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ABSTRACT 18 

 19 

Epidemiological models are routinely used to predict the effects of interventions aimed at 20 

reducing the impacts of Ebola epidemics. Most models of interventions targeting 21 

symptomatic hosts, such as isolation or treatment, assume that all symptomatic hosts are 22 

equally likely to be detected. In other words, following an incubation period, the level of 23 

symptoms displayed by an individual host is assumed to remain constant throughout an 24 

infection. In reality, however, symptoms vary between different stages of infection. During 25 

an Ebola infection, individuals progress from initial non-specific symptoms through to 26 

more severe phases of infection. Here we compare predictions of a model in which a 27 

constant symptoms level is assumed to those generated by a more epidemiologically 28 

realistic model that accounts for varying symptoms during infection. Both models can 29 

reproduce observed epidemic data, as we show by fitting the models to data from the 30 

ongoing epidemic in the Democratic Republic of Congo and the 2014-16 epidemic in 31 
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Liberia. However, for both of these epidemics, when interventions are altered identically 32 

in the models with and without levels of symptoms that depend on the time since first 33 

infection, predictions from the models differ. Our work highlights the need to consider 34 

whether or not varying symptoms should be accounted for in models used by decision 35 

makers to assess the likely efficacy of Ebola interventions. 36 

 37 

KEYWORDS 38 
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 41 

1. INTRODUCTION 42 

 43 

Ebola epidemics have devastating consequences. The current epidemic in the 44 

Democratic Republic of Congo is the second largest in history, with 663 cases (614 45 

confirmed and 49 probable) having been recorded as of 15th January 2019 [1]. 46 

Mathematical models are increasingly used for exploring the effects of different possible 47 

control interventions during Ebola epidemics [2–4]. The values of model parameters are 48 

chosen so that the model output matches observed epidemic data (model fitting; Fig 49 

1A), and then interventions are introduced in the fitted model to predict how the course 50 

of the epidemic is altered by different possible control strategies (intervention testing; 51 

Fig 1B). 52 

 53 
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 54 
Figure 1. Schematic showing how a model can be used to predict the effect of changing control interventions 55 
on epidemic dynamics. Here, an intensification of surveillance is assumed to lead to improved detection 56 
and control of infectious hosts, thereby reducing the total number of cases. A. Model fitting. Model 57 
parameters are chosen so that the model output (black dotted) approximates epidemic data (red stars) B. 58 
Intervention testing. A range of alternative control interventions are introduced into the fitted model, and 59 
predicted dynamics under these new control interventions can be observed – predictions of the effects of 60 
reduced surveillance (green), slightly intensified surveillance (blue) and significantly intensified surveillance 61 
(red). 62 
 63 

 64 

A commonly used model for characterising epidemics of diseases including Ebola is the 65 

Susceptible-Exposed-Infectious-Recovered (SEIR) model [5–7], and extensions to this 66 

basic model include explicit incorporation of transmission from Ebola deceased hosts [8–67 

10] or accounting for mismatches between symptoms and infectiousness [11,12]. 68 

Possible interventions include isolation of symptomatic hosts, which can be included in 69 

the SEIR model by removing individuals from the infectious class. All individuals in the 70 

infectious class are usually assumed to be symptomatic, with the level of symptoms being 71 

assumed constant and therefore independent of the stage of infection. As an example, 72 

Chowell et al. [13] assume that symptomatic individuals are isolated at a constant rate, 73 

and Meakin et al. [4] assume that symptomatic individuals are hospitalised at a constant 74 

rate. 75 

 76 
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However, in reality, it is not the case that all symptomatic hosts are equally 77 

symptomatic. During an Ebola infection, an infected host progresses through different 78 

stages [14] – from initial non-specific symptoms (fever, headache and myalgia) to a 79 

gastrointestinal phase (diarrhoea, vomiting, abdominal symptoms and dehydration), and 80 

then either to a deterioration phase (collapse, neurological manifestations and bleeding) 81 

or recovery. Individuals with non-specific symptoms are less likely to be observed and 82 

treated/isolated than individuals who have progressed further through infection and 83 

have developed more specific and more serious symptoms. 84 

 85 

Here, we investigate whether explicitly accounting for variations in symptom expression 86 

during the course of an Ebola infection leads to different epidemiological model 87 

dynamics compared to assuming a constant level of symptoms. To do this, we compare 88 

predictions derived from a model in which infectious hosts have a constant level of 89 

symptoms (the constant symptoms model – see Methods) with those from a model in 90 

which variable symptoms during infection are accounted for (the variable symptoms 91 

model). We parameterise our models using data from the ongoing Ebola epidemic in the 92 

