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ABSTRACT 21 

 22 

Outlier scans, in which the genome is scanned for signatures of selection, have become a 23 

prominent tool in studies of local adaptation, and more recently studies of genetic 24 

convergence in natural populations. However, such methods have the potential to be 25 

confounded by features of demographic history, such as population size and migration, 26 

which are considerably varied across natural populations. In this study, we use forward-27 

simulations to investigate and illustrate how several measures of genetic differentiation 28 

commonly used in outlier scans (FST, DXY and Δπ) are influenced by demographic variation 29 

across multiple sampling generations. In a factorial design with 16 treatments, we 30 

manipulate the presence/absence of founding bottlenecks (N of founding individuals), 31 

protracted bottlenecks (proportional size of diverging population) and migration rate 32 

between two populations with ancestral and derived phenotypic optima. Our results 33 

illustrate known constraints of individual measures associated with reduced population size 34 

and a lack of migration; but notably we demonstrate how relationships between measures 35 

are similarly dependent on demography. We find that false-positive signals of convergent 36 

evolution (the same simulated outliers detected in independent treatments) are attainable 37 

as a product of similar demographic treatment, and that outliers across different measures 38 

(particularly FST and DXY) can occur with little influence of selection.  Taken together, we 39 

show how underappreciated, yet quantifiable measures of demographic history can 40 

influence commonly employed methods for detecting selection. 41 

 42 

INTRODUCTION 43 

Studies assessing adaptation and evolution across the genome are increasing in popularity 44 

with the availability of modern sequencing technologies. These studies often centre around 45 
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 4   
 

quantifying patterns of variation in genome-wide SNPs, which can be used to highlight 46 

regions or genes having experienced selection relative to the neutral backdrop of the rest of 47 

the genome. These analyses, which we refer to here as outlier scans, have become a 48 

common tool in population genetics and have seen great success across diverse, natural 49 

systems in identifying candidate genes associated with the evolution of a range of adaptive 50 

traits (reviewed recently by (Ahrens et al. 2018)). More recently, the method of overlapping 51 

outlier scans across independent lineages has been employed to test whether the same 52 

regions are involved in independent adaptation events (i.e. genetic convergent evolution) 53 

(reviewed by (Fraser and Whiting 2019)). This study seeks to investigate how different 54 

outlier scan methods are influenced by demographic variation in natural populations, and 55 

how this may lead to overlapping false-positives. 56 

 57 

Recent discussions have highlighted the propensity of outlier scans to yield false-positives, 58 

given that outliers caused by heterogeneous genomic landscapes are commonplace 59 

irrespective of selection (Ellegren and Wolf 2017). For example, background selection (BGS), 60 

whereby linkage between neutral and deleterious variants reduces local diversity (B. 61 

Charlesworth, Morgan, and Charlesworth 1993; Bank et al. 2014; Burri 2017), has been 62 

invoked to offer alternative explanations for patterns at first attributed to directional 63 

selection (Cruickshank and Hahn 2014). Furthermore, the influence of neutral processes 64 

such as genetic drift (B. Charlesworth 2009) can similarly produce elevated genetic 65 

divergence and false-positive signatures of selection.  66 

 67 

The strength of these processes is dependent on demography. For example, the influence of 68 

neutral processes and BGS should be more pronounced in smaller populations (low Ne) (D. 69 
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Charlesworth, Charlesworth, and Morgan 1995; Cutter and Payseur 2013; B. Charlesworth 70 

2009; Yeaman and Otto 2011); as has been demonstrated in humans (Torres, Szpiech, and 71 

Hernandez 2018) and Drosophila (Sella et al. 2009; B. Charlesworth 1996). This relationship, 72 

however, may not be simply linear, with additional simulation evidence suggesting the 73 

effects of BGS are strongest at intermediate-low Ne, and weaker at very low or high Ne (Zeng 74 

2013).  75 

 76 

Lack of connectivity among populations may also elevate measures of genetic 77 

differentiation, if a large global population is composed of smaller, isolated, sub-divided 78 

populations that each experience the effects of reduced Ne (B. Charlesworth, Nordborg, and 79 

Charlesworth 1997; Hoban et al. 2016). In an attempt to mitigate the likelihood of false-80 

positives, some have advocated using  multiple measures of population differentiation and 81 

divergence to identify regions of the genome likely to be under selection (B. Charlesworth 82 

1998; Cruickshank and Hahn 2014). However, how these measures are correlated with each 83 

other, and with selection under different demographic scenarios, has not been explored.  84 

 85 

A diverse array of measures of genetic differentiation and divergence have been employed 86 

for outlier scans, but here we focus on two of the most common measures of relative 87 

differentiation (FST and changes in nucleotide diversity [Δπ]) and a measure of absolute 88 

divergence (DXY). The most commonly used measure in outlier scans is the fixation-index FST 89 

(Weir and Cockerham 1984; Hudson, Slatkin, and Maddison 1992), which measures the 90 

relative amount of within- and between-population variance. This measure is therefore 91 

maximised when genomic regions exhibit the lowest within- and highest between-92 

population variance. FST outliers at the right-tail of the distribution are considered 93 
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 6   
 

candidates for adaptation because they reflect regions with large differences in allele 94 

frequency or high substitution rate (large between-population variance) and/or low 95 

nucleotide variation (low within-population variance) relative to the rest of the genome. 96 

Changes in nucleotide diversity (Δπ) are another indicator of adaptation, as selection on a 97 

beneficial allele limits variation within a population resulting in selective sweeps (Smith and 98 

Haigh 1974).  Comparisons of the ratio of π between diverging populations reveal regions 99 

under selection, as local π is reduced in one population in comparison to the other. Whilst 100 

similar to FST, Δπ does not discriminate between which copy of a polymorphism is fixed, 101 

such that a substitution between populations is equivalent to a common non-polymorphic 102 

site. Δπ outliers therefore represent regions of the genome with reduced π in either 103 

population relative to the rest of the genome. As a measure of absolute genetic divergence, 104 

DXY (Nei 1987) does not consider the relative frequencies of polymorphisms within 105 

populations (B. Charlesworth 1998; Cruickshank and Hahn 2014). DXY can be quantified as 106 

the average number of pairwise differences between sequence comparisons between two 107 

populations. This measure is therefore influenced by ancestral π and the substitution rate, 108 

so DXY outliers highlight regions that are highly variable ancestrally, or in either population 109 

(large π), or exhibit many substitutions and thus increased sequence divergence.  110 

 111 

Because each measure of differentiation/divergence (hereafter referred to collectively as 112 

measures of divergence) quantifies genetic variation between populations in a slightly 113 

different way, each has a unique relationship with demography. Whilst we can predict how 114 

individual measures are influenced by demography, and subsequently neutral processes, we 115 

know little about how different relationships between measures of divergence and 116 
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 7   
 

demography affect their combined usage. We expect then that the utility of using multiple 117 

measures of divergence to detect selection may vary with demography.  118 

 119 

This complex interplay between divergence measures and demography may be further 120 

exacerbated in studies that compare scans from multiple populations to identify convergent 121 

genomic evolution. Here, researchers use measures of population divergence across 122 

independent pairs of evolutionary replicates with outlier loci compared across results. This 123 

strategy has been employed extensively across diverse taxa, including: birds (Cooper and Uy 124 

2017), fish (Hohenlohe et al. 2010; Jones, Chan, et al. 2012; Rougemont et al. 2017; Fraser 125 

et al. 2015; Reid et al. 2016; Meier et al. 2018), insects (Soria-Carrasco et al. 2014; Van 126 

Belleghem et al. 2018), mammals (Waterhouse et al. 2018), molluscs (Ravinet et al. 2016; 127 

Westram et al. 2014) and plants (Trucchi et al. 2017; Roda et al. 2013). For the sake of 128 

consistency, it is common to infer outlier loci within each replicate pair through a common 129 

method, but if replicates differ in their demographic histories then the applicability/power 130 

of that common method will also vary accordingly. This begs the question, can demographic 131 

variation  among replicates alone explain signals of, or lack of, convergence? 132 

 133 

Here, we used forward-simulations to investigate the effects of different demographic 134 

histories on the relationships between measures of divergence with selection. We varied 135 

demography through manipulating the number of founding individuals (founding 136 

bottlenecks), the population size of the diverging population (protracted bottlenecks) and 137 

the presence/absence of migration. We simulated the effects of selection on 25kb windows, 138 

each with a gene designed from features taken from the guppy (Poecilia reticulata) genome 139 

assembly, a prominent model system for studies of convergent evolution (Fraser et al. 2015; 140 
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Reznick and Endler 1982). Moreover, we measured genetic divergence at 12 set time points 141 

through FST, DXY and Δπ between diverging populations to examine temporal relationships. 142 

