribed to. Whether a-f PAC indexes precision of internal timekeeping mechanisms like a
stopwatch, or a-B PAC indexes motor control precision is unclear. To disentangle these two
hypotheses, we tested how oscillatory coupling at different stages of time reproduction related
to temporal precision. Human participants perceived, and subsequently reproduced, a time
interval while magnetoencephalography was recorded. The data show a robust a-f PAC during

both the encoding and the reproduction of a temporal interval, a pattern which could not be
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predicted for by the motor control account. Specifically, we found that timing precision resulted
from the tradeoff between the strength of a-B PAC during the encoding and during the
reproduction of intervals. We interpret these results as supporting evidence for the hypothesis

that a-B PAC codes for precision of temporal representations in the human brain.

Highlights
- Encoding and reproducing temporal intervals implicate a-p PAC.
- a-B PAC does not represent solely motor control.

- a-B PAC maintains the precision of temporal representations.
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Introduction

A precise understanding of the brain’s time-keeping precision is currently lacking. A
number of human neuroimaging studies have started mapping our sense of elapsing time onto
dynamical brain patterns recorded non-invasively with magnetoencephalography (MEG) and
electroencephalography (EEG) (Macar, et al., 1999; Ng et al., 2011, Kononowicz & Van Rijn,
2011, 2015; Kulashekhar et al., 2015; Mento et al., 2013; Schlichting et al., 2018; Wiener et al,,
2012, 2015; van Wassenhove & Lecoutre, 2015, for review, see Ng & Penney, 2014,
Kononowicz et al., 2018). Most of these studies focused on neuronal indicators that scale
linearly with the elapsed time (e.g., the contingent negative variation) thereby neglecting, the
neuronal correlates of behavioral precision (i.e., variability). The precision of time-keeping
mechanisms can bring novel insights to the neuronal mechanisms supporting timekeeping
because it is free of other processes dynamically evolving in time that may be misleadingly
interpreted to represent duration (cf. Gibbons & Rammsayer, 2004). Recent investigations have
implicated beta (B) oscillations in time keeping process (Bartolo et al., 2015; Kononowicz & Van
Rijn, 2015; Kononowicz et al, 2018; Kulashekhar et al., 2016; Wiener et al., 2018). Especially,
during production of temporal intervals the power of B oscillations scales with the duration of
produced interval (Kononowicz et al., 2018). However, consideration of only one frequency
band could be oversimplifying for understanding of time keeping mechanisms. Based on the
hypothesis that neural oscillations, and their coupling across time scales, are essential for the
coding (Lisman & Jensen, 2013) and for the transmission (Fries, 2005) of information in the
brain previous study asked whether the power of B oscillations may be regulated by the phase
of alpha (a) oscillations during motor timing (Grabot, Kononowicz, et al., 2017). The strength
of a-B phase-amplitude coupling (a-B PAC) was commensurate with the precision of the
internally generated timed action such that narrower behavioral distributions were associated
with stronger a-B PAC. These findings suggested that stronger a-f PAC allowed for a better
maintenance, or precision, of temporal representations.

Note that B oscillations have been associated with both memory (Lundquist et al., 2016)
and motor processes (Kilavik et al., 2013; Engel & Fries, 2010). The studies investigating the
role of B power in time estimation do not provide a unified interpretation. The functional role
of B power was originally described in motor tasks (Pfurscheller et al., 1996). B power is also

associated with the control of motor commands (Swann et al., 2009). These studies support
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the notion that B power and motor control are highly associated (Brittain & Brown, 2014; Engel
& Fries, 2010). Yet, B power effects were also reported in perceptual timing tasks in which no
motor processes were required (Kulashekhar et al., 2016; Wiener et al., 2018), suggesting that
B power could also influence non-motor processes. Our primary motivation was thus to make
a distinction between motor and non-motor processes. On the basis of discrepancy between
motor and non-motor processes in the interpretation of the role of B oscillations we derive two
hypotheses: the motor control hypothesis, and working memory hypothesis. The first is
involved with the precision of motor commands, the second one is involved with the precision
of time keeping that necessarily has to involve working memory process (Gibbon et al., 1984).
Working memory is a capacity for storing and manipulating information (Baddeley, 1992). In
the context of interval timing it is uncertain how working memory operates (Gu et al., 2015;
Matell et al. 2005).

Previous work linking B oscillations to timing has not been able to address which of
these two processes was affected by coupling (Grabot, Kononowicz, et al.,, 2017), as time
production involves a mixture of motor (motor implementation variability) and time-keeping
processes (clock variability) (Keele et al., 1985).