Democratic Republic of Congo. We find that both models can be fitted closely to data 93 

from the epidemic. However, when control interventions in the models are altered, for 94 

example to explore the effects of intensifying surveillance and control, forecasts 95 

generated by the models are very different. We find the same qualitative result when we 96 

instead parameterise our models using data from the largest Ebola epidemic in history: 97 

the 2014-16 epidemic in west Africa. 98 

 99 

These analyses demonstrate that models with or without variable symptoms can 100 

reproduce observed disease incidence time series, but that predictions from the models 101 

are different when interventions are altered, even when the change in interventions is 102 

identical in both models. Our results highlight the need to consider whether variations in 103 

symptom expression during infection should be included in models of Ebola epidemics. 104 

Without accounting for variable symptoms, predictions of the possible effects of 105 

interventions may be incorrect. 106 

 107 
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2. METHODS 108 

 109 

Datasets 110 

 111 

To show that our results are not conditioned on particular properties of data from a 112 

single epidemic, we conducted two separate analyses in which we considered data from 113 

two different Ebola epidemics.  114 

 115 

In the first analysis, we used data on the numbers of cases in approximately weekly 116 

time intervals from the ongoing Ebola epidemic in the Democratic Republic of Congo. It 117 

has recently been suggested by Dr Peter Salama, Deputy Director-General of 118 

Emergency Preparedness and Response at the World Health Organization, that this 119 

epidemic comprises several distinct outbreaks in different affected areas. Indeed, 120 

disease incidence time series display distinct phases (large numbers of cases at the 121 

end of July/beginning of August 2018, followed by low numbers of cases in September, 122 

and then larger numbers of cases again thereafter), probably due to spatial effects of 123 

spread of the virus which are not captured by standard non-spatial compartmental 124 

models [15]. For this reason, we focussed on data from the health zone of Beni, a city in 125 

the north-east of the Democratic Republic of Congo, and the neighbouring health zone 126 

of Kalunguta. This region has been severely impacted by the current epidemic. These 127 

data were obtained from World Health Organization disease outbreak news reports from 128 

4th August 2018 to 10th January 2019 (Data S1, see also [16]). 129 

 130 

In the second analysis, we considered data comprising of the numbers of cases in 131 

approximately weekly time intervals in Liberia during the 2014-16 Ebola epidemic, which 132 

were obtained from the World Health Organization (Data S2, see also [17]). 133 

 134 

Mathematical model 135 

 136 

In the commonly used SEIR model, individuals are classified according to whether they 137 

are (S)usceptible to infection, (E)xposed, (I)nfected by the pathogen or (R)emoved and 138 
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no longer infectious. We extended this model to account explicitly for case finding 139 

followed by isolation of infectious individuals. We also assumed that there were three 140 

distinct phases of infection, corresponding to different stages of an Ebola infection. This 141 

delivered the additional benefit that the infectious period (in the absence of control) was 142 

gamma distributed, rather than exponentially distributed – and gamma distributions 143 

have been found to characterise epidemiological periods accurately in a range of 144 

systems [18,19]. This gave rise to the SEI1I2I3RC model, 145 

 146 
d𝑆
d𝑡 = −β(𝑡)𝑆(𝐼* + 𝐼, + 𝐼-),	147 

d𝐸
d𝑡 = β(𝑡)𝑆(𝐼* + 𝐼, + 𝐼-) − 	𝛾𝐸,	148 

d𝐼*
d𝑡 = 𝛾𝐸 − 	µ𝐼* − δ*𝐼*,	149 

d𝐼,
d𝑡 = µ𝐼* − 	µ𝐼, − δ,𝐼,,	150 

d𝐼-
d𝑡 = µ𝐼, − 	µ𝐼- − δ-𝐼-,	151 

d𝑅
d𝑡 = 	µ𝐼-,	152 

d𝐶
d𝑡 = δ*𝐼* + δ,𝐼, + δ-𝐼-. 153 

 154 

In this model, the C compartment represents the number of individuals that have ever 155 

been controlled (detected and isolated) until the current time. Since we wish to isolate 156 

the impacts on prediction of variable symptoms alone, in the baseline version of the 157 

model we assume that all infectious hosts are equally infectious – although we consider 158 

the effect of relaxing this assumption later. 159 

 160 

In our analyses, we made the assumption widely used in Ebola models that the infection 161 

rate parameter in the model is temporally-varying [4,5], to reflect changes in 162 

transmissibility during the epidemic. This could, for example, indicate changes in 163 

behavioural responses or alterations to interventions (aside from detection and isolation, 164 

since we model that explicitly). In particular, we assumed that 165 
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 166 