Our aim was to investigate the significance of demographic history when employing outlier 143 

scans and highlight demographic scenarios that are susceptible to false-positives. We also 144 

aimed to test the occurrence of common outliers across measures, and whether 145 

overlapping outliers are consistently good indicators of selection. We sought to answer the 146 

following questions: 1) How do demographic factors influence measures of divergence 147 

through time? 2) How well do measures of divergence identify regions of the genome under 148 

strong selection through time and across demographic factors? 3) How are the different 149 

measures of divergence related through time and across demographic factors? 4) Where do 150 

we detect the strongest signals of convergence (i.e. overlapping outliers using single or 151 

multiple measures), and are these consistent with selection?  152 

 153 

METHODS 154 

The forward-simulation software SLiM 3.0 (Haller and Messer 2019) was used to simulate 155 

population divergence under contrasting demographic treatments in a fully factorial design 156 

between a phenotypically-ancestral population (AP) of N = 1000 and phenotypically-derived 157 

population (DP), with a mutation rate based on the guppy genome (4.89e-8) (Künstner et al. 158 

2016) and scaled 100-fold over three raw mutation rates (4.89e-5, 4.89e-6, 4.89e-7) to ensure 159 

robustness of results across different, more realistic values of θ (4Neμ). These scaled 160 

mutation rates therefore represent effective population sizes of 10-, 100-, and 1000-times 161 

greater than the number of individuals in our simulations (N = 1000), in line with estimates 162 

from other species (B. Charlesworth 2009). The main text reflects results for the 163 

intermediate mutation rate 4.89e-6, with others presented in supplementary figures. SLiM 164 
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 9   
 

employs a classic Wright-Fisher model to simulate populations, in which a population of 165 

diploid hermaphrodites proceeds through generations such that an individual’s contribution 166 

towards the next generation is proportional to its relative fitness.  167 

 168 

Demographic treatments included reducing DP size relative to the AP size (N = 1000) (0.01, 169 

0.1, 0.5, 1.0), migration as a proportion of individuals exchanged between populations (0.0, 170 

0.002) and founding bottlenecks as the number of individuals sampled from the burn-in 171 

population to construct DP genomes (100, 1000). For example, a demographic history with 172 

founding bottleneck = 100 individuals, DP size = 0.01, and migration = 0.002 would 173 

represent the following scenario: 1) At generation 1, following a burn-in period of 10,000 174 

generations to reach mutation-selection balance, populations split as 100 genomes are 175 

sampled from the burn-in population of 1000 to form DP, whilst AP is formed by sampling 176 

all 1000 burn-in genomes; 2) At the next generation (and for the remainder of the 177 

simulation), DP size reflects the protracted bottleneck treatment, in this case 10 (0.01 of 178 

1000); 3) AP and DP experience migration in both directions for the remainder of the 179 

simulation. Thus, each of our treatments can be thought of as a manipulation of the 180 

following: Founding bottlenecks limit the amount of variation within the burn-in population 181 

that is available to found DP; Protracted bottlenecks limit the size of DP, reducing 182 

mutational input and moderating the strength of neutral evolution and efficacy of selection; 183 

and migration dictates the presence of migration between AP and DP (Figure 1). The total N 184 

of individuals (AP + DP) within simulations varies between 1010 and 2000 depending on DP 185 

size parameter, however this potential expansion does not impact our results (Supporting 186 

Information). 187 

 188 
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 10   
 

Combining these treatment levels in a fully factorial experimental design generated a total 189 

of 16 different, independent demographic histories that all 25kb gene windows 190 

experienced. This factorial design allows us to examine the relative influence of founding 191 

bottlenecks, protracted bottlenecks and migration, but our study is limited to these features 192 

of demographic history and does not extend to population expansions, more complex cases 193 

of migration, or demographic fluctuations through time. In some cases, the influence of 194 

protracted bottlenecks renders the effects of founding bottlenecks unnecessary. However, 195 

when DP size is greater than 100, the inclusion of the founding bottleneck allows us to 196 

compare populations with equivalent mutational input but different standing variation. 197 

 198 

SLiM runs were performed independently over 25kb genomic windows with a central gene 199 

that varied in length and exon content; with exon number, lengths, and intron lengths 200 

drawn at random from the guppy genome gene annotation file (gff). Recombination rate 201 

was set at a constant of 1e-8 across all windows. 202 

 203 

Selection (S) in our model was represented as the fitness consequences incurred through 204 

distance from a phenotypic optimum in a one-dimensional fitness landscape. Selection in 205 

Wright-Fisher models is soft, in that low fitness individuals are not removed but have a 206 

lower likelihood of contributing to the next generation. Phenotypic optima were maintained 207 

over the course of simulations; thus, selection was constant throughout. This setup can be 208 

considered as analogous to two environments with contrasting optimum trait values for a 209 

single trait. Intensity of selection was manipulated by modifying the standard deviation (Sσ) 210 

of the normal distribution curve from which the density distribution was calculated through 211 

the “dnorm” function in SLiM. Values for S were drawn from a continuous distribution 212 
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 11   
 

between -1.00 and 1.00 and transformed such that Sσ = 10-S, yielding values between 0.1 213 

and 10, with 0.1 representing the steepest fitness peak (S = 1) and 10 the shallowest (S = -1) 214 

(Figure 1A). Phenotypes were calculated per individual, per gene, as the additive phenotypic 215 

effects of exonic non-synonymous mutations, which appeared at a rate of 7/3 relative to 216 

synonymous mutations (assuming that most mutations in the third base of a codon do not 217 

alter the amino acid). Additive genetic variance was assessed due to its prevalence in 218 

complex traits in nature (Hill, Goddard, and Visscher 2008). Effect sizes for mutations with 219 

phenotypic effects were drawn from a Gaussian distribution with mean = 0 and σ = 1. The 220 

remaining synonymous exon mutations, and mutations in introns and outside of genes, had 221 

no effect on fitness.  222 

 223 

 224 

 225 
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Figure 1: Experimental design for simulations. A) Examples of selection treatments experienced by 226 
genes from across the range, illustrated as the relationship between relative fitness of an individual 227 
and its phenotype. Each facet represents a different fitness landscape modified through editing the 228 
standard deviation of the normal distribution of fitness consequences in DP (blue, dashed). Facet 229 
labels constitute S, which were transformed as 10-S to give fitness function standard deviations (Sσ) 230 
The x-axes represent phenotype as calculated through non-synonymous mutations and the y-axes 231 
represent relative fitness of individuals. The ancestral phenotype of AP (red, solid) is the same in all 232 
treatments (mean = 0, σ = 1), whilst DPs have a diverged phenotypic optimum (mean = 10, σ = Sσ). B) 233 
Distribution of S values applied to genes (1 per gene) C) Demographic representation of treatment 234 
factors. D) Representation of simulation timeline for treatments, illustrating that all treatments 235 
share an ancestral burn-in population before splitting into 16 replicated “AP” (solid) and “DP ” 236 
(dotted) population pairs. Red, dashed lines denote sampling generations at which FST, DXY and Δπ 237 
are calculated and averaged across the preceding 20 generations. The purpose of this averaging was 238 
to achieve a general sense of population differentiation at sampling points, such that values 239 
represent stable patterns rather than stochastic generation to generation variation.  240 
 241 

For each simulation, populations were seeded with 1000 individuals and allowed to proceed 242 

for a burn-in period of 5*2N (10,000) generations to reach mutation-selection-migration 243 

balance. During this period, burn-in populations evolved towards the ancestral phenotypic 244 

optimum of 0, defined as a normal distribution with mean = 0 and σ = 1.0 (Figure 1A). Burn-245 

in populations were then subjected to each demographic treatment to simulate the 246 

founding of multiple populations from a shared ancestral state. During this ‘divergence 247 

period’, AP continued to evolve around the ancestral optimum of 0, whilst DP’s phenotypic 248 

optimum was centred around 10, with fitness consequences defined according to Sσ. 249 

Individuals also experienced fitness costs associated with phenotypic proximity to other 250 

individuals within the population as a proxy for competition and to ensure a realistic 251 

amount of phenotypic variation persisted within populations. Fitness costs due to 252 

competitive proximity were scaled to a maximum value of 1 with σ = 0.4 and occurred 253 

reciprocally between local individuals with phenotypes with a difference of ≤ 1.2 (3 * 0.4). 254 

 255 

 256 

 257 
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Table 1: Simulation parameters   
Variable Value Description 

AP 0 Ancestral phenotypic optimum 

AP-Sσ 1 AP Selection (σ of fitness around phenotypic optimum, after transforming) 

APN 1000 AP population size 

DP 10 Derived phenotypic optimum 

DP-Sσ 0.1-10.00 DP Selection (σ of fitness around phenotypic optimum, after transforming) 

DPN (10, 100, 500, 1000) DP population size 

BNFounding (100, 1000) Founding bottleneck (N burn-in individual genomes sampled to populate DP) 

m (0, 0.002) Migration (Percentage gene flow in both directions) 

μ 4.89e-6 (4.89e-5, 4.89e-7) Mutation rate (bp-1) (additional mutation rates with 10-fold increase and reduction) 

μσ 1.00 Mutation effect size (σ of distribution of effect sizes) 

r 1.00e-8 Recombination rate (bp-1) 

Cmax 1.00 Maximum fitness cost through competition 

Cσ 0.40 Local phenotypic competition (σ of fitness reductions between local individuals) 