In the study by Grabot, Kononowicz, et al., (2017), participants produced a short time
interval by button presses: the first button press started the interval, and the second button
press terminated the interval, with participants instructed to reproduce a duration as close as
possible to the required target interval. In time production tasks (single interval), it's difficult to
distinguish between motor, perceptual, or central cognitive processes as all processes are
involved in the production of that interval. To the contrary, in multi-duration time reproduction
tasks, each trial starts with the presentation of a target duration, which then needs to be
reproduced, typically via motor action. The separation in two task stages, namely, duration
encoding and duration reproduction, thus provides a handle to investigate timing processes
without the motor component that is not present in the encoding stage. This premise was
supported by Baudouin et al., (2005) who showed that time production tends to be primarily
associated with spontaneous tempo tasks, involving tapping at the preferred rate as regularly
as possible, whereas time reproduction tend to be associated with working memory
measurements, providing distinct cognitive blueprints in both tasks. Here, we focus on the
difference between duration encoding and duration reproduction in the time reproduction

task. Focusing on time reproduction as opposed to time production, ensures the differentiation

4 of 28


https://doi.org/10.1101/591933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/591933; this version posted March 28, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

of motor and working memory components. We ensure this separation to assess whether a-8
PAC is linked with precision of motor control or with precision of working memory. The motor
control hypothesis assumes that a-f PAC indexes precision with which motor commands and
plans can be implemented, whereas the alternative hypothesis assumes that a-f PAC indexes
the neural code for duration.

To differentiate motor control and working memory components we reanalyzed
previously published data (Kononowicz et al., 2015) from a temporal reproduction task. As in
every trial, participants were randomly presented with 2, 3, or 4 seconds intervals, which they
had to reproduce, this dataset is well suited to investigate the contributions of a-f PAC during
the encoding and the reproduction of durations. We set out to investigate if a-B PAC is present
in both stages of time reproduction and whether a-f PAC in the encoding or reproduction is

related to the precision of temporal durations.

Methods

We reanalysed the data collected in Kononowicz et al., (2015) to investigate the role

of a-B PAC during the encoding and reproduction of supra-second intervals.

Participants

Eighteen students enrolled at the Humboldt, Freie or Technical University of Berlin with
no self-reported hearing/vision loss or neurological pathology took part in the experiment in
exchange for monetary compensation for participation. Written informed consent, as
approved by the Ethical Committee Psychology of the University of Groningen, was provided
by each participant before the experiment commenced. The data of two participants were
discarded from the analyses: one participant fell asleep during the experiment, and the second
one exhibited unreliable and spurious patterns of phase-amplitude coupling (PAC). The final

sample comprised data of sixteen participants (all right handed, 8 males).

Stimuli and Procedure
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In a given trial, participants were presented with a to-be-memorized interval, called the
Encoding Interval (El, Fig. 1a) followed by the Reproduction Interval (Rl), in which participants
reproduced the El.

Each trial started with the presentation of a fixation cross “+”. After a randomly sampled
inter-trial interval chosen among three possible values (2.5, 3.5 or 4.5 seconds (s)), the El was
presented as an empty interval delimited by two auditory tones (5 ms duration, 1 kHz, ~ 75 dB)
separated by an interval of 2's, 3 s or 4 s. The fixation cross “+” lasted for the entire time of the
El presentation, and up to 1.5 or 2.5 s after the El, after which the reproduction interval (RI)
started.

The start of the Rl was indicated by the same tone as the El, and with a change in fixation
cross from “+” to "x". Participants pressed the mouse button with their right hand when they
thought the "x" was on the screen for the same amount of time as the “+” was. Pressing the
response device button initiated the onset of a tone presentation, and the "x" disappeared
from the screen. After an inter-trial interval randomly sampled out of 1.5 or 2.5 s, the next trial
started. Each El was presented 40 times yielding a total of 120 trials presented in 12 blocks of
10 trials each. Each block contained at least 3 repetitions of each El pseudo-randomly
presented. Between blocks, participants received adaptive feedback on their performance
indicating how many trials were correct. The range of correct feedback was initially set to 20%
deviation of the target interval and then dynamically adjusted by decreasing (-2.5%) or
increasing (+0.5%) the range after each correct or incorrect trial, respectively. Participants were
instructed to reproduce durations as accurately as possible and to maximize their number of
correct trials in each block. Before the start of the MEG recordings, participants were presented
with five practice trials. Stimuli were presented using a PC running Presentation software

(Neurobehavioral Systems).

MEG recordings

In a dimly-lit standard magnetically-shielded room (Ak3b, Vacuumschmelze, Hanau,
Germany) located at the PTB Berlin, each participant laid in supine position with eyes open.
Visual stimuli were presented on a screen via a projector located outside of the magnetically
shielded room. Participants crossed their arms in front of their chest, as earlier work has shown

this position to be most comfortable during longer recording sessions, and responded by
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clicking a button on a computer mouse, which was held in the right hand, located on their left
upper body. Measurements were carried out with a Yokogawa MEG system (Yokogawa Electric
Corporation, Japan) using 125 axial gradiometers with three reference magnetometers used
for offline data denoising and ambient noise removal.