𝛽(𝑡) = 8𝛽9	for	𝑡 ≤ 𝑇	days,
𝛽*	for	𝑡 > 𝑇	days. 167 

 168 

We then considered two alternative versions of the model. In the first (the constant 169 

symptoms model – Fig 2A), we assumed that all infectious individuals are successfully 170 

detected and isolated at the same average rate per day, so that δ* = δ, = δ- = δ, say. 171 

This assumption is common to any epidemiological model that includes interventions 172 

aimed at symptomatic hosts, unless differences in symptom expression are accounted 173 

for explicitly. The constant symptoms model is therefore similar to most epidemiological 174 

models that have been used to represent Ebola epidemics previously (e.g. [4,13]). 175 

 176 

We also considered the more realistic case in which symptoms become more severe as 177 

infection progresses, so that δ* < δ, < δ-. We refer to the resulting model as the 178 

variable symptoms model (Fig 2B). This model reflects the fact that, in reality, 179 

individuals with initial mild symptoms are less likely to be detected and isolated to 180 

prevent further transmission than individuals with more developed symptoms who are in 181 

the gastrointestinal or deterioration phases. 182 
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 183 
Figure 2. Schematic of the different models that we considered. A. Constant symptoms model, in which 184 
individuals in each stage of infection are equally likely to be detected and isolated (so that the detection 185 
rate, δ, is equal for all three infectious classes); B. Variable symptoms model, in which symptoms are 186 
assumed to intensify during an Ebola infection (so that the detection rate is smaller for individuals in earlier 187 
infection compared to later infection, i.e. δ* < δ, < δ-). We also show how additional epidemiological 188 
complexity can be included in these models (see Supplementary Material). 189 
 190 

Model fitting and parameters 191 

 192 

We considered the numerical solutions of the models described above in a host 193 

population of size of S + E + I1 + I2 + I3 + R + C = N individuals and a basic reproduction 194 

number at the beginning of the epidemic and in the absence of surveillance given by 195 

𝑅9 =
-DEF
G

. 196 

 197 

The default parameter values used in our analyses are given in Table 1 (for the 198 

Democratic Republic of Congo in 2018-19) and Table 2 (for Liberia in 2014-16). 199 

S I1 RβS(I1+I2+I3) γEE μI1 I2 μI2 I3 μI3

Controlled (C)

δI1 δI2 δI3

S I1 RβS(I1+I2+I3) γEE μI1 I2 μI2 I3 μI3

Controlled (C)

δ1I1 δ2I2 δ3I3

A.

B.

Constant
detection

rate δ

Variable
detection

rate δ1 < δ2 < δ3

Early infection Mid-infection Late infection

Early infection Mid-infection Late infection
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However, as described in the Results, we also checked the robustness of our results to 200 

these particular parameter values. The values of the infection rates 𝛽9 and 𝛽*, as well as 201 

the date on which the infection rate changes, 𝑇, were obtained by fitting the outputs of 202 

the models to the epidemic data. The start date of the epidemic, 𝑇9, was also estimated 203 

during the fitting procedure. Model fitting was performed using least squares estimation 204 

– i.e. choosing parameter values to minimise the sum of squares distance between the 205 

cumulative numbers of detected or removed hosts in the model (C + R) and the 206 

cumulative numbers of cases in the data. Numerical solutions were generated starting 207 

with a single host in the E compartment at the start time of the epidemic, 𝑇9, with all 208 

other individuals susceptible. 209 

 210 

The values of the parameters characterising the rate of Ebola detection and isolation, 211 

i.e. δ*, δ, and δ-, depend on the level of surveillance, which includes various passive 212 

and active case finding strategies. We did not model explicitly the wide range of 213 

different surveillance activities that take place during an Ebola response (see 214 

Discussion). However, to provide a concrete setting in which to illustrate the principle 215 

that forecasts are different under the constant symptoms and variable symptoms 216 

models, we instead considered a simplified scenario in which each host is checked for 217 

infection on average every ∆	days. Each time monitoring occurs, there is a detection 218 

probability of 𝑝J for individuals in class 𝐼J (for 𝑖 = 1,2, or	3). As a result, 219 