CDist 1.20 Maximum phenotypic distance between competitive individuals 

 258 

 259 

Each gene was then run across all demographic treatment levels in parallel. Simulations 260 

were sampled at 100, 500, 1000, and then every 1000 generations up to 10,000 (Figure 1C). 261 

FST was calculated across the window as one minus the proportion of subpopulation 262 

heterozygosity (HS) relative to total heterozygosity (HT) (according to Hudson, Slatkin and 263 

Maddison (1992)). DXY was calculated as the sum of nucleotide differences (dij) between the 264 

ith haplotype from AP and the jth haplotype from DP (according to Nei (1987)). Mean 265 

heterozygosity (π) for each population was calculated as a single measure across the 25kb 266 

window. At each sampling point, each measure was calculated and averaged across the 267 

preceding 20 generations. Averaging was performed such that measures would not be 268 

dramatically biased by events occurring within individual generations. The change in mean 269 

heterozygosity between AP and DP (Δπ) was calculated as the log10-transformed ratio of πAP 270 

to πDP, such that reduced diversity in the DP population increases the value of Δπ. Statistics 271 

were calculated over all monomorphic and polymorphic sites of 25kb windows. This has 272 
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been designed to replicate genome scans that use sliding-approaches, with each 25kb 273 

region representing an independent window. 274 

 275 

𝐹𝑆𝑇 = 1 −
𝐻𝑆

𝐻𝑇
 276 

 277 

𝐷𝑋𝑌 =  ∑ 𝐴𝑃𝑖𝐷𝑃𝑗𝑑𝑖𝑗
𝑖𝑗

  278 

 279 

Δ𝜋 = log10

𝜋𝐴𝑃

𝜋𝐷𝑃
 280 

 281 

In total, 100 unique 25kb windows were simulated across 16 demographic treatments 282 

across three mutation rates, with results for the intermediate mutation rate presented in 283 

the main text. To account for stochastic noise in the simulation, each 25kb window was 284 

iterated 20 times for each demographic treatment. Simulations with divergent AP and DP 285 

phenotypes are referred to as “PhenoDiv” simulations. Additional simulations were 286 

performed in which both populations shared the ancestral phenotype (“PhenoNull” 287 

simulations) and in which all sites were neutral with no selection imposed (“Neutral” 288 

simulations). The former of these was used to assess whether patterns associated with 289 

selection were driven by phenotypic divergence or variable stabilising selection within 290 

populations, whilst the latter was used to disentangle effects of selection and neutral 291 

processes such as drift. A common library of 100 25kb windows were used for all 292 

simulations. Outliers for simulations were taken as upper 95% quantiles. 293 

 294 
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All data analysis was performed in R (3.5) (R Core Team 2016). To assess relationships 295 

between divergence measures and selection, data were grouped by sampling generation 296 

within each treatment group (N = 16) and Pearson’s correlation coefficients were calculated 297 

between measures of divergence and selection (S) at each sampling point for all windows (N 298 

= 100). Correlation coefficients were then grouped within specific treatment levels (e.g. DP 299 

size = 0.5, or migration = 0.002) and averaged to give a coefficient reflecting each specific 300 

treatment level. These correlation coefficients were calculated for each iteration (N = 20) 301 

and averaged over to give final values. 302 

 303 

To assess the effects of treatments on detecting outliers, we compared distributions and 304 

95% cut-offs within each treatment for each measure of divergence for PhenoDiv, PhenoNull, 305 

and Neutral simulations. We limited this analysis to early (100, 500), intermediate (3000) 306 

and late (10,000) sampling generations. Here, data from all iterations of each gene were 307 

pooled. To calculate false positive (FPR) and false negative rates (FNR), we pooled Neutral 308 

simulation data within treatment groups (20 iterations of 100 genes, N = 2000), removed a 309 

random set of iterations (N = 100), and replaced it with an assortment of random iterations 310 

of each gene (e.g. Gene 1/Iteration 2, Gene 2/Iteration 14... Gene 100/Iteration 4) from 311 

PhenoDiv data. We calculated FPR as the proportion of data above the 95% quantile for each 312 

measure of divergence/differentiation that came from neutral simulations. For single 313 

measures, FPR = FNR as 5% of data in each permutation comes from PhenoDiv. We combined 314 

outlier sets across all combinations of FST, DXY and Δπ and examined neutral proportions 315 

within outlier sets to determine FPR. FNR for combined outlier sets corresponded to the 316 

proportion of PhenoDiv data not recovered in the combined outlier sets. These permutations 317 

were performed 100 times with results averaged. Proportional overlap of outlier sets was 318 
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also calculated and compared across demographic treatment groups to examine 319 

convergence of results across treatments. Overlap was calculated within each permutation, 320 

averaged over, and visualised using heatmaps with hierarchical clustering of axes. 321 

 322 

To examine how simulated gene features influenced patterns of genetic divergence, we 323 

used a linear mixed modelling (LMM) approach with gene ID and treatment group as 324 

random factors. Gene features modelled as independent factors were: number of exons 325 

(Exon N), gene size, the proportion of gene that is coding (selection target %), selection 326 

applied to each gene (S), and the generation at which the optimum phenotype was reached 327 

(Pheno Gen). 328 

 329 

RESULTS  330 

Demography modifies measures of divergence 331 

Founding bottlenecks, simulated by reducing the number of possible founding genomes to a 332 

random 10% of the ancestral population, had little measurable effect on FST , DXY or Δπ, 333 

producing minimal variance between treatments over all sampling points (Figure 2A).  334 

 335 

Protracted bottlenecks, simulated by modifying the stable number of individuals within DP, 336 

had pronounced and variable effects on all measures. FST increased with reductions in DP 337 

size. This effect was generally consistent through time, although variance between 338 

treatments increased gradually through time (Figure 2B). A similar effect was observed for 339 

Δπ; however, this measure was particularly susceptible to inflation under the most extreme 340 

reductions in DP size, with substantially more elevated values observed between DP size 341 

proportions of 0.01 and 0.1 compared with 0.1 and either 0.5 or 1.0. Whilst this pattern was 342 
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broadly consistent through sampling points, variance among the different DP sizes for Δπ 343 

was most pronounced at the initial (100 generations) and final sampling points (10,000 344 

generations). Such observations are unsurprising given that both FST and Δπ increase with 345 

processes that reduce within-population genetic variance. Except for the most extreme 346 

reduction in DP size, DXY was generally robust to protracted bottlenecks. Following this, in 347 

contrast to FST and Δπ, DXY decreased when DP sizes were reduced (Figure 2B).  348 

 349 

The inclusion of migration reduced absolute values of all measures of divergence. For FST 350 

and DXY, variance between migration treatments increased across the simulation, however 351 

DXY was generally more consistent across migration treatments. Δπ was also reduced in the 352 

presence of migration, although the effect of migration on Δπ was generally consistent 353 

across all generations and did not increase through time, as was the case for FST and DXY. 354 

 355 

Whilst FST and DXY increased generally over time, Δπ peaked around generation 500 and 356 

declined thereafter. This peak corresponded to the median generation that DP replicates 357 

reached their optimum phenotype (median across all data = 519), suggesting this peak 358 

reflects selective sweeps. The majority of these patterns were apparent in the PhenoNull 359 

(Figure S1) and neutral (Figure S2) simulations, however divergence for all measures was 360 

reduced and ultimately negligible by the removal of divergent phenotypes when migration 361 

was present. 362 
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  363 

 364 

Figure 2: Effects of demographic treatments on measures of genetic divergence across all sampling 365 
generations. Point colour and shape denote treatment groups for founding bottlenecks (A), 366 
protracted bottlenecks (B) and migration (C). Each point represents values of divergence averaged 367 
across all genes within individual treatments groups, averaged within treatment levels, and averaged 368 
over 20 iterations. 369 
 370 
 371 

Demography moderates the association between measures of divergence and selection 372 

Again, founding bottlenecks had a minimal effect on the correlations observed between 373 

strength of selection and measures of divergence with minimal variance observed between 374 

bottleneck treatments in all comparisons (Figure 3A). 375 

 376 

Protracted bottlenecks had substantial effects on relative (FST and Δπ) measures and 377 

marginal effects on absolute (DXY) measures of divergence (Figure 3B). Relative measures 378 

were less correlated with selection when DP size was reduced (0.01 or 0.1)  than with 379 

minimal (0.5) or no (1.0) reductions in DP size, which were generally similar. For FST, the 380 
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variance in correlation coefficients between DP size treatments was generally stable across 381 

time, whereas variance between treatments for Δπ peaked at 500 generations. For DXY, 382 

correlations with selection were broadly consistent across DP size reductions up until 10,000 383 

generations, in which associations with selection were reduced by the strongest protracted 384 

bottlenecks, but generally robust (Figure 3B). 385 

 386 

Expectedly, the absence of migration largely precluded the ability of measures of divergence 387 

to predict strength of selection, with notable variance observed between no migration (0.0) 388 

and minimal migration (0.002) treatments emerging rapidly for all divergence measures 389 

(Figure 3C). Both FST and DXY variance between migration treatments was greatest at the 390 

10,000 generations sampling point, whereas similar variance was observed between 391 

migration treatments for Δπ across simulations. This observation again highlights the 392 

significance of temporal differences between measures. Interestingly, correlations between 393 