The head position with respect to the sensor helmet was measured using coils attached
to the scalp at anatomical landmarks (nasion and preauricular points). The locations of the coils
were digitized with respect to three anatomical landmarks with a 3D digitizer (Zebris, Isny,
Germany).

The brief auditory bursts indicating the start and end of the intervals were presented
binaurally via MEG-compatible tube earphones (Etymotic research, Elk Grove Village, USA) at

sound levels set for each participant individually, at approximately 75 dB.

Calculation and statistical assessment of phase-amplitude coupling based on Modulation

Index

To prevent the influence of evoked responses in PAC estimation, we focused on the
time segment starting from 0.4 s after the tone initiating the El or the Rl until the end of the El
duration (i.e., 2's, 3 s, or 4 s). In the Rl analysis, we focused on the time segment from 0.4 s
following the stimulus onset up to 1.2 s in the 2 s condition. We chose 1.2 s, which was the
lower tail of the RI distribution, to insure that the data were free of components associated
with movement execution. For the same reason, in 3 s and 4 s reproduction intervals we
focused on the period extending up to 2 s.

To calculate PAC, we split the data of each duration condition into temporal bins of
similar length in order to equalize the number of time samples (given variability in produced
duration lengths), and prevent erroneous assessment of PAC calculation (Dupré la Tour et al.,
2017). To equate the amount of data, we used bins of 0.8 s long, starting at 0.4 s after the onset
of the stimulus demarcating El or Rl onset. The number of bins depended on the duration
condition and ranged from 1 to 4 bins for the 2 s to 4 s trials, respectively. Across all conditions,
Binl ranged from 0.4 sto 1.2 s, Bin2 from 1.2 sto 2 s, Bin3 from 2.2 s to 3 s, and Bin4 from 3.2
sto4s.

The strength of PAC was assessed using the Modulation Index (Ml; Tort et al., 2009;

Dupré la Tour et al., 2017): raw data were band-pass filtered with a slow-frequency bandwidth
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of 2 Hz, and a high-frequency bandwidth of 20 Hz. The instantaneous amplitude of the high-
frequency and the phase of the slow-frequency were extracted from the Hilbert transform
applied to the epoched data. To assess whether the distributions diverged from uniformity, the
Kullback-Leibler distance was computed, then normalized to provide an estimate of the
strength of MI. The slow-frequency component ranged from 3 Hz to 15 Hz in steps of 0.5 Hz,
and the high-frequency ranged from 14 Hz to 100 Hz in steps of 2 Hz. A comodulogram was
computed for each MEG sensor, providing a full estimate of the Ml over the full spectrum.

To assess the statistical significance of PAC at the individual level, the Ml was compared
to a surrogate distribution (n = 100) computed by randomly shifting the low frequency signal
by a minimum of 0.3 s as was previously proposed by Tort et al. (2010). For each participant, 5
sensors with the highest Z-scores were selected and averaged. The resulting averages were
plotted separately for the El and the RI (Fig. 2). The resulting averaging of z-scores indicated
the level of significance. Considering that Z-score can be converted to significance level, a Z-
score of 4 corresponds to p = 0.00001.

To assess whether PAC was associated with the El and with the RI, we compared the Ml
computed during the pre-trial baseline (from -0.8 s to O s prior to the first stimulus demarcating
the El onset) to the Ml computed during the El and the RI (Fig. 2). Statistical assessments of a
difference using M were performed using MNE’s python utility
permutation_cluster _1samp_test with 1000 permutations, which implements the
nonparametric statistical testing (Maris & Oostenveld, 2007). Ml values arranged in a matrix
were used as the input to the permutation test and subjects were used as observation samples
(Fig. 2, red scale plots).

To assess stability of PAC, within the El and RI, we compared consecutive bins within El
and RI. Similarly, to the analysis against the baseline, we used a cluster permutation test as in
PAC on the whole range of computed MI values. Additionally, we also employed a second
approach which focused on the a-B range of the M| matrix and used a t-test for repeated

measures (ttest_rel as implemented in SciPy Python library).

o peak-locking procedure for graphical representation of a-68 PAC

To visualize a-B PAC in the time domain, we aligned a peak with the high frequency

activity (here, B). Data were filtered with respect to the frequencies observed in the PAC
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analysis: as we observed a robust a- PAC, we focused on illustrating how B power aligned with
the phase of the a frequency. For this, we used a FIR filter implemented in the pactools Python
package (v0.1, Dupré la Tour et al., 2017). a peaks were detected by localizing the maxima in
the phase of the low frequency signal. The power of B was assessed by using a Hilbert transform
to compute the instantaneous amplitude (the Hilbert analytical signal was multiplied with its

conjugate and the real part was extracted). The resulting plots are displayed in Fig 2b.

