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Abstract12

The two hyper–endemic regions for Visceral Leishmaniasis (VL) in the world are located in India and13
Sudan. These two countries account for more than half of the world’s VL burden. The regional risk fac-14
tors associated with VL vary drastically per region. A mathematical model of VL transmission dynamics15
is introduced and parametrized to quantify risk of VL infection in India and Sudan via a careful analysis16
of VL prevalence level and the control reproductive number, RC , a metric often used to characterize the17
degree of endemicity. Parameters, associated with VL-epidemiology for India and Sudan, are estimated18
using data from health departmental reports, clinical trials, field studies, and surveys in order to assess19
potential differences between the hyper–endemic regions of India and Sudan. The estimated value of20
reproduction number for India is found to be 60% higher than that of Sudan (RC(India) = 2.1 and21
RC(Sudan) = 1.3). It is observed that the RC is most sensitive to the average biting rate and vector-22
human transmission rates irrespective of regional differences. The treatment rate is found to be the most23
sensitive parameter to VL prevalence in humans for both India and Sudan. Although the unexplained24
higher incidence of VL in India needs to be carefully monitored during long-term empirical follow-up, the25
risk factors associated with vectors are identified as more critical to dynamics of VL than factors related26
to humans through this modeling study.27

28
Keywords: Dynamical system, Kala-azar, Sensitivity Analysis, Risk Factors, Reproduction Number,29

Mathematical Model30

Author Summary31

The Visceral Leishmaniasis (VL) is a neglected tropical disease, primarily endemic in five countries, with32
India and Sudan having the highest burden. The risk factors associated with VL are either unknown in33
some regions or vary drastically among empirical studies. In this study, we collect VL-related data from34
multiple sources for the two different countries, India and Sudan, and use techniques from mathematical35
modeling to understand factors that may be critical in the spread and control of VL. The results suggest36
that the risk factors associated with disease progression are important in explaining high VL prevalence37
in both the countries. However, the likelihood of disease outbreak in India is much higher than that38
in Sudan and the probability of transmission between human and sandfly populations vary significantly39
between the two. The results have implications towards VL elimination and may require a review of40
current control priorities.41
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1 Introduction42

Leishmaniasis Globally: Leishmaniasis is a family of infectious diseases caused by an intracellular43
protozoan parasite of the genus Leishmania [80]. A diverse and complex pathogen, Leishmania can be44
transmitted to humans through the bite of one of at least 20 different species of female sand flies of the45
subfamily Phlebotomus [17,42]. Individuals living with Leishmaniasis may exhibit one of the four clinical46
syndromes; cutaneous, mucocutaneous, diffuse cutaneous, and visceral Leishmaniasis. [17, 77]. Visceral47
Leishmaniasis (VL, also known as Kala-Azar (KA) in Hindi) is considered the most severe form of the48
disease because death is inevitable if untreated. In fact, there are significant distinctions that have been49
observed even in the dynamics of VL from one region to another. VL is most often caused by species50
of the Leishmania donovani complex with Leishmania donovani sensu sticto circulating in the Indian51
subcontinent, Leishamania donovani sensu lato in East Africa, Leishmania infantum primarily found52
around the Mediterranean, in the Middle East, and rest of the Africa and Asia and Leishmania chagasi53
in the Americas [70]. There are marked differences between parasite species infections, for example, in54
terms of epidemiology, clinical features and responses to treatment.55

Epidemiology of VL: Leishmania donovani (L. donovani) infects VL in most affected regions, with56
each year there is an estimated 500,000 new cases and approximately 50,000 recorded deaths worldwide57
[19]. Researchers estimate that roughly 12 million people are infected with Leishmania parasites, at a58
given time, among the 350 million individuals at risk [4,61]. However, these statistics might be changing59
with recent WHO’s efforts in eliminating VL from some parts of the world. VL is endemic in at least60
88 tropical and subtropical countries around the world with more than 90% of new cases generated in61
Bangladesh, Brazil, India, Nepal, and Sudan [32, 74]. In 2010, the state of Bihar in India reported an62
average of 270,000 new cases per year with an incidence rate of 21 cases per 1000 [42]. Twenty one63
districts out of Bihar’s 38 districts are most affected from VL. The most recent (2014) report estimates64
that there are between 200,000 and 400,000 annual cases of VL in the five most affected countries, with65
India supporting between 146,700 to 282,000 cases per year and Sudan between 15,700 and 30,300 cases66
per year [9]. In Sudan, VL is endemic in southern, central, and eastern parts of the country, with most67
cases being reported from state of Gedaref (near the Ethiopian border) [49]. VL primarily affects low68
socio-economic and marginalized communities [57]. Geographic hot spots for infection are characterized69
by factors that include the average length of the sand flies life cycle, the abundance of parasite reservoirs,70
and human behaviors to infection [32, 74]. In this study, we aim to identify factors associated with VL71
burden in the two most affected countries in the world, India and Sudan.72

Risk Factors of VL in India and Sudan: In India, the sand fly species Phlebotomus Argentipes73
is primarily responsible for transmitting the L. donovani parasite [67]. In Indian state of Bihar, annual74
patterns of VL incidence are assumed to be driven by ecological and social factors including distinct75
seasonality in sand fly population, lack of health care resources, extreme poverty, frequent flooding76
resulting in food shortages, and malnutrition [6, 57]. In Sudan, Phlebotomus Orientalis is the dominant77
sandfly vector associated with anthroponotic L. donovani transmission. [28, 31, 38, 39, 72, 86]. Typically,78
P. Orientalis is considered a forest species and its abundance is frequently associated with the presence79
of the savanna woodland tree species Acacia Seyal and Balanites aegyptiaca and deeply cracked vertisols80
(black cotton soil) [28, 29]. Primary risk factors for VL infection in Sudan include genetic factors (e.g.,81
some indigenous individuals may be more susceptible [6]), age, ethnicity, the consequences of poverty,82
movements of people facing civil war, and political instability which is accompanied by labour migrations83
for economic security reasons [6, 15,68].84

Interventions in India and Sudan: In Bihar, where 90% of India’s VL cases occur, aggressive85
attempts at improving vector control programs via the distribution of insecticide-treated bed nets and86
insecticide spraying are being carried out [6]. India’s Kala-azar Elimination Programs (KAEP) aims87
at reducing VL morbidity are tied into government-funded VL diagnosis and drug treatment programs.88
Pentavalent antimonial drugs, wherever it is effective, purchased by the public sector are barely sufficient89
to cover half of the infected patients [5, 57]. Limited drug availability and drug resistance are growing90
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problems in East Africa, particularly in Sudan, where antimonials are still the primary method of VL91
medical treatment. The poor must travel long distances to gain access to drugs and, consequently, the92
effectiveness of intervention policies are limited. Infected Sudanese often must wait extended periods of93
time before receiving minimal medical care [62].94