 220 

δJ =
1

∆ O1𝑝J
− 12P

. 221 

 222 

This expression is derived in the Supplementary Material (for a similar approach, see 223 

also [20]). 224 

 225 

In our main analyses, we considered two different surveillance regimes. When the 226 

models were fitted, under weak surveillance, we assumed that the default surveillance 227 

period was ∆	= 21 days. When the fitted models were then used to predict the impacts 228 

of intensified surveillance, the surveillance period was changed to ∆	= 14 days. We 229 
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assumed that the detection probability in the constant symptoms model was 𝑝* = 𝑝, =230 

𝑝- = 0.6. When we accounted for the possibility that symptoms change as hosts 231 

progress through infection, we instead used default values of 𝑝* = 0.1, 𝑝, = 0.8 and 232 

𝑝- = 0.9 so that the mean value of 𝑝*, 𝑝, and 𝑝- was equal to the value of these 233 

parameters in the constant symptoms model. In other words, conditional on not being 234 

detected previously, a host chosen at a random time in the infectious period was equally 235 

likely to be detected in both models.  236 

 237 

3. RESULTS 238 

 239 

As described in the Introduction, fitted models are often used to test potential control 240 

interventions (Fig 1). We therefore considered fitting models to two different datasets – 241 

one from the current Ebola epidemic in the Democratic Republic of Congo, and another 242 

from the historical Ebola epidemic in west Africa in 2014-16. 243 

 244 

First, we considered data from the ongoing Ebola epidemic in the Democratic Republic 245 

of Congo (Fig 3A). We fitted the constant symptoms model and variable symptoms 246 

model to these data in turn, and found that both of these models could replicate the 247 

observed dynamics of the epidemic (Figs 3B). We then used these fitted models to 248 

predict how the epidemic dynamics would have been altered under a different control 249 

intervention. In particular, we increased the rate of detection in the fitted models, to 250 

represent predictions under an intensification of surveillance and control efforts (see 251 

Methods). 252 

 253 

When surveillance was intensified, the prediction of the constant symptoms model 254 

differed substantially from that of the variable symptoms model (Fig 3C). In particular, 255 

for the parameter values displayed here, the constant symptoms model predicted 24% 256 

fewer cases than the more epidemiologically realistic variable symptoms model (108 257 

cases in the constant symptoms model as opposed to 142 cases in the variable 258 

symptoms model).  Consequently, even though the observed dynamics of the models 259 
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appear identical when fitted to data, they produce different predictions when control 260 

interventions are changed. 261 

 262 

We then repeated our analysis, instead using data from the 2014-16 Ebola epidemic in 263 

west Africa (Figs 3D-F). In this case, the constant symptoms model predicted 35% 264 

fewer cases than the variable symptoms model (Fig 3F). Since the total number of 265 

cases in this epidemic was so large, this corresponded to 641 cases difference between 266 

the forecasts of the two models. 267 

 268 

We also considered the robustness of our results to the values of the model 269 

parameters, including the level of surveillance assumed when fitting to data and the 270 

extent to which surveillance was intensified in the models (Figs S1-S7). In addition, we 271 

considered different values of the detection probability whenever surveillance occurs 272 

(Figs S8 and S9). In each case, we found qualitatively identical results – both the 273 

constant symptoms and variable symptoms models could reproduce epidemic time 274 

series data, but when interventions were changed in the models the predicted epidemic 275 

dynamics then differed. As well as considering an intensification of surveillance, we also 276 

examined cases in which surveillance was relaxed (e.g. Figs S4B and S4C). Whenever 277 

surveillance was intensified, the constant symptoms model underestimated the total 278 

number of cases compared to the more realistic variable symptoms model. However, 279 

when surveillance was instead reduced, the constant symptoms model led to 280 

overestimation of the total number of cases. 281 

 282 

We also considered the effect of enhancing surveillance at different times during the 283 

epidemic. In particular, we considered increasing the surveillance level once the 284 

epidemics had already been in progress until a certain date, for different possible dates 285 

of surveillance intensification. The earlier that surveillance was intensified, the larger the 286 

error when using the constant symptoms model rather than the more biologically 287 

realistic variable symptoms model, since early surveillance intensification then allows 288 

more time for model predictions to differ (Figs 4 and S10). 289 

 290 
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Until this point, so that we could isolate the effect of variable symptoms alone on the 291 

predicted outcomes of interventions, we assumed that at any time during an epidemic 292 

all infected and uncontrolled hosts generated new infections at a constant rate. 293 