Localization of PAC peak using jackknife procedure

The location of the MI peak was quantified using a jackknife procedure. First, 5 sensors
exhibiting maximal a-B PAC were identified and averaged by individual. Each ‘jackknife sample’
was obtained by removing a single sample and averaging the remaining samples (n-1, Miller et
al., 1998; Ulrich & Miller, 2001). The coordinates of amplitude frequency and phase frequency
of the MI were obtained on the basis of jackknife samples. F values, obtained by running the
ANOVA (AnovaRM as implemented in statsmodels Python library, v0.9) on jackknife samples,

were corrected by dividing obtained F by (n-1)%

Regression analyses between precision and PAC

The sensor level analyses were performed using linear regression and model
comparison to check whether factors other than PAC were needed to account for timing
behavior. All statistical analyses were performed using R v3.3.2 statistical programming
language (R Development Core 2008).

Similar to the previous within participant approach, MEG data were randomly split into 4
trial-based bins. The 4-bins split was chosen to guarantee a maximal number of within-subject
samples for the regression analyses while preserving a minimal number of samples for
computation of the coefficients of variation (~10 samples per bin; van Belle, 2008). As for the
previous analyses we selected 5 sensors with the highest Ml for a-f PAC. To maximize PAC
contribution to selected sensors, the sensors were selected per participant, condition (i.e., 2 s,
3's, 4 s) and task stage (El or RI). This ensured that each sample entered in the regression was

effectively a product of most prominent PAC contributions.
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The inverse coefficient of variation (invCV: mean duration production divided by the
standard deviation in a set of approximately 10 trials) and the PAC comodulograms were
computed for each data bin. Each outcome served as a single observation in regression model.

As we split the data per block and per individual, we used linear mixed-effects models
(e.g., Pinheiro and Bates, 2000; Gelman and Hill, 2007) to account for multiple per subject
observations in the data and samples dependencies. Linear mixed-effects models are
regression models that model the data by taking into consideration multiple levels. Subjects
and trial-based bins were random effects in the model, and were allowed to vary in their
intercept. p values were calculated based on a Type-3 ANOVA with Satterthwaite
approximation of degrees of freedom, using ImerTest package in R (Kuznetsowa et al., 2017).
The mixed-effects models approach was combined with model comparisons that allow for
selecting the best fitting model in a systematic manner.

Whenever Shapiro-Wilk normality test indicated a deviation from normality we
transformed the data using using the Lambert W function. The Lambert W function provides
an explicit inverse transformation, which removes heavy tails from the observed data (Georg,
2011, 2015). First, the data are transformed into a heavy-tailed form using log-likelihood
decomposition. Subsequently the heavy tailed form is transformed back into a Gaussian

distribution. All transformations were performed using LambertW R package.

Results

Participants conformed to the task requirements as previously reported (Kononowicz
et al., 2015; Fig. 1b). The distribution of time reproductions in the 2 s condition was centered
at 2 s (mean =1.98s, SD =0.42 s); the reproduction of 3 s (mean=2.64s,SD =0.53s)and 4 s
(mean = 3.26 s, SD = 0.75 s) were shorter than the target duration (Fig. 1b). This pattern was
consistent with Vierordt’s law and regression to the mean typically observed in time
reproduction and estimation experiments (e.g., Jazayeri & Shadlen, 2010; Shi, Church & Meck,

2013; Petzschner et al., 2015; Polti et al, 2018).

Robust a-8 PAC during encoding and reproduction of temporal intervals.
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In previous work, we showed robust a-f PAC in temporal production focusing on MEG
signals. Combined MEG and EEG data did not qualitatively changed the results (Grabot,
Kononowicz et al., 2017). For simplicity, we will solely focus on MEG signals in the current
paper.

First, we computed PAC over a broad spectrum of frequencies, and we collapsed the
data across reproduced durations, participants, and sensors. Modulation Index (Ml; Tort et al.,
2009) quantifies phase-amplitude coupling by estimating a deviation of the amplitude
distribution with respect to a certain phase from the uniform distribution, in a so-called phase-
amplitude plot. We quantified the Ml separately for the El and the Rl over the full spectrum to
produce comodulograms. This allowed for identifying the peaks in the shuffled distribution of
MI, and revealed significant peaks of a-p PAC (6-12 Hz for the carrier, and 15-40 Hz for the
modulated frequency) in both El and Rl (see Fig. 2a for Z-scores and t-values). Although, we
observed low frequency PAC ranging from 8 Hz to 12 Hz, in a previous report (Grabot,
Kononowicz et al., 2017), here, the significant lower PAC frequencies appeared to extend to
lower frequencies (Fig. 2a), with a center of gravity approximating 7 or 8 Hz. Therefore, we used
an extended lower PAC frequency range (6-12 Hz) in all analyses.