Δπ and selection persisted, albeit weakly, in the absence of migration, which was not the 394 

case for FST and DXY. 395 

 396 

Protracted bottlenecks had a minimal effect on how measures of divergence correlated with 397 

selection in PhenoNull data (Figure S5). Both FST and DXY became negatively correlated with 398 

selection over time without divergent selection, likely due to stronger selection on common 399 

alleles shared between AP and DP. Negative correlations were stronger for DXY, consistent 400 

with reductions in DPπ with stronger selection. This suggests associations between selection 401 

and DXY in PhenoDiv simulations are likely more dependent on adaptive substitutions in order 402 

to overcome this effect. Δπ was generally positively associated with selection in PhenoNull 403 

simulations regardless of migration, but was slightly reduced when migration was absent. 404 
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 405 

  406 

Figure 3: Effects of demographic treatments on the relationship between selection and measures of 407 
genetic divergence across all sampling generations. Point colour and shape denote treatment groups 408 
for founding bottlenecks (A), protracted bottlenecks (B) and migration (C). Each point represents 409 
correlation coefficients calculated across all genes within individual treatments groups, averaged 410 
within treatment levels, and averaged over 20 iterations. 411 
 412 

 413 

By examining the correlation coefficients of all 16 unique demographic histories, we can 414 

investigate the combined effect of migration and protracted bottlenecks and directly 415 

compare effectiveness of individual measures across time (Figure 4). FST consistently 416 

outperforms DXY in terms of associating with selection under most demographic treatments, 417 

particularly when DP sizes are larger and migration is present. By 10,000 generations 418 

however, the relative dominance of FST appears to subside, with the trend through time 419 

suggesting a relative improvement in DXY in treatments with gene flow (Figure 4). Δπ is 420 

similarly more informative than DXY across sampling generations under most demographic 421 

treatments. Interestingly at sampling generation 10,000, protracted bottlenecks produce 422 
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the biggest bias towards Δπ (Figure 4). The resilience of Δπ under no-migration treatments 423 

is also apparent in FST - Δπ comparisons, such that at 3,000 generations Δπ is more 424 

informative than FST in the absence of migration. Consistent with its rapid response to 425 

sweeps around 500 generation, Δπ outperforms FST under most demographic scenarios in 426 

early generations.  By 10,000 generations, however, FST performs as well as Δπ without 427 

migration and outperforms Δπ with migration. 428 

 429 

 430 

Figure 4: Pairwise comparisons between the correlation coefficients of selection with FST, DXY and Δπ 431 
across four sampling points. Each data point represents a unique demographic treatment with 432 
points coloured according to DP population size and shaped according to migration level. Correlation 433 
1 refers to the first measure listed in the comparison and Correlation 2 to the second. The y=x line is 434 
plotted within each facet to illustrate biases towards one measure. Points below the line are biased 435 
towards Correlation 1, whilst points above the line are biased towards Correlation 2. Each point 436 
represents correlation coefficients calculated across all genes within individual treatments groups 437 
and averaged over 20 iterations. 438 
 439 
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 440 

Demography moderates the shape and tail end of divergence distributions 441 

By comparing distributions across simulations with divergent (PhenoDiv) and stabilising 442 

(PhenoNull) selection with neutral runs, we can examine the effect of demographic 443 

treatments on the ability of each measure of divergence to discriminate between them 444 

(Figure S11-13; Figure 5). There are few differences between distributions of FST for the 445 

three simulation types when migration is absent between AP and DP replicates, highlighting 446 

an increased likelihood of false-positives. The exceptions occur around 500 generations 447 

(Figure S12) when sweeps are most common, and towards the end of simulations. Following 448 

probable sweeps, PhenoDiv FST is slightly elevated, and towards the end of simulations 449 

PhenoDiv FST is marginally lower than PhenoNull FST, which is marginally lower than neutral FST 450 

(Figure 5). With migration, we see few differences between PhenoNull and neutral FST. 451 

PhenoDiv FST distributions however become more positive and flattened, according to 452 

variable selection, with the majority of PhenoDiv FST above the 95% quantiles of PhenoDiv and 453 

neutral FST by 10,000 generations (Figure 5). 454 

 455 

Similar patterns were observed for DXY distributions (Figure S14-17), with little to 456 

discriminate between in treatments without migration. However, without migration, neutral 457 

DXY was generally reduced relative to PhenoNull and PhenoDiv DXY. With gene flow, like FST, 458 

PhenoDiv DXY was readily distinguishable from PhenoNull and neutral distributions, but 459 

PhenoNull DXY was also generally more positive than neutral DXY. These patterns also emerged 460 

more slowly than for FST. In contrast, PhenoDiv Δπ (Figure S18-21) was elevated according to 461 

DP size, such that at 500 generations the majority of windows under divergent selection 462 

exhibited Δπ above neutral and PhenoNull 95% cut-offs for all treatments with DP size ≥ 0.5. 463 
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 464 

 465 

  466 

Figure 5: Distributions of FST under each of the 16 unique demographic treatments under three 467 
selection regimes: PhenoDiv (divergent selection), PhenoNull (stabilising selection) and Neutral, after 468 
10,000 generations. Upper 5% quantiles are highlighted for each distribution, with linetype 469 
corresponding to selection: Solid = Divergent, Dashed = Stabilising, Dotted = Neutral. Each 470 
distribution represents data pooled from 20 iterations of 100 gene windows (N = 2000). 471 
 472 

We quantified false-positive rates (FPR) by permuting over merged data comprised of 473 

randomly sampled 5% PhenoDiv windows and 95% neutral windows and observing the upper 474 

5% quantile (Table S1). By 100 generations, FST FPR ranged between 0.35 and 0.93, and was 475 

lower with increased DP size and lower in treatments without migration (Table S1). By 500 476 

generations (Table 2), FPR rates were lower with migration and higher without, but only for 477 

treatments with DP sizes of 0.5 and 1.0. FST FPR remained high (> 0.85) for all treatments 478 

with smaller DP sizes. By 3,000 generations, migration was the most important demographic 479 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 18, 2019. ; https://doi.org/10.1101/592105doi: bioRxiv preprint 

https://doi.org/10.1101/592105
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24   
 

factor for FST FPR. With migration, FPR ranged from 0.14 – 0.70, and decreased with 480 

increasing DP size. Without migration, FPR were high (0.93-0.97), in line with the random 481 

proportion of neutral (0.95) data. By the end of simulations, FST FPR was as low as 0.08, and 482 

was no greater than 0.26 with migration and DP size ≥ 0.1. Without migration, FPR was > 483 

0.97. 484 

 485 

Initial DXY FPR were generally high irrespective of demography, ranging between 0.81 and 486 

0.87. FPR were largely similar after 500 generations, but by 3,000 generations there was a 487 

distinction between treatments with (0.33 ≤ FPR ≤ 0.65) and without (0.87 ≤ FPR ≤ 0.90) 488 

migration. Interestingly, here FPR rates were lower (0.33 ≤ FPR ≤ 0.46) when DP were 489 

smaller (size = 0.01, 0.1) rather than larger (0.57 ≤ FPR ≤ 0.65). This pattern was also 490 

observed at the end of simulations, with FPR lower without migration (0.07 ≤ FPR ≤ 0.36) 491 

and lowest with DP size = 0.1. 492 

 493 

Δπ FPR rates were generally higher across all sampling generations, with FPR not falling 494 

below 0.35. There was a clear distinction based on DP size in earlier (100 and 500) sampling 495 

points, with FPR lower with larger DP size. However, at later sampling generations (3,000 496 

and 10,000), FPR were generally high (≥ 0.70) regardless of demography. 497 

 498 

Taken together, there are clear effects of DP size and migration on distributions of genetic 499 

variation and upper quantiles of interest. DP size appears initially most important in the first 500 

few hundred generations for FST and Δπ, but these effects are later swamped by the effect 501 

of migration for FST and are simply eroded for Δπ. DXY exhibits similar patterns to FST, but 502 

these develop after many more generations, and whilst gene flow increases the 503 
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informativeness of DXY for detecting divergent selection, as it does for FST, DXY and FST 504 

experience opposing effects of increases to DP size.505 
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 506 

Table 2: False-positive (FPR) and false-negative rates (FNR) calculated across all measures of divergence and their combined use. Estimates were calculated by 
combining 5% of data under divergent selection with 95% neutral data and taking upper 5% cut-offs. For single measures, outlier N is always 100 (5% of 2,000) 
and FNR = FPR. Data represent means calculated over 100 downsampled permutations. 