However, we also conducted an analysis in which the infection rate also varied 294 

throughout the course of an Ebola infection, by considering cases in which 295 

infectiousness was either correlated with or correlated against the level of symptom 296 

expression (Fig 5 and Supplementary Material). In cases in which higher levels of 297 

symptoms were associated with reduced infectiousness – for example due to a lower 298 

level of mixing in the population compared to hosts with less serious symptoms – our 299 

result that predictions are different between the constant symptoms and variable 300 

symptoms models was enhanced (Figs 5B and 5D). 301 

 302 

 303 
Figure 3. Using the constant symptoms model and variable symptoms model to predict alternative 304 
interventions. A. Number of cases each week in Beni and Kalunguta health zones in the Democratic 305 
Republic of Congo. The dotted black vertical line represents the time before which data were available. B. 306 
Model fits to the data (red stars), using the constant symptoms model (blue dotted) and variable symptoms 307 
model (green dash) C. Predictions of the effect of intensified surveillance, using the constant symptoms 308 
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model (blue) and variable symptoms model (green). D-F. Equivalent figures to A-C, using the data from the 309 
2014-16 Ebola epidemic in Liberia. For model parameters, see Methods and Tables 1 and 2. 310 
 311 

 312 
Figure 4. Using the constant symptoms model and variable symptoms model to predict alternative 313 
interventions, for different times of surveillance intensification. A. Reduction in the total number of cases 314 
predicted by the constant symptoms model compared to the variable symptoms model, expressed as a 315 
percentage of the number of cases predicted by the variable symptoms model, for different times of 316 
surveillance intensification. The models were fitted to data from the ongoing epidemic in the Democratic 317 
Republic of Congo. B. Illustration of how the values in panel A were calculated. In the graph shown, 318 
intensified surveillance began on 23rd August 2018 in the models fitted to the ongoing epidemic in the 319 
Democratic Republic of Congo. This corresponds to the time denoted by the red dot in panel A. C-D. 320 
Equivalent panels to A-B, for the 2014-16 Ebola epidemic in Liberia. In panel D, intensified surveillance 321 
began on 2nd May 2014. In panels A and C, we only consider intensifying surveillance at or after the time 322 
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that the first cases were observed (i.e. 3rd August 2018 for the ongoing epidemic in the Democratic Republic 323 
of Congo, and 23rd March 2014 for the 2014-16 Liberia epidemic). The original epidemic datasets are shown 324 
as insets to panels A and C. For model parameters, see Supplementary Material and Tables 1 and 2. 325 
 326 
 327 

 328 
Figure 5. Using the constant symptoms model and variable symptoms model to predict alternative 329 
interventions, if infectiousness is also assumed to depend on the stage of infection. A. Predictions of the 330 
effect of intensified surveillance using the constant symptoms model (blue) and variable symptoms model 331 
(green), fitted to data from the ongoing epidemic in the Democratic Republic of Congo and assuming that 332 
infectiousness increases during an Ebola infection as described in the Supplementary Material. B. 333 
Predictions of the effect of intensified surveillance using the constant symptoms model (blue) and variable 334 
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symptoms model (green), fitted to data from the ongoing epidemic in the Democratic Republic of Congo 335 
and assuming that infectiousness decreases during an Ebola infection as described in the Supplementary 336 
Material. C-D. Equivalent figures to A-B but fitted to data from the 2014-16 Ebola epidemic in Liberia. The 337 
values of parameters other than the fitted parameters (i.e. the infection rates, the start times of the 338 
epidemics and the times at which the infection rates change), are identical to those described in Tables 1 339 
and 2. Surveillance intensification is assumed to occur at the beginning of the epidemic. Model fits are not 340 
shown, since they appear identical by eye to those in Figs 3B and 3E. 341 
 342 