We inspected the a-f PAC coupling regime by aligning B power to a oscillations in the
time domain. The peak-locking procedure visualized the presence of a-f PAC and an example
of realigned time series for a single participant is provided in Fig. 2b: for this participant, B
power was highest at the trough of the a oscillation and lowest at the peak of the a oscillation.
The comparison of each a-B PAC within each bin against the baseline interval converged with
the permutation analysis of M| and visual inspection of peak-locked data. Each bin during
encoding and reproduction significantly increased in the strength of a-f PAC as compared to
baseline (Fig. 2a, the right panels for El and RI).

The observation that a-B PAC during El significantly increased as compared to baseline
corroborated the prior working hypothesis that a-f PAC may plays a role in timing (Grabot,
Kononowicz et al., 2017): considering that a-f PAC was present when participants were not
required to perform motor actions, a-p PAC may go beyond precision in motor execution and
motor preparation. A significant increase of a-B PAC was also observed during reproduction.

As stronger couplings in El or Rl could indicate predominant support of a-B PAC in one
of the two stages of the task, we then contrasted Ml in the El and Rl using a cluster permutation

test. We found no evidence of significant a-f PAC difference between the El and the Rl (p >
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0.1). Permutation tests were accompanied by Bayesian t test focused on a-f PAC (temporal
binl in El was tested against temporal binl in Rl etc.). None of the tested comparisons showed

BF exceeding 1.

Stable a-6 PAC during encoding and reproduction of temporal intervals.

To delineate the temporal characteristics of a-f PAC, we assessed whether the
magnitude of a-f PAC was stable or dynamic during the El and RI (Fig. 3). For example, certain
indices of interval timing, such as climbing neuronal activity measured as a gradual change of
amplitude of Contingent Negative Variation (Walter, 1964) from interval onset until its offset,
have been associated with dynamic processes related to duration perception (Boehm et al.,
2014; Kononowicz & Van Rijn, 2014; Macar et al., 1999; Wiener et al., 2012). Along the same
lines, we sought to investigate whether a-p PAC undergo similar dynamical changes within the
El or the RI, or whether it was stable within the timed interval.

According to the precision hypothesis, a-B PAC should be stable within the RI
considering that it maintains the representation of a given duration. Alternatively, if a-B PAC
supports dynamical features of timing related processes such as gradual integration of
temporal information, we should systematically observe a covariation of a-f PAC with time,
within a timed interval.

To test this, we used two different approaches. In a first approach, we focused on a-8
PAC using collapsed values of 5 sensors with maximal Ml per condition. We then performed a
series of t-test comparisons between consecutive temporal bins, within El, Rl, and all duration
conditions, also using Bayesian t test. None of the comparisons showed significant results (all p
> 0.1; all BFs < 1). This series of comparison was not adjusted for multiple comparisons. In a
second approach, we collapsed the data across all sensors and performed the permutation
tests on a broad MI frequency spectrum, comparing consecutive bins in El and RI. Again, none
of the comparisons showed significant results (all p > 0.1). Hence, neither approach supported
the notion of dynamical changes of a-B PAC during encoding, reproduction or across durations.
This suggested a relatively stable a-B PAC within the timed interval, in line with the precision

hypothesis.
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Stable a-8 PAC across durations, encoding and reproduction

Considering that three durations were tested, we then questioned whether a-B PAC
varied as a function of duration, during encoding and during reproduction. According to the
precision hypothesis, one would not expect significant shifts of the PAC to be involved in the
timing of different durations.

To explore the characteristics a-B PAC as a function of durations, we used the data
depicted in Fig. 4: for each time bin, participant, El, RI, and duration, we quantified the
maximum coordinate of the MI using a jackknife method (Fig. 4). The obtained maximal
amplitude of the high-frequency modulated by the maximal phase frequencies were entered
into a two (stage: El, RI) by three (durations: 2 s, 3 s, 4 s) repeated measures ANOVA. No
significant (main or interaction) effects for amplitude frequency and phase frequency were
found (all p > 0.1). Although Fig. 4 suggests a possible small effect of low frequency oscillation
of PAC between the El and the Rl, a statistical test did not confirm this observation (F(1,16) =

1.7, p=0.212). Hence, we found no evidence for a shift of PAC across El, Rl, or duration.

a-8 PAC and timing precision

Different durations yielded different trial lengths. Given the absence of dynamic
changes in a-B PAC within the trials, we focused regression analyses on the first and on the last
bins for assessing the precision in El, and on the first bin only to assess the precision in Rl. We
chose the first and the last bins under the assumption that the beginning and the end of El, and
the end of Rl should represent the same cognitive steps irrespective of tested duration
condition. Each observation was calculated using the average of 5 sensors with maximal a-8
MI.