VL Mathematical Modeling Studies: In 1988, Dye and Wolpert introduced what it appears to95
be the first Anthroponotic VL deterministic model for capturing the temporal dynamics of this disease.96
Their model was used to explain the observed VL inter-epidemic periods between 1875 and 1950 in97
Assam, India. Following this work, Dye, C. (1992, 1996) assessed the impact of control measures on VL98
patterns in endemic areas using appropriately modified models [23–25]. These studies concluded that99
dramatic upswing in VL cases in the past may be attributed to “intrinsic” factors related primarily to100
disease epidemiology in humans and vectors and not to “extrinsic” processes. Mathematical models are101
typically developed to capture VL transmission dynamics in a population. Using such model, a threshold102
quantity for infection, the reproductive number (RH), is often computed for understanding the dynamics103
of the disease. RH is used to measure the disease’s ability to colonize a naive population or to identify104
the degree of endemicity in the presence of intervention. In general, model analysis suggests disease105
persistence when RH > 1 and eventual disease extinction when RH < 1 [84].106

Focus of this Study: In the hyper–endemic regions of India and Sudan, it is believed thatRiH (θh) >107
RsH (θh) > 1, where RiH (θh), the control reproductive number, for India is greater than RsH (θh) of Sudan108
at their respective rate of treatment, θh. This modeling study focuses exclusively on the transmission109
dynamics and control of VL in India and Sudan while proving or refuting the belief on differences in their110
estimated reproduction numbers. Since VL is hyper–endemic in these regions for long time, a model with111
established treatment regimes is considered the “status quo” an important assumption, since untreated112
individuals die relatively quickly. Parameters (transmission rates, death rates, etc.) are estimated us-113
ing novel simple methods where current treatment (θh) is always present. Consequently, the process of114
invasion (ability of VL to invade a population) is addressed under current treatment policies. There-115
fore, the reproductive number includes treatment rate, θh, as part of the initial set-up where detailed116
infection data is absent (technically it cannot be called the“basic” reproductive number). A comparative117
study of the VL situation in India and Sudan is carried out via a model derived metrics parameterized118
using estimates derived from published clinical trials data and published national reports. Uncertainty119
and sensitivity analyses are then carried out to identify key risk factors and use them to evaluate the120
effectiveness of intervention programs in the two “worst-affected” VL-regions of the world. In summary,121
the goals of this study are: (i) identify relevant data from field/clinical studies needed to estimate model122
parameters of a dynamic model, (ii) develop procedures to estimate distributions of quantities for which123
data are unavailable, (iii) evaluate risk associated with VL in India and Sudan, and (iv) compare and124
contrast the risk factors between India and Sudan. The details of the analysis are depicted in the Figure125
1.126
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Figure 1. Flow chart representing steps in the analysis.

2 Methods127

2.1 Model formulation and assumptions128

The Leishmania donovani transmission cycle is anthroponotic and takes place from human to human129
via the bite of an infective female phlebotomine Sandfly. A mathematical model of the transmission130
dynamics of VL infection is used here where the interacting host (Nh(t)) and vector (Nv(t)) populations131
are assumed to mix homogeneously. The flow chart representing disease progression and transmission132
is shown in Figure 2. The human population is subdivided into susceptible individuals (Sh(t)), asymp-133
tomatic individuals (Ah(t)), infectious individuals with clinical VL infection (Ih(t)), individuals under134
treatment (Th(t)), and recovered-immune to reinfection individuals (Rh(t)); Nh ≡ Sh+Ah+Ih+Th+Rh.135
The sandfly population is assumed to be divided into susceptible (Sv(t)) and infectious (Iv(t)) vectors136
with Nv ≡ Sv + Iv.137

The model system is given as:138

dSh
dt

= Λh − λvhSh − µhSh
dAh
dt

= λvhSh − (φh + µh)Ah
dIh
dt

= φhAh − (θh + µh) Ih
dTh
dt

= θhIh − (γh + µh)Th
dRh
dt

= γhTh − µhRh

(1)
dSv
dt

= Λv − λhvSv − µvSv
dIv
dt

= λhvSv − µvIv

(2)
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Figure 2. A schematic representation of the mathematical modeling framework consisting of
interacting human (Nh) and Sandfly (Nv) populations. Arrows represent transition between different
infection stages in the two populations.

Parameter Definition Units
b Average number of bites per sandfly day−1

βvh Transmission probability when infected sandflies bite susceptible human Dimensionless
βhv Transmission probability when susceptible Sandfly bite infected humans Dimensionless
γh Per capita treatment-induced recovery rate from VL infection day−1

Λh Human recruitment rate Nh × day−1

Λv sandflies daily rate of becoming adults Nv × day−1

µh Human daily per capita natural mortality rate day−1

µv Adult Sandfly daily per capita mortality rate day−1

φh Per capita development rate of clinical symptoms of VL infection day−1

θh Per capita treatment rate of infectious humans day−1

mv:h Ratio of sandflies to humans (N∗
v/N∗

h) Dimensionless
` sandfly landing rate on a human day−1

Table 1. The parameters for the VL model and their dimensions

Disease-induced mortality is not included because, due to institutionalized treatment, deaths from VL are
negligible. For simplicity, the human population is assumed to be constant. Λh denotes the recruitment
rate into the susceptible population, and µh denotes the per-capita death rate. Because Nh approaches
Λh

µh
when t approaches ∞, we assume, without loss of generality, that Nh = Λh

µh
[16]. A susceptible

individual acquires the L. Donovani parasite following an effective contact with an infectious sandfly.
The rate λvh, the force of infection on humans, is given by

λvh = bβvh
Nv
Nh

Iv
Nv

= bβvhmv:h
Iv
Nv

, (3)

where the right-hand expression (Equation 3) is given by the product of the per-vector daily biting rate
of sandflies (b), the VL infection transmission probability, given a bite from an infected sandfly to human
(βvh), the average number of sandflies per humans mv:h, and the proportion of infectious sandflies in the
vector population (Iv/Nv). It is assumed that all newly VL-infected humans go through an asymptomatic
(symptomless) stage (Ah). After an asymptomatic period of several months, humans develop clinical
symptoms at the per capita rate φh, moving to the infectious class Ih. During the infectious period,
humans will seek VL treatment at the per capita rate θh, proper treatment leads to recovery at the per
capita rate γh (recovered individuals gain lifelong immunity). Newly emerging adult female sandflies
are recruited into the susceptible population at rate Λv and die at the per-capita rate µv. The sandfly
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population is assumed constant. A susceptible sandfly is infected following an effective contact with
infectious humans at the per capita rate λhv (force of infection on sandflies). The rate λhv is given by