Generation   
Demographic 
Treatments   Single Measures   Combined Measures                   

     FST DXY Δπ  FST - DXY     FST - Δπ     DXY - Δπ     All 3     

    Migration  DP Size    FPR FPR FPR   Outlier N FPR FNR Outlier N FPR FNR Outlier N FPR FNR Outlier N FPR FNR 

500  0 0.01  0.89 0.87 0.96  67.30 0.88 0.92 13.64 0.94 0.99 35.26 0.95 0.98 13.64 0.94 0.99 

500   0.1  0.93 0.86 0.99  64.78 0.91 0.94 14.23 0.97 1.00 24.68 0.98 0.99 13.80 0.97 1.00 

500   0.5  0.76 0.83 0.62  52.37 0.76 0.87 30.88 0.54 0.86 16.72 0.58 0.93 16.63 0.58 0.93 

500   1  0.65 0.82 0.43  44.40 0.67 0.85 34.83 0.28 0.75 15.54 0.37 0.90 14.51 0.35 0.90 

500  0.002 0.01  0.92 0.76 0.97  64.81 0.90 0.93 39.14 0.94 0.98 37.16 0.94 0.98 32.55 0.93 0.98 

500   0.1  0.88 0.80 0.98  36.35 0.85 0.95 32.22 0.95 0.98 9.19 0.93 0.99 9.19 0.93 0.99 

500   0.5  0.49 0.84 0.52  25.47 0.57 0.89 51.96 0.28 0.63 9.78 0.41 0.94 9.78 0.41 0.94 

500   1  0.33 0.84 0.36  20.41 0.30 0.86 57.03 0.08 0.47 9.48 0.00 0.91 9.42 0.00 0.91 

                     

10000  0 0.01  0.97 0.89 0.93  60.27 0.97 0.98 0.00 0.00 1.00 5.55 0.85 0.99 0.00 0.00 1.00 

10000   0.1  0.99 0.88 0.99  60.02 0.98 0.99 0.00 0.00 1.00 5.09 0.96 1.00 0.00 0.00 1.00 

10000   0.5  0.98 0.88 0.99  56.39 0.98 0.99 0.99 0.95 1.00 2.01 0.98 1.00 0.99 0.95 1.00 

10000   1  0.98 0.88 0.97  64.80 0.98 0.99 4.86 0.99 1.00 7.04 0.96 1.00 4.86 0.99 1.00 

10000  0.002 0.01  0.65 0.34 0.84  62.76 0.46 0.66 38.95 0.67 0.87 29.95 0.55 0.86 28.85 0.57 0.87 

10000   0.1  0.26 0.07 0.98  78.70 0.06 0.26 12.71 0.85 0.98 4.75 0.63 0.98 4.75 0.63 0.98 

10000   0.5  0.13 0.14 0.92  81.99 0.01 0.19 9.62 0.20 0.92 7.38 0.00 0.93 7.38 0.00 0.93 

10000     1   0.09 0.19 0.90   80.70 0.03 0.22 10.29 0.00 0.90 9.75 0.00 0.90 9.75 0.00 0.90 

  507 
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 508 
Demography moderates relationships between measures of divergence 509 

Given FST, DXY and Δπ are all measures of population genetic divergence, there is an 510 

assumption that positive correlations should exist between them. We employed the same 511 

analysis as above for correlations with selection, but instead examined correlations between 512 

individual measures. Founding bottlenecks had minimal effects on the correlations observed 513 

between all measures of divergence (Figure 6A).  514 

 515 

Positive correlations between FST and DXY emerged rapidly irrespective of DP size, but 516 

smaller DP  sizes generally increased the correlation (Figure 6B), with variance between 517 

treatments generally decreasing over time. Similarly, FST and Δπ were generally positively 518 

correlated, however reductions in DP size reduced correlation coefficients. By 4,000 519 

generations, FST - Δπ correlations for DP sizes ≥ 0.1 stabilised, but correlations under 520 

extreme protracted bottlenecks continued to decline to a low of 0.08 (Figure 6B). DXY - Δπ 521 

correlations were generally weaker than other comparisons across the course of 522 

simulations, but were minimally affected by protracted bottlenecks. Interestingly, 523 

correlations with DXY and both FST and Δπ appear to peak for treatments with minimal 524 

population size reductions and without migration at 500-2,000 generations (Figure 6B), 525 

suggesting positive correlations with DXY are in part driven by the generation in which 526 

sweeps are taking are place. 527 

 528 

Migration induced substantial variance between correlations of divergence measures, with 529 

effects dependent on sampling point (Figure 6C). In the absence of migration, FST and DXY 530 
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were more strongly correlated for the first 6,000 generations than in treatments with gene 531 

flow. However, from here until 10,000 generations this pattern reversed and FST - DXY 532 

correlations increased with gene flow and deteriorated in allopatry. FST - Δπ correlations 533 

were strong initially, but a lack of migration weakened the correlation over time until 534 

measures were uncorrelated by around 3,000 generations. In contrast, in the presence of 535 

migration, positive correlations between FST and Δπ were relatively stable (R2 = 0.51 – 0.38 536 

over the whole simulation period). Interestingly, without migration, DXY and Δπ were largely 537 

uncorrelated, but migration induced a positive correlation between DXY and Δπ that 538 

emerged after 1,000 generations and continued to increase through time. 539 

 540 

Contextualised by our previous demonstrations of associations with selection, these results 541 

highlight that selection can induce positive correlations between measures. By 10,000 542 

generations, all pairwise comparisons of divergence measures become positive correlated 543 

with migration, which we know is when variation is most strongly associated with selection. 544 

Crucially however, this relationship only emerges after several thousand generations, before 545 

which we observe positive correlations in migration-absent treatments when associations 546 

with selection are weak for all measures (FST - DXY in particular). Extreme reductions in DP 547 

size also increase positive correlations between FST and DXY despite poor associations with 548 

selection in these treatments. These results highlight that positive correlations between 549 

statistics are also achievable in the absence of divergent selection.  It is also interesting to 550 

note the decay of correlations with Δπ and both FST and DXY in the absence of migration. 551 

These observations are most likely driven by the substitution rate. Substitutions that are not 552 
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linked to selection (drift with ineffective selection) likely drive increased FST and DXY but not 553 

Δπ. 554 

  555 

 556 

Figure 6: Effects of demographic treatments on the relationship between measures of genetic 557 
divergence across all sampling generations. Point colour and shape denote treatment groups for 558 
founding bottlenecks (A), protracted bottlenecks (B) and migration (C). Each point represents 559 
correlation coefficients calculated across all genes within individual treatments groups, averaged 560 
within treatment levels, and averaged over 20 iterations. 561 
 562 
 563 

In PhenoNull simulations, FST and DXY were positively correlated in all treatments, but stronger 564 

associations linked with demographic treatments with effective selection did not emerge 565 

(Figure S22). This was also true for neutral simulations (Figure S23), but FST - DXY correlations 566 

were larger than for PhenoDiv and PhenoNull when selection was ineffective, reaching a 567 

maximum of R2 = 0.89 without migration (Figure S23C).  This demonstrates that the positive 568 

correlations in PhenoDiv simulations are driven in part by divergently adaptive allele 569 

frequency shifts and substitutions when selection is effective, but these correlations also 570 
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emerge under stabilising selection or neutrality. Specifically, strong positive correlations 571 

with Δπ were dependent on divergent selection, and FST – Δπ correlations became negative 572 

over time in treatments without migration under neutrality. DXY – Δπ correlations became 573 

negative in PhenoNull data with migration and were unassociated without. Thus, these 574 

results highlight that the relationships between measures of divergence are highly 575 

dependent on demography, time, and selection experienced over a genomic region. 576 

 577 

We then examined FPR and false negative rates (FNR) when combining outliers across FST, 578 

DXY and Δπ (Table S1; summaries from 500 and 10,000 generations in Table 2). Combined FST 579 

- DXY outliers exhibited FPR rates that were reasonably high (0.30 - 0.93) and similar to FST 580 

alone at generations 100 and 500, suggesting little improvement in reducing FPR. During 581 

this period, FNRs were also high (≥ 0.84), suggesting most windows with divergent selection 582 

could not be detected on a neutral backdrop. It was not until 10,000 generations that 583 

reductions in FPR were evident for combined FST - DXY outlier sets for treatments with 584 

migration, in some cases dropping to 0.01, although FNR were highly variable (0.19 ≤ FNR ≤ 585 

0.66). High FPR (0.96 ≤ FPR ≤ 0.98) and high FNR (0.98 ≤ FPNR ≤ 0.99) were observed 586 

without migration, highlighting most common outliers between FST and DXY to be neutral, 587 

and a failure to detect almost all divergent windows.  588 

 589 

Combined FST - Δπ outliers did marginally outperform FST and Δπ outliers according to FPR 590 

with DP sizes of 0.5 or 1.0 and in earlier (100 and 500) sampling generations. Here, FPR 591 

dropped to a low of 0.08, but FNR were reasonable through this time (≥ 0.43). Beyond this 592 

(sampling generations 3,000 and 10,000), FPR did drop to 0, however these were generally 593 

alongside high FNR of up to 1.0, highlighting a failure to detect any common outliers at all. A 594 
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good example of improvement over singular measures was observed at generation 500, 595 

with no founding bottleneck, equal sized populations, and migration. Here, an average of 596 

~53% of divergent windows were detected with an average FPR of 0.08. This is compared 597 

with: singular FST, where FPR/FNR = 0.33; and singular Δπ where FPR/FNR = 0.36. By 10,000 598 

generations, combined outlier sets of FST - Δπ performed poorer than singular FST with 599 

migration present, but generally returned low numbers of false positives, unlike FST - DXY. 600 