According to the precision hypothesis, a-B PAC may reflect the precision with which an
endogenous timing goal may be maintained (Grabot, Kononowicz, et al., 2017). In our current
reproduction paradigm, the encoding of the target duration was separated from its
reproduction. Hence, the association between a-B PAC and timing precision could be expressed
in both the El and the RI, suggesting a possible link between perceptual and motor timing
precision. We tested the association between a-8 PAC in El and Rl and behavioral precision

measured by invCV (duration production / standard deviation, see Methods). We choose invCV
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as opposed to CV for its convenient positive association with precision, which facilitates
interpretation of regression results in relation to a-p PAC. invCV in a straightforward manner
captures the width of a distribution of time reproduction. A regression model using a-3 PAC to

predict invCV showed no significant effects in El [all p > 0.05] or in the RI [p > 0.1].

Alternatively, the precision of timing in this behavioral paradigm may depend on the
relative a-B PAC in the El and RI: for example, if the temporal goal was noisily encoded during
the El, its maintenance in Rl may not yield precise temporal reproduction. Therefore, a larger
PAC in El may support higher precision. To test this, we used the difference between the
strength in a-B PACin El and RI (El Mlg.g (EI) = Mlq.g (RI) as a predictor for invCV. The regression
model, using the difference in a-f Ml between the initial bin in El and in Rl, showed that the
strength of a-B oscillatory coupling significantly predicted the behavioral invCV [F(172) = 2.8, P
=0.006; Fig. 5ab]. To ensure that the effect was stable over time, we then tested the difference
of a-B coupling strength between the last bin in El and the first bin in Rl: the regression model
showed that the strength of a-B oscillatory coupling significantly predicted the behavioral invCV
[F(179) = 2.5, P = 0.014; Supp Fig. 1ab]. The analysis, based on Akaike Information Criterion
(AIC, Wagenmakers, 2014), showed that both models containing the difference of a-B PAC
strength between Rl and El as predictors were justified as compared to the model including
only the intercept [AAIC =-5.5, P = 0.006; AAIC = 4.0, P = 0.014; respectively].

In both models containing the difference between El and RI, the a-B PAC strength as
predictor in addition to their interaction with duration was not warranted [AAIC=-1.7, P >0.1;
AAIC =-1.6, P > 0.1; the first and last bin respectively], indicating that the association between
precision and EI-Rl a-B PAC strength did not depend on the duration being reproduced.

Previous studies investigating phase-amplitude coupling have indicated that Ml
estimation could be confounded by the estimation of phase and power frequencies (e.g. Aru et
al., 2016). To assess whether the association between PAC strength and behavioral invCV was
exclusively driven by oscillatory coupling, and not confounded by the power in a or B bands,
we tested whether the inclusion of a or B power was justified in the model predicting invCV.
Similarly, to a-B PAC, the a power, B power were computed as a difference between El and RI.
The inclusion of a, B power, were not justified in the model predicting invCV for the first bin
[AAIC =-0.7, P > 0.1; AAIC = -1.8, P > 0.1; respectively], and the last bin [AAIC =-1.1, P > 0.1;
AAIC =-1.8, P > 0.1; respectively].

14 of 28


https://doi.org/10.1101/591933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/591933; this version posted March 28, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Discussion

We investigated the role of phase-amplitude coupling in the encoding and in the
reproduction of time intervals. Our present results provide evidence that the strength of a-B
PAC leverages the precision of timing, extending previous observations in a temporal
production task (Grabot, Kononowicz et al.,, 2017). Here, we specifically show the stable
implication of a-B PAC during the encoding of a duration and during the reproduction of the
encoded temporal interval. We also show the stability of this effect across three different
supra-second durations. Crucially, we found that the difference in a-B PAC between the
encoding and the reproduction of temporal intervals was associated with the precision of
reproduced intervals (Fig. 5c). This result showed that behavioral precision was not solely a
function of a-B PAC strength in the reproduction stage, but rather incorporated a code for the
representation of duration encoded earlier in perception, was maintained until motor
execution. With this study, we thus provide additional evidence that the strength of a-f PAC

indexes the precision with which temporal information is maintained in the brain.

a-8 PAC maintains the precision of temporal representations.

Previous work suggested an important role of § oscillations in temporal cognition: B
oscillations have been observed during time production and temporal expectations, suggesting
that B oscillations may index a neural code for time estimation. During motor timing
(Kononowicz & Van Rijn, 2015; Kononowicz et al., 2017), an increase in B power indexes the
length of produced time intervals. This pattern has also been reported during perceptual timing
(Kulashekhar et al., 2016) and shown to be causally related to time estimation (Wiener et al.,
2017). B oscillations have also been suggested to control temporal predictions (Arnal et al.,
2014; Fujioka et al., 2012; Teki & Kononowicz, 2016; lversen et al., 2009). Altogether, prior
results implicate B activity in coding duration.