λhv = bβhv
Ih
Nh

, (4)

where the right-hand side is the product of: the per vector daily biting rate (b); the probability that139
susceptible sandflies acquire the Leishmania parasite while feeding on a VL-infected individuals (βhv);140
the proportion of VL infectious humans in the human population (Ih/Nh). It is also assumed that the141
Leishmania parasite has no impact on an infected sandfly’s lifespan; the sandflies’ natural mortality per-142
capita rate is the same for infected and uninfected, namely, µv. See Appendix B for complete model143
derivation.144

2.2 Biting rates145

Interactions between vector biting behavior and uneven pathogen transmission potential between hosts146
may lead to difficulty in controlling infection. How vector species respond to availability of hosts is147
highly variable and has fostered considerable interest among vector borne disease modelers for decades.148
The proportion of blood-meals taken by vectors from the host species of interest is generally assumed to149
increase directly with increasing human availability and changing levels of vector density. Hence, vector150
biting can play a significant role in the transmission process [88]. The biting rate of sandflies is typically151
a function of ambient air temperatures, humidity, wind speed, vector density and local habitat. There152
remains a couple of challenges in effectively using biting rates, namely, which is a proper functional153
response to capture biting rates in the model and how to measure it precisely from the field data.154

To effectively use models to make reasonable definitions, models must be carefully parameterized and155
validated with epidemiological and entomological data. On the other hand, researchers have modeled156
biting rate in different ways but realistically the biting rate may vary according to the abundance of157
hosts and to vector preference [87]. In this study, we suggest alternative forms of transmission terms158
as well as use distinct data sets to estimate parameters of the two different terms (vector-to-host and159
host-to-vector terms).160

2.3 Incidence as a Function of the Landing Rates161

This section first provides a careful derivation of incidence rates expression as a function of landing and162
biting rates and then use landing rate data to estimate the transmission probabilities from sandflies to163
humans (βvh) and humans to sandflies (βhv).164

The human incidence rate (Equation (3)) is a function of the average rate of interactions between
vectors and humans, which in turn is directly proportional to the proportion of infectious sandflies

(
I∗

v

N∗
v

)
.

Let b denote the average number of bites per sandfly per unit time and ρ the average number of bites
received per human per unit time. Assuming that all sandfly bites are to humans only, we must have that
the total number of bites made by all sandflies per unit of time (bN∗v ) equals the total number of bites
received by all human hosts per unit of time (ρN∗h). Thus, we have that

bN∗v = ρN∗h ⇒ ρ = b
N∗v
N∗h

= b mv:h, (constant by assumption) (5)

The assumption that ρ is constant is customary in the literature although there are some studies
where the host vector ratio is assumed not constant over time [85]. We further assume that the average
number of bites received by a human per unit time is proportional to the number of sandflies landing on
an individual per unit time, that is,

ρ ∝ `. (6)
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Hence, the total number of effective landings on all humans from all sandflies per unit time is

`Nh
Sv
Nv

+ `Nh
Iv
Nv

, (7)

where the first (second) term of (7) accounts for the total number of effective landings on all humans from165
all susceptible (infected) sandflies per unit time. That is, the total effective landing/feeding of vectors on166
humans is a function of the total vector population, which includes both susceptible and infected vectors.167
In epidemiology, of importance are only the two cases when landing occurs from a susceptible sandfly168
on an infected human and from an infected sandfly on a susceptible human, as they are the cases where169
landing results in transmission of VL from humans to sandflies and vice versa. In other words, `Nh is170
the total number of effective landings per unit time, while `Nh Iv

Nv
is the proportion of bites that result171

in infecting new hosts. Therefore, `Nh Sv

Nv
is the proportion of bites that get “wasted” since they cannot172

generate infections.173
If βvh is the per-person transmission efficiency (that is, probability that infection is successfully

transmitted from vector to human given an infected bite), then the rate at which VL is transmitted to
humans is

λvh = bmv:hβvh
Iv
Nv
≈ ρβvh

Iv
Nv
≈ `βvh

Iv
Nv

(8)

using Equations (5) and (6).174
Similarly, we can derive the infection rate in the vector population generated by infected humans. If ¯̀

accounts for the average number of times a sandfly lands on humans per unit time, then the total number
of effective landings by all sandflies on all humans is

¯̀Nv
Sh
Nh

+ ¯̀Nv
Ah
Nh

+ ¯̀Nv
Ih
Nh

+ ¯̀Nv
Th
Nh

+ ¯̀Nv
Rh
Nh

.

It should be noted that the total `Nh = ¯̀Nv and that, while accounting for new incidences in sandflies,
we are interested in landings occurring from susceptible sandflies on infected humans only. Hence, the
term

¯̀Nv
Ih
Nh

= `Nh
Ih
Nh

= `Ih

is the one that plays a role in accounting for new sandflies incidences, while the remaining terms aren’t. If
we let βhv be the per-person transmission efficiency from human to vector (i.e., transmission probability
per bite on infectious humans that leads to infection in a susceptible sandfly), then the total number of
sandflies who acquire infection while effectively landing on infected humans per unit time is

λhvSv = βhv`Ih
Sv
Nv

= βhv`
Ih
Nh

1
mv:h

Sv ≈ βhvb
Ih
Nh

Sv (9)

using Equations (5) and (6).175

3 Analysis176

In this section, we derive from the model an expression for the average number of secondary infections177
generated by an infected individual (referred here as the control reproduction number), as well as ex-178
pressions for the prevalence of different types of the populations. We also discuss the procedures used for179
estimating model parameters.180
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3.1 Stability Analysis181

The analysis of Model (1)–(2) shows that it has two equilibriums, namely, the Disease Free Equilibrium182
(DFE) and Endemic Equilibrium (EE). The existence and stability of the equilibriums depends on the183
threshold ratio, the reproduction number, first introduced by Sir Ronald A. Ross in his 1911 seminal184
work on malaria [41] and it provides a measure of the risk posed by an invading disease in a population185
without any intervention for the disease. The control reproduction number, RC , is a similar ratio defined186
as the number of secondary infections caused by a single infective introduced in a primarily susceptible187
population (i.e., N ≈ S0) but in the presence of interventions [12,20,53,84].188

Using our model, we compute RC using the next generation operator approach [12, 13,84], a process
that requires the computation of the matrix of new infection terms, F, and the matrix of transition
between compartments, V. The RC is the spectral radius of the next generation matrix, ρ

(
FV−1) (see

section B.1 for derivation), in the presence of treatment program (where the treatment rate is θh) and is
given by