4. DISCUSSION 343 

Epidemiological models that have been fitted to data are often used to predict the 344 

dynamics of an epidemic under different control interventions (e.g. [21–25]). However, 345 

most models considering interventions targeted at symptomatic hosts assume that 346 

those hosts display a constant level of symptoms that does not change during the 347 

course of infection. For a number of infectious diseases, however – including Ebola 348 

virus disease – there are different stages of an infection, and in each of these stages 349 

the level of symptoms is likely to be different. Individuals in early infection tend to have 350 

milder symptoms than those in later infection. As a result, symptomatic hosts in early 351 

infection are less likely to have appeared in the surveillance data that are routinely 352 

collected during an epidemic than those in later infection, who not only have had a 353 

longer period during which to be detected but are also likely to have developed more 354 

severe and recognisable symptoms. 355 

 356 

Here, we have considered Ebola virus disease as a case study, and used two models to 357 

predict the possible effects on the dynamics of two epidemics under different 358 

surveillance levels. We assumed that increased surveillance leads to improved 359 

detection and control of symptomatic hosts. We compared the output of a model in 360 

which, if an individual is surveyed, the probability of detection is constant at each time 361 

during the infectious period (the constant symptoms model) to the equivalent predictions 362 

from a model in which the probability of detection increases throughout infection (the 363 

variable symptoms model). We found that both these models can be fitted closely to 364 

data from Ebola epidemics (Figs 3B and 3E). However, when the level of surveillance in 365 

the models is increased, we found that the more epidemiologically realistic variable 366 
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symptoms model predicted a smaller number of cases (e.g. Figs 3C and 3F). Thus, it 367 

might be important to use the more realistic model to assess the quantitative effects of 368 

interventions aimed at reducing the impacts of Ebola epidemics. 369 

 370 

Variations in symptoms between different stages of infection, as well as the signature of 371 

such variable symptoms in those types of data that are collected during an epidemic, 372 

have to date received little attention. Until now, the impact of variable symptoms on 373 

predictions of models used for testing Ebola interventions has never been rigorously 374 

assessed. However, our approach of splitting the infectious and symptomatic period into 375 

different compartments was inspired by the so-called “method of stages” [18,26], a 376 

technique most often used to model gamma distributed epidemiological periods 377 

[11,27,28]. Within that framework, varying infectiousness – rather than symptoms – over 378 

the course of infection has been considered previously. For example, Cunniffe et al. [19] 379 

consider a model of plant disease epidemics in which the rate of sporulation (production 380 

of viable spores by each infected host) is a function of the time since infection, and 381 

implement this in an SEIR model by splitting the E and I classes into compartments and 382 

assigning different infection rates to hosts in the different I classes. A similar modelling 383 

framework could be adopted in our work, using a large number of compartments so that 384 

the level of symptoms is represented by a continuous curve (rather than being at 385 

constant levels within the different stages of infection). However, we do not pursue this 386 

here, since discrete changes in symptom expression in each symptomatic host are 387 

sufficient to make our underlying point that accurate forecasts of the effects of Ebola 388 

interventions may require models that account for variations in symptoms. 389 

 390 

To conduct our analyses, we sought to develop a simple model in which the level of 391 

symptoms increases during infection, and to compare the results from this model to 392 

those from the analogous model in which there is a constant level of symptoms during 393 

infection. Practical use of either model during an Ebola epidemic would require 394 

adjustment for the particular epidemic under consideration. For example, transmission 395 

in different settings could be included in a single model, such as spread in hospitals, 396 

community care centres, at funerals or in the wider community [3,4]. We modelled 397 
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detection and isolation of symptomatic hosts here, but other interventions such as 398 

vaccination could be modelled explicitly [29]. If an Ebola vaccine is not perfectly 399 

effective, as has been suggested for the vaccine used in the ongoing Ebola epidemic 400 

[30], the possibility that vaccination might mask symptoms while not completely 401 

stopping infectiousness could be included in our approach. A model that includes spatial 402 

spread of the pathogen or transmission through social contact networks might be 403 

required to replicate observed data [31,32], or different geographical areas could be 404 

considered separately [2,4].  To demonstrate the principle that variable symptoms can 405 

affect predictions of the effects of interventions, we assumed that all infected individuals 406 

pass through three stages of an Ebola infection (from non-specific symptoms, to a 407 

gastrointestinal phase and then to a deterioration phase), whereas in reality some hosts 408 

might recover rather than passing to the deterioration phase [14]. At the cost of an 409 

additional parameter to be estimated, it would be straightforward to include this in a 410 

compartmental epidemiological model (see preliminary analysis in Supplementary 411 