On the other hand, a oscillations and PAC have been implicated in the maintenance of
task-relevant information in working memory (Roux & Uhlhaas, 2014). In line with this view and
with recent work (Grabot, Kononowicz et al., 2017), a-B PAC was interpreted as reflecting the
active maintenance (a) in the timing network of a neural code for duration (B), thereby

controlling the precision of timing information. This precision hypothesis predicted an
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association between a-f PAC and behavioral precision to occur not solely in the Rl but also in
any period of time during which maintenance of temporal precision would be needed. The
current results support this hypothesis considering that behavioral precision was best predicted
by the a-B PAC difference between the Rl and El. More specifically, behavioral precision was a
function of the strength of PAC during the encoding stage relative to the strength of PAC in the
reproduction stage.

This indicate that if the temporal goal is encoded with a limited degree of precision in
the El, its maintenance in Rl would not lead to precise temporal reproduction: to the contrary,
stronger PAC in the El did support higher precision of reproduced durations. This imbalance
suggests that a-B PAC primarily supports the encoding of a temporal target as opposed to the
sole precision of motor commands during temporal production. In line with the precision
hypothesis, a-B PAC appears to index the maintenance of higher level temporal
representations distinct from the control of motor commands.

Here, the data do not support evidence for the motor control hypothesis. The motor
control hypothesis relies on the observation that B oscillations are strongly associated with
motor functions, such as movement preparation (Kilavik et al., 2013) and motor control (Engel
& Fries, 2010). For example, alternating beta oscillations lead to changes in movement speed
(Pogosyan et al., 2009) and successful withholding from movement (Swann et al.,, 2009).
Additionally, Tzagarakis et al., (2010) showed that B amplitude is modulated by the amount of
information constraining future movement parameters. Together, these results suggest that
beta oscillations carry a multitude of movement parameters. In this context a-f PAC could be
seen as neural code that maintains the multitude of movement parameters, where
oscillations code for movement parameters and precision of motor execution is one of the
dimensions in the parameter space. The motor control hypothesis predicts that a-f PAC would
be only observed in the RI. Secondly, the association between a-f PAC and behavioral precision
would only be observed in the RI. However, neither of the predictions of the motor control
hypothesis was the case in the current study as we found clear a-f PAC in the El and the
difference in a-f PAC between encoding and reproduction of temporal intervals was associated
with the precision of reproduced intervals.

Taken together, these results strengthen the suggestion that a-B PAC in timing and
motor timing is not just a function of motor control precision or precision of motor commands.

Instead, the obtained results are in line with the working memory hypothesis that offer the
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view of a-p coupling supporting endogenous maintenance of temporal goal and as such could

represent a neural code supporting working memory for duration.

a-8 PAC may support working memory for time

Working memory is a capacity for storing and manipulating information (Baddeley,
1992) and has been broadly studied in many domains (Baddeley, 2012). It is far from clear how
working memory extends to interval timing (Matell et al. 2005). Particularly, time reproduction
tasks may strongly rely on working memory capacity as suggested by correlational
psychophysical studies (Baudouin et al., 2005). This suggests that working memory in the
current study may be highly implicated in time keeping function.

From the neuroimaging perspective, a large body of work indicated that maintenance
of information in working-memory is supported by PAC in the 6-y regime (Axmacher et al.,,
2010; Fell & Axmacher, 2011; Alekseichuk et al., 2016; Leszczynski et al., 2015). For example,
enhanced PAC has been associated with increased working memory load (Axmacher et al.,
2012) and patients with stronger PAC were capable of maintaining longer sequences in working
memory (Leszczynski et al.,, 2015), suggesting a neural syntax for underlying information
maintenance in working memory (Lisman & Jensen, 2013). Along these lines, a recent model
proposes a link between working memory supported by 6-y regime and the retrieval of
information during interval timing (Gu et al., 2015; 2018), such that interval timing and working
memory differ in terms of which oscillatory features of the oscillating network is used for the
extraction of relevant temporal features. At the same time, the oscillatory framework by Gu et
al., (2015) has a certain degree of flexibility with respect to the range of frequencies it can
accommodate (Teki et al., 2016). Nonetheless, assuming that working memory in interval
timing would involve collection of a discrete units of information (van Wassenhove, 2016) as in
classical working memory tasks (Siegel et al., 2009), one could expect to see 8-y coupling at
least in the encoding stage, during which participants encoded the duration between two short
tones. Despite the extended period of temporal information encoding that was not confounded
by other factors such as motor preparation, we found no compelling evidence for the utilization
of B-y coupling in duration encoding. Although we did not find a typical 8-y coupling, we did

observe a-B coupling, which characteristics did not conform to predicted memory mechanisms.
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It is also important to note that some studies have previously reported interesting
characteristics for B oscillations, which followed parametric modulations during cued working
memory when quantitative magnitudes had to be maintained (Spitzer & Blankenburg, 2011).
Importantly, duration was one of the tested magnitudes (Spitzer et al., 2014), suggesting that
a-B coupling could support some aspects of working memory for duration. Future studies could
investigate whether a-B coupling extends the precision with which we encode other
magnitudes and what role a-B coupling play in the delay period between encoding and

reproduction interval.