 601 

Combined DXY - Δπ outliers performed poorly across all treatments and all sampling 602 

generations, with FNR failing to fall below 0.86. There were, however, initial benefits in 603 

terms of reduced FPR in earlier sampling generations for treatments with larger DP sizes 604 

(0.5 and 1.0). This discordance between DXY and Δπ and large FNR also limited the combined 605 

usage of all three measures together, with similarly high FNR precluding their combined 606 

usage.  607 

 608 

These results therefore highlight that combining measures can help reduce FPR, but usually 609 

at the cost of increased FNR (expectedly), and only under certain demographies. Our 610 

observation that high FPR are prevalent among combined outlier sets from statistics, 611 

particularly in the absence of migration, suggests their usage must be dependent on a 612 

knowledge of the underlying demographic history of populations. These findings also 613 

highlight that the strong correlations that emerge between measures of divergence under 614 

scenarios with ineffective selection or even under neutrality do extend to the tail-ends of 615 

distributions. 616 

 617 

Demography drives signals of convergence irrespective of selection 618 
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Clusters of overlapping outliers developed steadily over time (Figure S26-28). By sampling 619 

generation 10,000, significant proportions of overlapping outliers were recovered across 620 

different demographic treatment groups (Figure 7). For FST and DXY, clustering of treatments 621 

was driven by the presence/absence of migration, with the highest proportions of 622 

convergent outliers observed between treatments with migration. Interestingly, for both 623 

measures, reasonable proportions of convergent outliers were recovered across no 624 

migration treatments, which we have demonstrated to have ineffective selection. 625 

Importantly, there was little overlap between these clusters, suggesting different 626 

convergent outliers within each cluster. Combining outliers from FST and DXY did not alter the 627 

patterns observed in either, and importantly did not remove convergent outliers across no-628 

migration demographies. There were minimal convergent outliers observed for Δπ outliers, 629 

however combining Δπ with FST and DXY did appear somewhat effective in removing 630 

convergent outliers found between no-migration treatments. However, for both 631 

combination of Δπ with FST and DXY, the highest proportional overlap was observed for 632 

treatments with the smallest DP size. 633 

 634 

Interestingly, the clustering of FST - DXY  outliers in the presence of migration was greatly 635 

reduced when divergent selection was removed in both PhenoNull (Figure S29-32) and 636 

neutral data (Figure S33-36), but clusters of outliers in the absence of migration were still 637 

apparent. 638 

  639 
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 640 

Figure 7: The proportional overlap of outliers above the 95% quantile, averaged across 100 641 
downsampled datasets consisting of 95% Neutral and 5% PhenoDiv data for each of the 16 642 
demographic treatments after 10,000 generations. Axis orderings were determined through 643 
hierarchical clustering. Heatmaps are shown for single measures of FST, DXY and Δπ in the first 644 
column, and combined measures in the second column. Heatmaps are coloured according to a 645 
common scale of 0 to 1. Treatments are labelled with founding bottleneck (Bot), DP population size 646 
(Pop2), and migration (Mig) values. 647 
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 648 

Because migration was the dominant factor in clustering of treatments with convergent 649 

outlier overlap, we sought to investigate what features of simulated genes drove variance in 650 

measures of divergence with treatments separated by migration factor using linear mixed 651 

models at the final sampling generation. With migration between AP and DP, selection had 652 

by far the strongest effect on FST (Table 3) in the expected positive direction. We also 653 

observed a weaker positive association with selection target (% coding) of gene (Table 3), 654 

and weaker negative associations with Pheno Gen (generation DP optimum reached) (Table 655 

3). These fixed effects explained 39.6% of variance in FST with migration. Conversely, FST in 656 

treatments without migration was strongly positively associated with selection target % 657 

(Table 3), with a much weaker positive association with selection (Table 3). However, fixed 658 

effects here explained only 6.6% variance in FST without migration. 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 
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Table 3: LMM results for models of measures of divergence explained by features of simulated genes. For all 
models, random variables included gene ID and demographic treatment. Fixed effects with the largest effect 
are highlighted in bold. Selection Target and Pheno Gen were log10-transformed in models. 

    Var. explained (%)             

Measure Migration Fixed Random Fixed Effect Estimate Std. Error df T P 

FST 0.002 39.60 60.90 Selection 0.100 0.004 98 25.48 <2.00E-16 

    Selection Target 0.009 0.002 103 3.89 0.000177 

    Pheno Gen -0.007 0.001 14530 -9.45 <2.00E-16 

          

FST 0 6.60 75.40 Selection Target 0.025 0.002 97 11.44 <2.00E-16 

    Selection 0.011 0.004 97 3.04 0.00302 

          

DXY 0.002 18.60 69.40 Selection 0.024 0.001 97 16.42 <2.00E-16 

    Selection Target -0.010 0.001 102 -11.70 <2.00E-16 

    Pheno Gen -0.003 0.000 14570 -14.70 <2.00E-16 

          

DXY 0 13.50 33.30 Selection Target -0.008 0.001 99 -8.00 2.39E-12 

    Pheno Gen 0.000 0.000 14480 2.37 0.018 

          

Δπ 0.002 5.00 60.90 Selection 0.168 0.011 99 15.67 <2.00E-16 

          

Δπ 0 0.70 76.70 Selection 0.086 0.018 99 4.73 7.63E-06 

        Pheno Gen -0.009 0.003 12870 -2.70 0.00694 

 671 

 672 

DXY was similarly most strongly positively associated with selection in treatments with 673 

migration (Table 3), but the strength of this effect relative to the other model effects was 674 

not as large as observed for FST. DXY was also negatively associated with Pheno Gen (Table 675 

3), as was FST, but negatively associated with selection target % (Table 3), contrary to FST. In 676 

treatments without migration, selection target % was strongly negatively associated with 677 

DXY (Table 3), with a weak positive effect of Pheno Gen (Table 3). 678 

 679 

Selection was the most important fixed effect for Δπ regardless of migration (Table 3), 680 

however both models explained minimal variance (5% with migration, 0.7% without 681 
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migration). This is consistent with the previous demonstration of the erosion of Δπ over 682 

time (Figure 1). 683 

 684 

Removing divergent selection (i.e. in PhenoNull simulations) modified models for FST and DXY 685 

for treatments with migration. Selection and selection target remained the most important 686 

model effects, but had similar sized effects, and ultimately variance explained dropped from 687 

39.6% to 5.5%. Conversely, the model for PhenoNull DXY with migration increased variance 688 

explained from 18.6% to 32.9% compared with PhenoDiv DXY. Selection target had a greater 689 

effect in this model than strength of selection. Δπ models were unchanged. Together, these 690 

results confirm that divergent selection, and not stabilising selection within DP, drive FST and 691 

DXY variation in PhenoDiv simulations. 692 

 693 

DISCUSSION 694 

Summary of results 695 

Here, we show that different demographies can have dramatic effects on how measures of 696 

population divergence identify regions of the genome under selection. Effects are also 697 

strongly time-dependent. Using simulated populations, we have demonstrated the relative 698 

influences of founding bottlenecks, protracted bottlenecks, and migration on three 699 

commonly used measures of genetic divergence (FST, DXY, Δπ), whilst demonstrating the 700 

relative usefulness of each measure for informing on selection under different demographic 701 

conditions. 702 

 703 

We find that founding bottlenecks have little effect on population divergence measures, 704 

potentially either because populations quickly recover (before first sampling after 100 705 
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generations), or founding bottlenecks of 10% (100 individuals) were not extreme enough. 706 

Protracted bottlenecks (reductions in DP size) however, artificially inflate FST and Δπ but 707 

reduce DXY, and can erase the relationship of FST and DXY with selection under the most 708 

extreme reductions in population size. Relative measures are, in part, driven by intra-709 

population changes in allele frequency, which become exaggerated in smaller populations 710 

as a product of drift (B. Charlesworth 2009; Ellegren and Galtier 2016). As a consequence, 711 

we observe inflated measures of relative divergence as allele frequencies drift in smaller DP 712 

replicates.  713 

 714 

In contrast, DXY increases with larger DP size, as a product of the relationship between the 715 

number of segregating sites and the population-level mutation rate (4Neμ) (Hartl, Clark, and 716 

Clark 1997). DXY is a measure of sequence divergence and is averaged across all sites 717 

(although similar statistics limit averaging to segregating sites only), which results in higher 718 

DXY as segregating sites are introduced into either population at a rate of 4Neμ. This 719 

relationship with the number of segregating sites can be observed by examining the positive 720 

relationships between DXY and DPπ (Figure S37). Overall, the relationship between DXY and 721 

selection is less affected by protracted bottlenecks than FST and Δπ, likely due to the lack of 722 

allele frequency relevance. Consider for example, two SNPs with minor allele frequencies of 723 

0/0.5 (SNP 1) and 0.5/0.5 (SNP 2) in AP/DP. Each locus contributes equally towards Dxy (SNP 724 