RC (θh) =

√(
φh

(µh + φh) ·
βvh`

(µh + θh)

)
·
(
bβhv
µv

)
(10)

where ` is the landing rate on a human, b is the biting rate per sandfly, and βvh the number of infections
in humans generated by one infected vector. The expression φh

(µh+φh) ·
βvh`

(µh+θh) is the average number of
new cases vectors generated by one infected human and bβhv

µv
represent average number of new cases in

humans produced by one infected vector. Hence, RC (θh) is given by the geometric mean of two sub
“reproduction” numbers

Rhv (θh) = φh

(φh+µh) ·
`βvh

(θh+µh) and Rvh = bβhv

µv
(11)

where Rhv (θh) is interpreted as the number of secondary infections caused in humans through a bite of a189
single typical infectious sand fly into an entirely susceptible host population in the presence of treatment190
program while Rvh denotes the number of secondary infections in female sandflies caused by one newly191
introduced infected human.192

Remark 3.1. The DFE of Model (1–2) always exist and is globally asymptotically stable (LAS) if193
RC (θh) < 1 and unstable if RC (θh) > 1. (see Appendix B.4 for proof)194

Remark 3.2. The EE exists and is globally stable only when RC (θh) > 1 (see Section B.4 for proof).195

3.2 Robustness Analysis196

VL has received comparatively much less attention by researchers and policy makers as compared to197
many other tropical diseases and hence, is classified as one of the neglected diseases by WHO. There are198
limited number of studies that collect data to study VL patterns and even fewer studies that use such199
data in a dynamical model for evaluating control programs. In this research, we carry out a thorough200
literature review to identify what data is available and what is missing that may be needed to understand201
comprehensively VL dynamics for two most affected countries in the world.202

Since RC plays a key role in the transmission dynamics of VL and parameters are often not precisely203
measured in India and Sudan, studying parameter sensitivity of the model outputs including on RC204
becomes important if we wish to identify the pressure points of the system. Uncertainty (UA) and205
sensitivity (SA) analyses are used here to assess the robustness in the model results as a function of206
uncertainty in the estimated model parameters from available data. The analyses rely on the Latin207
Hypercube Sampling (LHS) and require the computation of the Partial Rank Correlation Coefficient208
(PRCC), a sensitivity index with respect to each of the model parameters [11, 54, 55]. The LHS scheme209
includes the generation of a stratified random sampling that ensures a systematic optimal exploration210
of the feasible parameter space. In the sampling, an input parameter X with a pre-defined probability211
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distribution function (PDF) is divided into N equiprobable subintervals. From each subintervals, a value212
is sampled. The N values for this parameter are randomly paired with the the corresponding N values213
of other parameters generated in the same way. The PRCCs is used to measure the degree of linear214
association between a model output and a parameter from a set of parameters, after influence of linearity215
from all other parameters of the set had been eliminated [54]. The calculated PRCCs and corresponding216
p-values value are used to rank sensitivity of the parameters to the output variable. The PRCC value of217
each imput parameter is considered statistically significant, with p-value< 0.05, if PRCC > |0.3|.218

Multiple data sources and reports were considered to obtain point estimates for each of the model219
parameters for which precise value was not obtained. Using the point estimates, a theoretical distri-220
bution is fitted to available data for corresponding parameter and random samples were generated via221
distribution. We assess the impact of variation in model parameters on estimates, as well as the level222
of influence, of each, on estimates of RC and the country specific prevalence. We develop approaches223
using our dynamic model to estimate country specific (India and Sudan) parameters for which data was224
unavailable and performed parametric uncertainty and sensitivity analysis on model based metrics that225
defines risk based on four different definitions: (i) RC , (ii) prevalence of asymptomatic humans, (iii)226
prevalence of symptomatic humans, or (iv) prevalence of infectious vectors.227

4 Results228

4.1 Parameter Estimation229

Model parameter estimates, and their ranges, and distributions were obtained for India and Sudan using230
prevalence data, published literature, and methodology developed in sections below [22,27,51,77,86]. In231
the case of the species of Phlebotomus sandflies, most of the parameter estimates were taken from data232
collected via field studies in parasitology and ecology literature [22, 27, 51]. We provide details of all pa-233
rameter estimates in Section C of Appendix and a summarize them in Table 2. We estimated parameters,234
for which precise data could not be obtained for India and Sudan, via our two developed approaches. In235
the next Section 4.1.2 we give a detailed discussion and procedure for estimating transmission probabilities236
of the model for both countries.237

4.1.1 Landing rate238

The nocturnal activities of various sandfly species start at around 6:00 pm – 9:00 pm, peaks between239
the hours of 11:00 pm – 1:00 am and ends between the hours of 3:00 pm and 6:00 am. A rapid rise240
to a maximum pick and then a sharp decline observed in data from various field studies suggest the241
probability distribution for biting and landing rate would best be fitted with a triangular distribution.242
However, most data represented more closely to landing rates and hence, in this section we show the fits243
of landing rate distribution. From the fitted data for each respective countries, the shape parameters244
(min, max, and mode) for the triangular distribution for landing rate was estimated from the sandflies245
trap data (see Figures 3a and 3b for P. Argentines and Figures 4a and 4b for P. Orientalis).246

4.1.2 Approaches for Estimating the Transmission Probabilities247

Lack of active surveillance, effective case identification and case management results in under-reporting of
cases and uncertainties in epidemiological parameter. A survey of the literature on mathematical studies
on VL dynamics revealed that estimates obtained for the transmission probabilities for VL are often
based on corresponding estimates for malaria, dengue and other well-studied vector-borne diseases. Con-
sequently, borrowing of parameter estimates from other established vector-borne models can contribute
epistemic uncertainties in the epidemic threshold and underestimate or overestimate model predictions.
To understand the impact of these uncertainties on parameter estimates, we used ranges for parameters
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(a) Seasonal collection of P. Argentines from
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Figure 3. Collected data of P. Argentines was first averaged over seasons and then fitted to the
triangular distribution to estimate parameters of the distribution representing landing rate. The mean
and 95% Confidence Interval for landing rate distribution are given in Table 2.
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Figure 4. Collected data of P. Orientalis was first averaged over months and then fitted to the
triangular distribution to estimate parameters of the distribution representing landing rate. The mean
and 95% Confidence Interval for landing rate distribution are given in Table 2.

for which we can obtain data with relatively high certainty and mathematical methods to estimate the
parameters representing transmission probabilities required in our model. Two novel approaches, that
uses endemic prevalence from the model, were designed to estimate the transmission probabilities as
described in the next two sub-sections. Note, the unique endemic equilibrium of the model is stable (as
shown in the Section 3) and is given by