a-8 PAC in explicit and implicit timing

To further understand the specificity of representations coded by a-B coupling, future
studies could investigate a-p coupling in different timing contexts. For example, in explicit and
implicit timing, in which the key distinction would be whether task instructions require
participants to provide an explicit estimate of duration or not (Coull & Nobre, 2008; Herbst &
Obleser, 2017). In current and previous work (Grabot, Kononowicz et al., 2017), a-f PAC was
found during explicit timing tasks. Yet, if such coupling regime extends to implicit timing (e.g.,
foreperiod paradigm; Praamstra, 2010), temporal expectation (Breska & Deouell, 2014; Nobre
et al.,, 2007), the precision hypothesis could reflect a generic property of the PAC strength
indexing the temporal precision of information maintenance in brain networks. There is
emerging evidence that delta-beta PAC (6-B PAC) is sensitive to the occurrence, or absence, of
a predicted external event in time (Cravo et al., 2011). 8-B PAC has been found to increase in
response to predictable cues in temporal orienting (Mento et al., 2018). Together, these results
suggest that at least some form of PAC supports anticipatory processes in implicit timing. Of
course, anticipation like processes can play a role in explicit timing. Therefore, the future

studies should explore functionalities of coupling regimes jointly in explicit and implicit timing.

Conclusion

We report that a-f PAC is present during the encoding and during the reproduction of
time intervals. Timing precision results from the balance between the strength of a-B PAC
during the encoding and during the reproduction of intervals. We suggest that a- PAC reflects

the precision of temporal representations in the human brain.
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Figure 1. Task design and behavioral performance. a. Time course of the experimental trials in

the time reproduction task. b. Probability density and box plots of time reproductions plotted
for the three conditions separately. The yellow line demarcates the reference interval.
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Figure 2. Robust phase-amplitude coupling in the encoding and in the reproduction of time
intervals. a. Z-scored comodulograms (left) and t-scores resulting from permutation tests
against the baseline interval in the encoding (left) and the reproduction (right) phases of the
time reproduction task. b. Alpha peak-locking plot. The individual time series were locked on
the peak of the a oscillations (black line). B Power (15-40Hz) was computed in the realigned
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data, normalized by subtracting its mean, and displayed as heatmaps. For illustration, we picked
the MEG sensor showing maximal a-B Ml for one representative participant.
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Figure 3. Stable strength of a-B PAC within trials. The comodulograms were inspected as a
function of task stage and time bins within each experimental condition (columns) and
reproduction length (rows). For each reported comodulogram, 5 sensors with maximal a-B PAC
were identified per participant and grand-averaged across the sixteen participants.
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Figure 4. Stable peak of a-B PAC during trials and across reproduced durations. The location of
the maximal amplitude frequency did not vary as a function of the reproduced time interval or
task stage. The trend for the phase frequency to decrease during the reproduction interval did
not reach significance. The individual data points were smoothed using 2D kernel density
estimate as implemented in Seaborn python package.
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Figure 5. The difference a-B coupling strength between encoding and reproduction informs on
the precision of internal timing. a. a-p PAC difference between Bin 1 of the El and Bin 1 of the
RI was significantly correlated with the precision of temporal reproduction (invCV). The model
outcomes are also plotted in panel b. b. The fitted values of precision are plotted against the
precision values predicted by the mixed model, informed by the difference of a- PAC strength.
c. Two examples ofthe effect plotted in panels a and b. Comodulograms in El and RI (left and
right panels,) for two subsets of trials (rows) with high reproduction precision (top) and with
low reproduction precision (bottom). The subset with a higher behavioral precision is shown
on the top row and displays larger a-B PAC in El than in RI.
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Supplementary Figures
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Supplementary Figure 1. a-B PAC difference between reproduction and encoding indexes the
precision of temporal reproduction. a. a-B PAC difference between the last bin of the El and
Bin 1 of the RI were significantly correlated with precision of temporal reproduction (invCV).
Model outcomes are also plotted in panel ‘b’. b. The fitted values of precision are plotted
against the precision values predicted by the mixed model relying on the difference in the PAC
strength.
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