1 = [0 x 0.5] + [1 x 0.5] = 0.5; SNP 2 = [0.5 x 0.5] + [0.5 x 0.5] = 0.5), whereas the reduction of 725 

within-population variance observed for SNP 1 inflates FST and Δπ. However, we also see 726 

evidence of DXY FPR increasing with increased DP size (Table 2), suggesting this relationship 727 

with increased acquisition of segregating sites may conflict with increased efficacy of 728 

selection. 729 
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 730 

Migration, even at the relatively modest rate of 0.2% employed here, substantially reduced 731 

absolute values for all measures of divergence. However, whilst absolute values were 732 

reduced, their informativeness of selection coefficients increased dramatically (both in 733 

terms of their overall relationship with selection and in identifying outliers).  Such a result is 734 

expected given the role of gene-flow in homogenising neutral loci (reducing measures of 735 

divergence), whilst retaining population divergence around adaptive loci (increasing 736 

informativeness). The well-known ‘genomic islands of divergence’ model is often invoked to 737 

explain this pattern of heterogenous genomic divergence in studies of speciation-with-gene-738 

flow (Nosil, Funk, and Ortiz-Barrientos 2009; Turner, Hahn, and Nuzhdin 2005).  739 

 740 

Migration also exhibited interesting temporal patterns that are useful for discussing the 741 

discrepancies observed between Δπ and both FST and DXY. Of the measures considered here, 742 

Δπ uniquely disregards SNP substitutions in its calculation, as fixed substitutions have no 743 

influence on intra-population heterozygosity beyond reducing the heterozygosity of 744 

proximate SNPs in the aftermath of a hard sweep. This characteristic explains why Δπ 745 

responds to selection more rapidly than FST and Dxy and is influenced by migration in a 746 

constant manner across time. In addition, the inability of Δπ to account for adaptive 747 

substitutions is likely why the informativeness of Δπ peaked at around 500 generations 748 

(approximate median for sweeps), decayed, and then stabilised by 10,000 generations. In 749 

contrast, the contributions of adaptive substitutions to FST and Dxy over time increases their 750 

predictive power. This characteristic of Δπ, however, also makes it unable to differentiate 751 

between divergent and stabilising selection. This temporal observation has important 752 

implications for studies of rapid adaptation on the scale of 10s to 100s of generations, in 753 
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which our simulations suggest Δπ may be the most informative measure of divergence, 754 

whilst Dxy is initially uninformative for several thousand generations. 755 

 756 

Examining the effects of demographic variation on the associations between measures of 757 

divergence themselves is a novel element to this study. The relative weaknesses of 758 

individual measures of divergences has prompted a recent movement within the literature 759 

to employ multiple measures of divergence to avoid false-positives (for e.g. Tine et al. 2014; 760 

Malinsky et al. 2015; Hämälä and Savolainen 2019). Our results provide some support for 761 

this strategy, with reductions in FPR in treatments with gene flow generally, and low FPR 762 

when combining either FST or DXY with Δπ (albeit at a reasonably high FNR). However, we 763 

also find large number of overlapping outliers across combined FST - DXY with a large FPR 764 

across treatments without migration. Further, these false-positives persisted in PhenoNull 765 

and neutral data, whereas clusters of treatments with overlapping outliers (Figure 7) and 766 

with low FPR were restricted to simulations with divergent phenotypes. It is clear then that 767 

combining outlier sets of FST and DXY only improves analyses under certain demographic 768 

histories. 769 

 770 

Cruickshank and Hahn (2014) suggested that a disagreement between FST and DXY outliers in 771 

genomic-islands-of-divergence tests highlights a particular susceptibility of FST to BGS 772 

(although see (Matthey‐Doret and Whitlock 2019)). Our results are in line with the notion 773 

that DXY may be more resistant to false positives due to BGS, given that reductions in DP size 774 

resulted in minimal variance in DXY (assuming reductions in population size are analogous to 775 

different rates of BGS across the genome exhibit reduced Ne). However, BGS was not 776 

specifically manipulated in these simulations, and results are difficult to disentangle with 777 
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variation in efficacy of removing deleterious mutations. Further, this minimal variance may 778 

be explained by the opposing forces of selection efficacy and acquisition of segregating sites 779 

discussed previously. We also found that a greater proportion of variance could be 780 

explained by the size of selection target for DXY in the absence of migration than for FST. We 781 

found that FST and DXY are positively correlated under several demographic scenarios, but 782 

this strong association only reflects selection when gene-flow is present and only after 783 

several thousand generations, consistent with previous simulation work (Ravinet et al. 784 

2017). When migration is absent, and selection ineffective, FST and DXY are also positively 785 

correlated; but this relationship decays over time (Figure 6C), with empirical evidence (see 786 

below) suggesting a negative relationship is likely to emerge without gene flow. No-787 

migration treatments are consistent with Isolation-By-Distance demographic histories and, 788 

similarly, comparisons between reproductively-isolated populations or species. Indeed, 789 

negative correlations between FST and DXY within and between clades of birds (Vijay et al. 790 

2017; Irwin et al. 2016), within a radiation event of monkeyflowers (Stankowski et al. 2018) 791 

and between speciating orca populations (Foote et al. 2016) support a declining relationship 792 

between these measures over long periods of time in isolation. In agreement, we find that 793 

without migration FST and DXY exhibit opposite associations with the proportion of windows 794 

made up of coding elements. Mechanistically, a larger selection target increases the rate of 795 

deleterious mutation, reducing local π directly through loss of polymorphic deleterious sites, 796 

or indirectly through the loss of linked neutral variants under a BGS model. Reductions in 797 

local π increase FST and decrease DXY. Over time, associations between FST and DXY should 798 

stabilise, given π is generally well-conserved in stable populations even across long time 799 

periods (Romiguier et al. 2014; Van Doren et al. 2017; Dutoit et al. 2017).  800 

 801 
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By comparing our results to a second dataset that lacked divergent selection (PhenoNull), we 802 

found consistent support that positive associations between DXY and selection are strongly 803 

dependent on the inclusion of a divergent phenotype. Positive associations with FST are 804 

attainable only in the absence of migration, and are weakly negative without, and Δπ 805 

patterns are primarily driven by variable stabilising selection and made weaker by the 806 

inclusion of phenotypic divergence. These comparisons are useful in highlighting the relative 807 

roles of adaptive allele frequency changes and substitutions in driving patterns of genetic 808 

differentiation. It is also of interest to note that overlapping outliers are readily attainable 809 

across no-migration treatments in PhenoNull (Figure S32) and neutral simulations (Figure 810 

S36), but not for treatments with migration. This confirms that overlapping outliers in no-811 

migration treatments occur due to common neutral processes within genomic windows, 812 

whereas overlapping outliers in treatments with migration are driven by the effects of 813 

divergent selection. The discrepancies between our PhenoDiv and other simulated datasets 814 

highlight the necessity in quantifying phenotypic differences or environmental selection 815 

pressure when interpreting patterns of variation across the genome. 816 

 817 

Detecting genetic convergence 818 

In addition to understanding how outlier detection in individual pairs were affected by 819 

demography, we wanted to explore how studies looking at overlapping outliers in multiple 820 

pairs (i.e. detecting genetic convergence) were affected by demography. Our simulation 821 

design, in which an ancestral burn-in population is used to found 16 independent AP-DP 822 

pairs is analogous to replicated ecotype population pairs in model systems, such as various 823 

ecotype pairs of the three-spined stickleback, Gasterosteus aculeatus (Hohenlohe et al. 824 

2010; Jones, Chan, et al. 2012); high/low predation Trinidadian guppies, Poecilia reticulata 825 
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(Fraser et al. 2015); crab/wave ecotype periwinkles, Littorina saxitilis (Ravinet et al. 2016; 826 

Kess, Galindo, and Boulding 2018; Westram et al. 2014), and alpine/montane ecotypes of 827 

Heliosperma pusillum (Trucchi et al. 2017). We found overlapping outliers between 828 

demographic treatments and thus, that signals of convergent outliers are attainable for 829 

singularly used FST and DXY, and combined outlier sets for FST – Δπ, DXY – Δπ and FST - DXY. 830 

Clustering of outliers was predominantly driven by the presence or absence of migration 831 

(with minimal overlap between clusters) (Figure 7).  832 

 833 

The overlap of quantile-based outliers between demographic treatments without migration 834 

and ineffective selection may be explained in part probabilistically. With migration 835 

restricted, AP and DP exhibit significantly elevated measures of divergence, as seen in Figure 836 

1. This increase results in a normal distribution of FST and DXY across neutral simulations 837 

without migration. In contrast, with migration, drift is limited and random recombination 838 

influences gene flow and subsequently variation in divergence. Distributions of divergence 839 

with migration under neutrality are therefore are heavily right tail-skewed (Figure S38). 840 

Spread of data increases with longer right tails, and density of data in each overlapping 841 

distribution is limited to the median and lower quantiles.  842 

We also expect some effect of different amounts of starting variation among genome 843 

windows following burn-ins. With gene flow restricted, this variation may promote overlap 844 

under neutral conditions given all demographic treatments are founded from a common 845 

burn-in. However, this feature of our simulations is analogous to the conserved landscapes 846 

of variation observed in natural genomes (Burri 2017; Vijay et al. 2017; Stankowski et al. 847 