E∗ = (S∗h, A∗h, I∗h, T ∗h , R∗h; S∗v , I∗v )

=
(

Λh
µh

(
R2 + βvh

)
βvh

R2
C (`βvh + µh) ,

Λh
(
R2
C − 1

)
G2µv

bφh (` βvh + µh)βhv
,
A∗hφh
G2

,
A∗hφh θh
G2G3

,
A∗hφh θh γh
G2G3µh

; ΛhΛv
S∗hµhµvR2

C

,
µhβhvbI

∗
hS
∗
v

µvΛh

)
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where G1 = φh+µh, G2 = θh+µh, and G3 = γh+µh. The explicit expressions of the infected components248
of the endemic equilibrium are249

A∗h = b`ΛhΛvβhvβvhφh −G1G2NhNvµhµv
2

βhv φh (`Λvβvh +Nvµhµv)G1b
≥ 0 (12)

I∗h = b`ΛhΛvβhvβvhφh −G1G2NhNvµhµv
2

βhv (`Λvβvh +Nvµhµv)G2G1b
≥ 0 (13)

I∗v = b`ΛhΛvβhvβvhφh −G1G2NhNvµhµv
2

` βvh (bΛhβhvφh +G1G2Nhµv)µv
. ≥ 0 (14)

Since VL is endemic in both India and Sudan, we use these expression to obtain prevalences and thereby250
use them to estimate transmission probabilities (i.e. βvh, βvh). We assume Λh = µhNh and Λv = µvNv251
and hence, the host and vector populations becomes constant. The prevalences in humans and sandflies252
populations are given by253

PIh
= I∗

h

N∗
h

= (` bϕ βhvβvh −G1G2µv)µh
βhv (` βvh + µh)G2G1b

(15a) PIv
= I∗

v

N∗
v

=(` bϕ βhvβvh −G1G2µv)µh
`βvh (bϕβhvµh +G1G2µv)

(15b)254

255

Approach 1: Fixing all model parameters for which data was available and assuming that humans and256
vectors prevalences are known, we obtain simultaneous equations in βhv and βvh using Equations (15a)257
and (15b). Solving the simultaneous equations, we get258

βhv = µvPIv

bPIh
(1− PIv

) (16a) βvh = G1G2PIh
µh

`PIv
(φµh −G1G2PIh

) (16b)259

The equations (16a) and (16b) along with the estimates of other model parameters and known sample260
host and vector prevalences are used to obtain estimates of the transmission probabilities. The estimated261
distributions using the this approach are given in Figure 5.262

Approach 2: In this approach, we rely on estimates of RC from modeling studies in literature to263
estimate the transmission probabilities for the two countries. Using Equation (10), the expressions (15a)264
and (15b) for the prevalences can be rewritten in terms of RC as follows:265

PIh
=

(
R2

C − 1
)
µvµh

βhv (` βvh + µh) b (17a) PIv
=
(
R2

C − 1
)
µh

βvh (R2
C + `) (17b)266

Isolating βvh and βhv from (17a) and (17b) we obtain,267

βhv =
µvPIv

(RC − 1) (RC + 1)
(
R2
C + `

)
PIh

((R2
C + PIh

− 1) `+ PIv
R2
C) b (18a) βvh =

(
R2
C − 1

)
µh

PIv
(R2

C + `) (18b)268

269
The estimated distributions using the this approach are given in Figure 5.270

4.2 Parameter uncertainty and sensitivity analyses271

Parameter uncertainty and sensitivity analyses are performed on two different quantities: the reproduc-272
tion number (RCI

for India and RCS
for Sudan) and the Prevalence of the infected populations (PAh

,273
PIh

, and PIv
). These analyses are used to assess which of the eight input parameters (b, `, βhv, βvh, µh,274

µv, φh, and θh) are most significant to estimating disease patterns.275

4.2.1 On RC276

Uncertainty and sensitivity analyses on the control reproduction numberRC (the outcome variable) assess277
critical parameters to disease dynamics. We fit a parametric probability density function (PDF) for each278
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Figure 5. Estimated distribution of βvh and βhv for India (a–b) and Sudan (c–d), respectively. A1
(A2) represents the distribution obtained using Approach 1 (Approach 2). A visual comparison of the
fitted gamma distribution together with the model obtained estimated transmission probabilities, βvh.

of the eight parameters to respective available data. In the case of the parameters b, µv, mh:v, βvh,279
βhv, µh, and µv a uniform distribution was generated since the minimum and maximum point estimates280
were only found in the literature. The parameters, φh, and θh were assigned a gamma distribution as281
estimated in previous study based on inverse problem approach (Mubayi et al. [57]). For each of the eight282
parameters with assigned probability distributions, sample sizes of 10, 000 values were randomly generated283
over ten independent realizations. Using LHS technique, in each of the realizations we paired randomly284
the first N samples of the first column (samples of first parameter) with N samples from the second285
column (samples of second parameter). After all eight parameters were paired without replacement; an286
LHS matrix was generated with rows and columns corresponding to parameters and entries of the LHS287
samples. Each row of parameters in the LHS matrix were considered to be random inputs variables for288
generating one value of RC using Equation (10). Thus, N × p LHS matrix (where p represents number289
of parameters on which RC depends) results in N samples for RC in each realization.290

After 10 realizations, the mean (µ) of point estimates of RC , standard error (σ) of RC , and the291
probabilities that RC estimates fall below and above the threshold value one for India and Sudan were292
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collected (Table ??). The mean estimated value for RC for India was found to be approximately 2.11,293
which greater than the corresponding mean estimated value of 1.30 for Sudan. The fact that India has294
the highest estimated incidence in the world (146,700 to 282,800 per year) roughly twice of that in Sudan295
having the highest in Africa (15,700 to 30,300 per year) [5,6], is not enough unless we are able to re-scale296
them appropriately, to make any conclusions on that largest differences in RC- values. These estimates297
of RC confirm the current VL status in India and Sudan. The difference in the magnitude of RC may be298
attributable to the fact that India carries a much greater burden of all new VL cases (almost more than299
50%) worldwide.300

Statistical analysis on the differences in the means of RC for India and Sudan was carried out using301
a t-test with H0 : MI = MS against H1 : MI 6= MS where the mean of RC for India was denoted as MI302
and for Sudan MS . The analysis suggested rejection of null hypothesis (Table 4), that is, the obtained303
point estimates of RC between India and Sudan are statistically different. Now that we have concluded304
that RC for India is indeed significantly higher than that the one for Sudan using model generated RC ,305
re-scaled by population size, we proceed to determine what are the parameters that if modified generates306
the larger change in RC .307