Material and Fig S11, in which some hosts recover rather than passing to the final stage 412 

of infection). We also modelled surveillance in a simple fashion, by assuming that hosts 413 

are surveyed on average at periodic intervals and that there is a particular probability of 414 

detection whenever a host is surveyed. For forecasting, it would be necessary to 415 

consider the wide range of different surveillance approaches used in practice including 416 

contact tracing from known cases [33] and rural village visitations to detect cases in 417 

locations where access to healthcare is limited [34], as well as disruptions to 418 

surveillance caused by factors including armed conflict [35]. 419 

 420 

We parameterised our models using the simplest possible approach – namely fitting the 421 

numbers of detected or removed individuals in the relevant classes of the models to 422 

data on the cumulative numbers of symptomatic cases using least squares estimation. 423 

We did not quantify the uncertainty in estimates of the values of model parameters, 424 

since the precise method of parameter inference was not central to our message. 425 

Instead, we sought to use the simplest possible fitting method. While this approach is 426 

used frequently during epidemics due to its ability to produce quick forecasts [5,36,37], 427 
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to properly quantify the uncertainty in forward projections it would be necessary to use 428 

non-cumulative incidence data and fit stochastic transmission models [38]. 429 

 430 

One advantage of the models that we used is that the surveillance level is assumed to 431 

impact on the epidemiological dynamics themselves, rather than simply the observed 432 

dynamics. This is not always the case in epidemiological models: a common method for 433 

accounting for under-reporting is simply to scale the incidence data up [39], thereby 434 

assuming a fixed percentage of infectious cases are detected with no impact on the 435 

numbers of cases generated by those individuals. Another approach is to assume that 436 

some individuals in the infectious class are unobserved [40]. In reality, detected hosts 437 

have a lower probability of transmitting the pathogen than undetected hosts due to the 438 

higher chance that those individuals are subject to interventions, and our models reflect 439 

this. 440 

  441 

Here, we considered a control strategy of detection and isolation under different 442 

surveillance levels. The effects of including variable symptoms in models of other 443 

intervention strategies should be tested, to see whether it is always necessary to 444 

account for changing levels of symptoms throughout infection. We note that including 445 

additional epidemiological detail in forecasting models does not always improve 446 

predictions [12]. Simple models are easier to parameterise and interpret than more 447 

complex models, and so modellers should consider carefully, in each study, whether or 448 

not including variable symptoms will change model predictions. We also note that, in 449 

theory, it might be possible to deploy commonly used epidemiological models with 450 

altered parameter values as a proxy for explicit consideration of variable symptoms [41]. 451 

For example, if the chance of detection in early infection is low, then early non-specific 452 

symptoms could be considered as part of the incubation period. In that case, care 453 

should be taken when “lifting” the values of model parameters directly from the clinical 454 

literature, to ensure that the definitions of parameters in the model match those in the 455 

original studies. 456 

 457 
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In summary, including different levels of symptoms at different stages of infection in 458 

epidemiological models can alter predictions of the effects of intervention strategies 459 

compared to assuming a fixed level of symptoms. If variations in symptoms during 460 

infection – and their impacts on detectability – can be well characterised by 461 

epidemiologists and then included in predictive tools by modellers, decision makers will 462 

be able to make more informed choices as to which particular intervention, or 463 

combination of interventions, to pursue. 464 

 465 
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 590 

 591 

 592 

Parameter Definition Default Value Justification 

N Population size 230,000 [42] 

β9 
Infection rate early 

in epidemic 

8.43	 ×	10WX day-1 

(constant 

symptoms model) 

or 8.1	 ×	10WX day-1 

(variable symptoms 

model) 

Fitted to data 

𝑡𝑎𝑦β* 
Infection rate late in 

epidemic 

3.68	 ×	10WX day-1  

(constant 

symptoms model) 

or 3.59	 ×	10WX  

day-1 (variable 

symptoms model) 

Fitted to data 

𝑇 
Infection rate switch 

time 

25th October 2018 

(constant 

symptoms model) 

or 24th October 

2018 (variable 

symptoms model) 

Fitted to data 
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1/γ 
Latent/incubation 

period 
7 days [4] 

1/µ Infectious period 9.8 days [4] 

𝑝* 

Detection 

probability in early 

infection 

0.6 (constant 

symptoms model) 

or 0.1 (variable 

symptoms model) 

Assumption 

(for analyses with 

different values, 

see Supplementary 

Material) 

𝑝, 

Detection 

probability in mid 

infection 

0.6 (constant 

symptoms model) 

or 0.8 (variable 

symptoms model) 

Assumption 

(for analyses with 

different values, 

see Supplementary 

Material) 