2019).  848 

 849 
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Empirically, the influence of migration on outlier overlap has been observed in replicate 850 

pairs of parasitic and non-parasitic lampreys. As we show here, when comparing outliers 851 

from disconnected and connected parasitic/non-parasitic pairs, Rougemont et al. (2017) 852 

recover greater numbers of overlapping outliers among comparisons of disconnected pairs 853 

than connected pairs. Overlapping outliers among connected pairs are however better 854 

correlated, which the authors suggest reflects selection. 855 

 856 

Limitations of simulations 857 

In our analyses, we grouped genomic windows within 16 unique demographic treatments, 858 

assuming the effects of reductions in population size and migration are equivalent for all 859 

windows. This may be unrepresentative of genomes sampled from the wild, in which gene 860 

flow and effective population size can vary across genomic regions through structural 861 

variation, variable recombination rate and BGS (Gossmann, Woolfit, and Eyre-Walker 2011). 862 

A prominent example of such a mechanism is the well-characterised consequence of 863 

reduced gene flow within inversions that carry locally adapted alleles. Assuming inversion 864 

variants are fixed between populations, gene flow across the locus is limited by the 865 

prevention of recombinant haplotypes and resistance to introgression (Kirkpatrick and 866 

Barton 2006; Ravinet et al. 2017). Recent genome scan studies have highlighted convergent 867 

outliers within inversions (Jones, Grabherr, et al. 2012; Nishikawa et al. 2015; Morales et al. 868 

2018), confirming theoretical models regarding their role in shielding adaptive haplotypes 869 

from introgression during the adaptation process. Our simulations suggest that genes with 870 

reduced migration, and reduced Ne as a consequence, will have inflated measures of 871 

divergence and differentiation relative to other genomic regions. Therefore, we predict this 872 

may have led to their over-representation in genome scan outliers, and increased potential 873 
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to overlap across replicate populations. Thus, caution should be taken regarding the 874 

adaptive significance of these outliers relative to absolutely lower values of genetic 875 

divergence attained from regions outside of chromosomal rearrangements. 876 

 877 

By choosing to use a factorial design here, we have increased our understanding of the 878 

interplay between individual features of demographic history and multiple measures of 879 

population divergence. However, computational limitations constrained absolute 880 

population sizes to a maximum of 1,000 individuals and generations to a maximum of 881 

10,000 (with 10,000 generation burn-in). To mitigate these constraints, we repeated the 882 

analysis over multiple mutation rates to illustrate patterns over 100-fold variation of θ. In 883 

general, most trends were consistent, suggesting that results should be consistent across 884 

taxa of variable effective population size. However, certain patterns were exaggerated or 885 

dampened with increased or decreased mutation rate respectively. For instance, it is clear 886 

that the time lag on informativeness of DXY on selection is shortest when θ is largest, which 887 

results in stronger positive associations between FST and DXY by generation 10,000 (Figure 888 

S24). It is well-documented that both Ne (Frankham 1995) and mutation rate (μ) 889 

(Hodgkinson and Eyre-Walker 2011) are highly variable across taxa, which suggests that 890 

applying knowledge of the relationships between measures of population differentiation 891 

will vary in nature. 892 

 893 

Furthermore, temporal variation within our simulations is confounded by the time at which 894 

there was a major shift in the DP phenotype (Figure S39), and by extension when selective 895 

sweeps occur. This variation in timing is random with respect to adaptive mutations arising 896 

de novo, but is also influenced by demography. For example, treatments that experience 897 
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founding bottlenecks are less likely to evolve using variation in the founder, increasing 898 

dependence on de novo mutations for adaptation. Additionally, variation in our DP size 899 

parameter modifies the per population number of new mutations per generation. This is 900 

also true for features of simulated genes, such as size of selection target. Predictable 901 

temporal variation in the time at which adaptation is likely to occur is a probable source of 902 

variance between measures of divergence and is particularly clear for Δπ, but this was 903 

controlled for in  later modelling analyses as a fixed effect. 904 

 905 

A further consideration for these simulations concerns the architecture of the phenotype. 906 

Results reported here pertain to mutation effect sizes drawn from a distribution centred at 907 

0 with σ = 1. This produces mutations of typically large effect, but was selected on the basis 908 

of phenotypic optima being reasonably distant, with a difference of 10. Thus, 99% of 909 

mutations in simulations produce phenotypic differences of less than a third the divergence 910 

distance of AP and DP phenotypes. There are numerous factors that influence the 911 

distribution of effect sizes in nature, including; selection, mutation, drift, gene flow, extent 912 

of pleiotropy and distance to phenotypic optima (Dittmar et al. 2016), with no single 913 

expectation for natural systems as a result. The relatively large distance between optima in 914 

our simulations, as well as the rapid change in optima implemented in simulations (Collins 915 

and De Meaux 2009), likely gives increased importance to mutations of large effect. The 916 

interactions between mutation effect size and the results presented here are beyond the 917 

scope of the current study, but we did investigate the effect of reducing σ of mutation effect 918 

distributions to 0.1 (Supporting Information; Figures S40-45). Briefly, we see reductions in 919 

the strength of correlations and associations with selection with decreasing phenotypic 920 

effects of mutation, consistent with the notion of softer sweeps on small-effect loci. We also 921 
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see increased variance in the amount of time taken for simulations to reach the PhenoDiv 922 

optimum, which agrees with the probable importance of large effect loci in our standard 923 

dataset. We, however, retain strong positive associations between measures such as FST and 924 

DXY, as we see in neutral simulations, as well as overlapping outliers linked to selection at 925 

the tail ends of PhenoDiv distributions. Running the simulations in this way suggests that 926 

many of the patterns described here may be robust to scenarios with reduced mutation 927 

effect sizes. 928 

 929 

It is also important when translating these results to genomic data to consider how 930 

correlations between measures of divergence depend on the selection type used in 931 

simulations. For example, FST and DXY are strongly positively correlated under neutrality 932 

without migration, but under the same demographic scenarios we observe a decay in the 933 

relationship between FST and DXY when divergent selection is involved. Genomes of natural 934 

populations will include regions that are neutral or nearly neutral, under stabilising selection 935 

around a common phenotypic optimum, or divergent between populations. Thus, the 936 

patterns described here may not apply to all genomic windows pooled together. 937 

 938 

Concluding remarks 939 

We have used forward-in-time simulations to perform a factorial experiment in which we 940 

explored the relationships between three measures of genetic divergence, selection, and 941 

features of demographic history that are commonly variable in natural populations. In 942 

agreement with previous theoretical work, we found the reliance of measures of genetic 943 

divergence to indicate regions under selection are dependent on demography and variable 944 

through time, with a notable lag in DXY. Furthermore, we provided novel comparisons 945 
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between measures of genetic divergence that call into question the use of multiple 946 

measures to rule out false-positives. We also demonstrated that signals of convergent 947 

evolution across independent replicates can be driven by similar demographic histories with 948 

minimal influences of selection. Therefore, we strongly advise those using overlapping 949 

outlier scans to carefully consider the demographic context of their system to avoid false-950 

positives. In particular, the presence or absence of migration between diverging populations 951 

is a key factor determining the informativeness of genetic variation for selection, and 952 

importantly shapes our expectations of outlier overlap among replicate population pairs. It 953 

is tempting to assume that replication in study design or analysis in the form of taking 954 

multiple measures of genetic divergence can reduce the risk of attaining false-positives. We 955 

hope to emphasise in this study that this is not always the case, as false-positives (i.e. 956 

genome scan outliers that are not associated with regions under divergent selection) can be 957 

driven by non-random genomic or common demographic features that cannot be bypassed 958 

through replication. Moreover, many of the patterns we observe are variable through time, 959 

such that the relevant pitfalls of analyses will depend on the age of the populations being 960 

considered. It should thus also be important to estimate population splits, as a young 961 

replicate pair and older replicate pair with similar demographic histories should be expected 962 

to exhibit potentially different patterns of genetic variation. 963 

 964 

Recent simulation work by Quilodrán et al. (2019), has also emphasised the influence of 965 

genomic features and demography, and includes simulation software for estimating the 966 

distribution of genetic variation over user-defined chromosomes. Such an approach is 967 

particularly useful for systems with chromosome-level genome assemblies in order to gain a 968 

sense for how features such as recombination, gene density, and selection targets may 969 
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produce false-positives under certain demographies. The software employed here, SLiM 970 

(Haller and Messer 2019), may also be used to this end, and the scripts accompanying this 971 

study will facilitate similar analyses over system-specific genome regions. Further, recent 972 

work on genomic landscapes of linked selection (Stankowski et al. 2019) has highlighted that 973 

much of the total variance of genetic divergence such as FST, DXY, and π can be explained by 974 

the major principal component (PC1) over numerous pairwise comparisons. These 975 

population comparisons need not reflect divergent phenotypes, as PC1 reflects genomic 976 

features associated with diversity landscapes. Adopting this approach may be useful for 977 

systems lacking a chromosome-level genome assembly by estimating SNPs or regions with 978 

non-random elevated measures of divergence associated with genome features. Such SNPs 979 

or regions may be particularly prone to false-positives under certain demographic histories. 980 
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