The PRCCs were calculated for each country in order to quantify sensitivity of model parameters on308
the RC estimates. We observe the sign and the magnitude of the PRCC values for each parameter above309
the line y = ±0.3 for each respective country.310

4.2.2 On endemic prevalences (PAh
, PIh

, and PIv
)311

Parameter uncertainty and sensitivity analyses are also performed on the Prevalence of the infected312
populations (PAh

, PIh
, and PIv ). These analysis are used to assess which of the same eight input313

parameters (b, `, βhv, βvh, µh, µv, φh, and θh) are most significant to estimating endemic prevalences.314
As described in the Section 4.2.1 on RC , the similar sensitivity and uncertainty analysis procedure315

was carried out on the endemic prevalences for both the countries. However, higher number of samples316
(50, 000) for each parameter were obtained. The first 10, 000 sample-sets (out of the 50, 000) that resulted317
in RC > 1 (condition for existence of the endemic prevalence) were eventually used in the analysis. This318
is because that endemic equilibrium only exists and stable when RC > 1 .319

4.3 Assessment for India320

4.3.1 Uncertainty and Sensitivity Analysis on RCI
321

The estimated distribution of RCI
from uncertainty analysis, is shown in Figure 7a. The mean estimate322

of RCI
for India is found to be 2.05 with a standard deviation of 1.09. The sensitivity analysis of RCI

323
provides the ranking of parameters based on their influence on RCI

(Figure 7e). In decreasing order of324
influence, the parameter ranking was θh, being the most sensitive parameter, followed by b, `, βvh, βhv,325
and the least sensitive parameters are φh followed by µv.326

4.3.2 Uncertainty and Sensitivity Analysis on the three Endemic Prevalences327

The estimated distributions of prevalence (PAh
, PIh

, and PIv
) are shown in Figure 7b–7d. The mean328

estimate of PAh
was found to be 0.0045 with a standard deviation of 0.0019. The parameter φh was329

found to be the most influential parameter on the prevalence of asymptomatic, PAh
. The remaining330

parameters in descending order of magnitude of PRCC were, θh, `, βvh, and βhv, with µv and µh being331
least sensitive parameters to PAh

. The sensitivity analysis performed on PIh
reveal that the treatment332

rate, θh is the most influential parameter for changing disease prevalence. The mean estimates of vector333
prevalence were found to be 0.0526 with a with a standard deviation of 0.0432. From our sensitivity334
analysis of PIv we observe in Table 7 and Figure 7h, that there are four most influential parameters.335
These parameters in decreasing order of ranks, are θh, βvh, b and µv.336
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Figure 7. Results for India: Uncertainty in the Reproduction Number (Subfigure 7a) and the
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Figure 6. Parameter distributions conditional on RC > 1 for India obtained from uncertainty analysis
of the prevalence
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4.4 Assessment for Sudan337

4.4.1 Uncertainty and Sensitivity Analysis on RCS
338
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Figure 8. Estimated distributions of the model parameters conditional on RCS
> 1 for Sudan obtained

from uncertainty analysis of the prevalence

The result of uncertainty analysis on RCS
is shown in Figure 9a, where the mean estimate of RCS

is 1.43,339
and the standard deviation is 0.6. From the Table 8 and Figure 9a we observe βhv, b, θh, βvh, `, and µv340
are most sensitive (in order of ranking) to RCS

. The first negatively correlated parameter was θh which341
indicated that treatment is effective for controlling infection, followed by µv which may relate to the342
impact of vector related control programs. The top two most positive parameters (i.e., positive PRCC)343
were βhv and b, which indicates that sandflies parameters may play a significant role in the estimation of344
RCS

.345

4.4.2 Uncertainty and Sensitivity Analysis on the Endemic Infected Prevalence346

For the asymptomatic prevalence, PAh
, we estimated a mean prevalence of 0.0024 with a standard347

deviation of 0.0018. Results of uncertainty analysis is shown for Sudan in Figure 9b. From Table 8 and348
Figure 9f, we observe that the prevalence of asymptomatic population is negatively correlated but most349
sensitive to φh, followed by the parameters βhv, θh, b, βvh, and `. The natural death rates, µv, and350
µh, in humans and sand flies, respectively were the least sensitive input parameters to the prevalence351
of asymptomatic humans. From our uncertainty analysis on PIh

(Figure 9c), we found the average352
prevalence estimate to be 0.0014 with a standard deviation of 0.0010. The results of our sensitivity353
analysis, summarize in Table 8 and displayed in Figure 9g shows that the treatment rate of infectious354
humans, θh, is the most influential parameter in determining prevalence level of clinical infection in355
humans. The infection related parameters, βhv,b , βvh and `, also plays a dominant role in disease356
persistence, but less than θh. Finally, the result of uncertainty analysis on the prevalence of infection357
in sand flies, PIv , shown in Figure 9d. The estimated sample mean of PIv is 0.0155 with a standard358
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Figure 9. Results for Sudan: Uncertainty of the Reproduction Number (Subfigure 9a) and the
Prevalence (Subfigures 9b –9d) of Asymtomatics, Infectious Humans and Infectious Sandflies,
respectively. Tornado plot showing partial rank correlation coefficients (PRCCs) of the Reproduction
Number (Subfigure 9e) and the Prevalence (Subfigures 9f –9h) of Asymtomatics, Infectious Humans and
Infectious Sandflies, respectively.

deviation of 0.0088. Our analysis identified the parameters sensitivity to changes in PIv
(Table 8 and359

Figure 9h). The result shows that the treatment rate, θh is the most dominant parameter followed by b,360
βvh, and µv. The less influential parameters on PIv are µh, `, φh, and βvh.361

4.5 Comparative Assessment of VL in India and Sudan362

Parameter estimates were obtained either from the literature or estimated from field data, and were used363
for an evaluation of country-specific risks. The risk was quantified to study differences and similarities in364
VL disease burden in India and Sudan. In this section, we conduct comparative (between two countries)365
assessment by studying impact of change in parameter estimations on VL disease burden in these two366
countries when risk is measured either in terms of RC or prevalence of infection. The assessment was367
based on uncertainty and sensitivity analyses..368
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Figure 10. A comparison of initially assigned distributions in Table 6 for model parameters (a) b, (b)
βvh, (c) βhv, (d) µh, (e) µv, (f) φh, (g) θh and (h) ` used in the sensitivity and uncertainty analyses for
the Indian and Sudan populations

4.5.1 Comparsion when risk is defined based on reproduction number369

The observed difference in the mean estimate of RCI
(≈ 2.0) and RCS

(≈ 1.4) could be because India370
has much higher levels of endemicity (almost more than 40%) as compared to Sudan. Statistical test was371
carried out to identify if there exist any significant differences in the estimated means of RC for India and372
Sudan (t-test with H0 : µ(RCS