𝑝- 

Detection 

probability in late 

infection 

0.6 (constant 

symptoms model) 

or 0.9 (variable 

symptoms model) 

Assumption 

(for analyses with 

different values, 

see Supplementary 

Material) 

∆ 
Sampling 

frequency 

21 days (weak 

surveillance) or 14 

days (intensified 

surveillance) 

Assumption 

(for analyses with 

different values, 

see Supplementary 

Material) 

𝛿* 

Detection/isolation 

rate in early 

infection 

4.08 × 10W,	day-1 

(constant 

symptoms model) 

or 5.01 × 10W-	day-1  

(variable symptoms 

model) 

Calculated using 

values of 	

𝑝* and ∆ (see 

Methods) 
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𝛿, 
Detection/isolation 

rate in mid infection 

4.08 × 10W,	day-1 

(constant 

symptoms model) 

or 6.35 × 10W,	day-1  

(variable symptoms 

model) 

Calculated using 

values of 	

𝑝, and ∆ (see 

Methods) 

𝛿- 
Detection/isolation 

rate in late infection 

4.08 × 10W,	day-1 

(constant 

symptoms model) 

or 7.79 × 10W,	day-1  

(variable symptoms 

model) 

Calculated using 

values of 	

𝑝- and ∆ (see 

Methods) 

𝑇9 
Start date of 

epidemic 

25th June 2018 

(constant 

symptoms model 

and variable 

symptoms model) 

Fitted to data 

Table 1. Default parameter values used in our analysis of data from the ongoing 593 

Democratic Republic of Congo epidemic. 594 

 595 

 596 

Parameter Definition Default Value Justification 

N Population size 4,500,000 
2015 estimate 

obtained from [43] 

β9 
Infection rate early 

in epidemic 

4.54	 ×	10W` day-1 

(constant 

symptoms model) 

or 4.33	 ×	10W` day-

1 (variable 

symptoms model) 

Fitted to data 
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β* 
Infection rate late in 

epidemic 

1.89	 ×	10W` day-1  

(constant 

symptoms model) 

or 1.81	 ×	10W`  

day-1 (variable 

symptoms model) 

Fitted to data 

𝑇 
Infection rate switch 

time 

21st September 

2014 (constant 

symptoms model 

and variable 

symptoms model)  

Fitted to data 

1/γ 
Latent/incubation 

period 
7 days [4] 

1/µ Infectious period 9.8 days [4] 

𝑝* 

Detection 

probability in early 

infection 

0.6 (constant 

symptoms model) 

or 0.1 (variable 

symptoms model) 

Assumption 

(for analyses with 

different values, 

see Supplementary 

Material) 

𝑝, 

Detection 

probability in mid 

infection 

0.6 (constant 

symptoms model) 

or 0.8 (variable 

symptoms model) 

Assumption 

(for analyses with 

different values, 

see Supplementary 

Material) 

𝑝- 

Detection 

probability in late 

infection 

0.6 (constant 

symptoms model) 

or 0.9 (variable 

symptoms model) 

Assumption 

(for analyses with 

different values, 

see Supplementary 

Material) 

∆ 
Sampling 

frequency 

21 days (weak 

surveillance) or 14 
Assumption 
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days (intensified 

surveillance) 

(for analyses with 

different values, 

see Supplementary 

Material) 

𝛿* 

Detection/isolation 

rate in early 

infection 

4.08 × 10W,	day-1 

(constant 

symptoms model) 

or 5.01 × 10W-	day-1  

(variable symptoms 

model) 

Calculated using 

values of 	

𝑝* and ∆ (see 

Methods) 

𝛿, 
Detection/isolation 

rate in mid infection 

4.08 × 10W,	day-1 

(constant 

symptoms model) 

or 6.35 × 10W,	day-1  

(variable symptoms 

model) 

Calculated using 

values of 	

𝑝, and ∆ (see 

Methods) 

𝛿- 
Detection/isolation 

rate in late infection 

4.08 × 10W,	day-1 

(constant 

symptoms model) 

or 7.79 × 10W,	day-1  

(variable symptoms 

model) 

Calculated using 

values of 	

𝑝- and ∆ (see 

Methods) 

𝑇9 
Start date of 

epidemic 

21st March 2014 

(constant 

symptoms model) 

or	19th March 2014 

(variable symptoms 

model) 

Fitted to data 

Table 2. Default parameter values used in our analysis of data from the 2014-16 597 

epidemic in Liberia. 598 
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