) = µ(RCI
) against H1 : µ(RCS

) 6= µ(RCI
) where the µ represents mean373

of RCI
and RCS

). The analysis suggested rejection of null hypothesis (Table 9), that is, the obtained374
point estimates of RC between India and Sudan are different. We also performed Kolmogorov-Smirnov375
test between empirical distributions of RC for the two countries and found that empirical distributions376
are not the same.377
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Figure 11. (a) The comparison between estimated distributions of RC for India and Sudan. The box
plot compares the mean(◦), median, minimum, and maximum of RC estimates for both countries. It is
found that the gamma, is a best-fitted distribution for the samples from the uncertainty analysis.
Table 2 summarizes the parameter fitting for the gamma distribution for both countries. (b) The
empirical cumulative distributions of the RCs for India and Sudan
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Figure 12. Tornado diagrams of partial rank correlation coefficients, indicating the importance of all
eight input parameters that influence the threshold quantity RC . Figure shows a comparison of
sensitivity indices for India and Sudan. In both regions, the parameters that have PRCC > 0 indicates
an increasing influence on RC values and those having PRCC < 0 will decrease RC values.

The outcome of the sensitivity analysis (shown in Table 10 and Figures 12; in order of magnitude)378
highlights difference in influence of parameters for India and Sudan. In Figures 12 we observe the sign379
and the magnitude of the PRCC values for each parameter. We observe that all parameter, (namely, b, `,380
βhv, βvh, and θh) are the most important parameters of RC for both countries. The parameters b, `, βvh,381
and βhv with positive PRCC values indicate positive impact on RC for both countries. The parameter382
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θh plays a negative role on the estimation of RC , that is, one unit increase in θh will result in one unit383
decrease in RC estimate.384

4.5.2 Comparative assessment if risk is based on different prevalences385

Point Prevalence of Asymptomatic (PAh
): Although the level of PAh

, can be determined by how386
much RC is greater than unity, it is useful to understand the risk posed by an asymptomatic individuals387
during intensive control. We show that there is a significant difference between the point prevalence388
of asymptomatic for India (Mean(SD)=0.0037 (0.003)) and Sudan (Mean(SD)=0.0024 (0.002)). There389
is also a significant statistical difference between the PAh

-distribution of the two countries (two-sample390
Kolmogorov–Smirnov test, p < 0.050). Combining the results in section 4.3.2 and 4.4.2 we compare the391
results of sensitivity analysis on PAh

for both countries. We observe from Figure 13c that the most392
sensitive parameter to both countries in descending order are φh, θh, `, βvh, βhv , and b and the least393
sensitive parameter in common to both regions are µv and µh. From Table 11 and Figure 13c we observed394
that the two countries differ in order of the parameter ranking with the most sensitive parameter being,395
φh. In descending order they are as follows: for India, we have θh, `, βvh, βhv, and b and for Sudan, we396
have βvh, θh, b , βhv, and `.397
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Figure 13. Comparison of uncertainty and sensitivity analysis results on the equilibrium prevalence of
asymtomatics humans (PIh

): (a) Frequency distributions for contributions, (b) empirical cumulative
distributions, and (c) tornado diagrams of partial rank correlation coefficients

India Sudan
Parameter PRCC(PAh

) Rank Parameter PRCC(PAh
)

φh −0.8638 1 φh −0.8080
θh −0.6664 2 βhv 0.6856
` 0.5875 3 θh −0.6843
βvh 0.5662 4 b 0.6473
βhv 0.5132 5 βvh 0.6247
b 0.3391 6 ` 0.4657
µv −0.2740* 7 µv −0.2504*
µh 0.1205* 8 µh 0.0993*

Table 11. A comparison of the partial rank correlation coefficients for input parameters of the output
value (PAh

). Where (*) denotes p < 0.01. for India and Sudan.

Point Prevalence of Infectious humans (PIh
): The results showed that there is a significant398
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differences between the point prevalence of Infected humans for India (Mean(SD)=0.0053 (0.005)) and399
Sudan (Mean(SD)=0.0014 (0.001)). Using p-value< 0.05, the two-sample Kolmogorov–Smirnov test,400
suggests statistically significant difference between the distributions corresponding to two countries (see401
Figure 14a - 14b). Sensitivity analysis shows that PIh

is most sensitive to θh, ` , b, βvh, and βhv and402
least sensitive to µh, µv and φh for both countries (Table 12 and Figure 14c). The treatment rate, the403
first most sensitive parameter, and µv, µh and φh in same decreasing order of influence, are common404
parameters for both countries. For India, parameters ranking in descending order is `, βvh, βhv and b405
whereas for Sudan the order of parameters is βvh, b , βhv, and `.406
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Figure 14. Comparison of result from uncertainty and sensitivity analysis results on the equilibrium
prevalence of infected humans (PIh

): (a) Frequency distributions for contributions, (b) empirical
cumulative distributions, and (c) tornado diagrams of partial rank correlation coefficients.

India Sudan
Parameter PRCC(PIh

) Rank Parameter PRCC(PIh
)

θh −0.9486 1 θh −0.9235
` 0.5761 2 βhv 0.7187
βvh 0.5482 3 b 0.6794
βhv 0.5104 4 βvh 0.6565
b 0.3226 5 ` 0.4972
µv −0.2736* 6 µv −0.2675*
µh 0.1109* 7 µh 0.1050*
φh 0.0171* 8 φh 0.0275*

Table 12. A comparison of the partial rank correlation coefficients for input parameters of the output
value (PIh

). Where (*) denotes p < 0.01. for India and Sudan.

Point Prevalence of of Infected sandflies (PIv ): We showed that there is also a significant differ-407
ence between the point prevalence in infected sand flies for India (Mean(SD)=0.0519 (0.042)) and Sudan408
(Mean(SD)=0.016 (0.009)), however, there is no statistical difference between the two distributions (Fig-409
ure 15a - 15b using two-sample Kolmogorov–Smirnov test, p < 0.05). Parameters b, θh, µv, and βvh410
were most sensitive to the prevalence of infection in sand flies, PIv

, for both countries (see Table 13 and411
Figure 15c). Between the two parameters, βhv (b) is relatively more sensitive for India (Sudan). The412
least important parameter were µh, `, φh, and βhv with the exception that the ranks of ` and βhv are413
different.414
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Figure 15. Comparison of uncertainty and sensitivity analysis results on the equilibrium prevalence of
infected sandfies (PIv

): (a) Frequency distributions for contributions, (b) empirical cumulative
distributions, and (c) tornado diagrams of partial rank correlation coefficients.

India Sudan
Parameter PRCC(PIv

) Rank Parameter PRCC(PIv
)

θh −0.9495 1 θh −0.9233
βvh 0.8952 2 b 0.8992
b 0.7368 3 βvh 0.8898
µv −0.6722 4 µv −0.5325
µh 0.1618* 5 µh 0.2369*
` −0.0215* 6 βhv −0.0487*
βhv −0.0149* 7 ` −0.0420*
φh 0.0036* 8 φh 0.0048*

Table 13. A comparison of the partial rank correlation coefficients for input parameters of the output
value (PIv

). Where (*) denotes p < 0.01. for India and Sudan.
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India Sudan
Parameters Min Mean Max Min Mean Max
Fixed

b - 2.08 - - 1.6208 -
µh - 4.54e-5 - - 4.3e-5 -
µv - 0.0833 - - 0.0857 -
φh - 0.00975 - - 0.0098 -
θh - 0.0083 - - 0.0143 -

Varied
Ph 0.0024 - 0.0027 0.0013 - 0.0015
Pv 0.0054 - 0.0157 0.054 - 0.037
` 8.68 12.15 17 15.7 32 48.3
βhv 0.025 0.012 0.038 0.0032 0.0167 0.041
RC 1.3 2.0 2.1 1.1 1.3 1.5

Estimates using Approach 1
βvh 0.21 0.44 0.7 0.24 0.53 0.95
βhv 0.00015 0.00035 0.00091 0.00013 0.00042 0.0012

Estimates using Approach 2
βvh 0.19 0.4 0.64 0.2 0.41 0.68
βhv 4.9e-05 0.00013 0.0004 3.6e-05 0.00011 0.00037

Table 3. Summary of estimates of the transmission probabilities, βhv and βvh, using the two
approaches with mean and ranges for other parameters (Table 2) for India and Sudan were fixed.

Country RC estimated values
India MI : Mean(SD) 2.11 (1.6)
Sudan MS : Mean(SD) 1.31 (0.79)

95% CI of |MI −MS | (0.77, 0.84)

T-test H0 : |MI −MS | = 0
P − value < 0.05

Test statistic
tstat(Value of the test statistic): 146.0191

Degrees of freedom of the test : 19998

Table 4. Mean RC estimates and results of statistical test for testing differences of RC between India
and Sudan

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592220doi: bioRxiv preprint 

https://doi.org/10.1101/592220
http://creativecommons.org/licenses/by/4.0/


24

Similarity & Differences
Critical risk factors for the VL dynamics in
both countries are: (i) Sandfly biting rates
and (ii) Transmission rates between vector
and human host

Treatment rate is critical for controlling
outbreaks in India but less important in case
of controlling outbreaks in Sudan.

Infection transmission related (mean estimates for India are higher than that of Sudan)
India [mean (std)] Sudan [mean (std)]

βvh = 0.45 (0.17) βvh = 0.27 (0.09)
βhv = 0.0005 (0.0002) βhv = 0.0002 (0.0001)
RC = 2.1 (1.1) RC = 1.3 (0.6)
P (RC > 1) = 0.73 P (RC > 1) = 0.58

Sandfly ecology related (mean estimates for Sudan are higher than that of India)
India [P. Argentipes] Sudan [P. Orientalis]

b = 1.6 per day (Avg. biting rate) b = 1.8 per day
` = 8.3 per day (Avg. landing rate) ` = 32.0 per day
1/µv = 10.0 days (Avg. adult life span) 1/µv = 11.1 days

Table 5. Comparing and contrasting risk factors that are critical to VL dynamics between India and
Sudan.

Parameter India Sudan
b T (0.8, 1.6, 2.5) T (0.35, 1.8, 3.4)
` T (0.55, 8.3, 17) T (16, 32, 48)
φh G (5.5470, 0.0021) G (5.2727, 0.0018)
βvh G(7, 7.5e− 05) G(6.3, 3.7e− 05)
βhv U (0.16, 0.73) U (0.12, 0.42)
θh U (0.0014, 0.0167) U (0.0082, 0.0329)
µh U (4.1e− 5, 4.5e− 5) U (4e− 5, 4.5e− 5)
µv U (0.0667, 0.1250) U (0.071, 0.1)

Table 6. Estimated parametric distribution of the model parameters for India and Sudan. The
notations are → Triangular: T (min,mode,max); Gamma: G(shape, scale); Uniform: U (min,max).

Output RCI
PAh

PIh
PIv

Rank Parameter PRCC Parameter PRCC Parameter PRCC Parameter PRCC
1 θh −0.89 φh −0.86 θh −0.95 θh −0.95
2 ` 0.83 θh −0.67 ` 0.58 βvh 0.9
3 βvh 0.8 ` 0.59 βvh 0.55 b 0.74
4 βhv 0.77 βvh 0.57 βhv 0.51 µv −0.67
5 b 0.57 βhv 0.51 b 0.32 µh 0.16*
6 µv −0.51 b 0.34 µv −0.27 * ` −0.021*
7 φh 0.025* µv −0.27 * µh 0.11* βhv −0.015*
8 µh 0.016* µh 0.12* φh 0.017* φh 0.0036*

Table 7. Shows the PRCCs by rank of importance for the input parameters of the output value RC ,
PAh

, PIh
, and PIv for India. (*) denotes PRCCs that are non-significant.
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Output RCS
PAh

PIh
PIv

Rank Parameter PRCC Parameter PRCC Parameter PRCC Parameter PRCC
1 βhv 0.88 φh −0.81 θh −0.92 θh −0.92
2 b 0.87 βhv 0.69 βhv 0.72 b 0.9
3 θh −0.87 θh −0.68 b 0.68 βvh 0.89
4 βvh 0.85 b 0.65 βvh 0.66 µv −0.53
5 ` 0.71 βvh 0.62 ` 0.5 µh 0.24
6 µv −0.4 ` 0.47 µv −0.27 * βhv −0.049*
7 φh 0.024* µv −0.25 * µh 0.1* ` −0.042*
8 µh −0.024* µh 0.099* φh 0.028* φh 0.0048*

Table 8. The PRCCs by rank of importance for the input parameters of the output values of RCS
,

PAh
, PIh

, and PIv
for Sudan. (*) denotes p < 0.01.

Comparison between India(I) and Sudan(S)India(I) Sudan(S) 2-Sample-t-test K–S test
Output

Mean SD Mean SD t–statistic 95% CI KS–statistic
RC 2 1.1 1.44 0.559 48.673 (0.5853, 0.6344) 0.2721
PAh

0.00444 0.0019 0.0024 0.0018 44.06 (0.0013, 0.0014) 0.3007
PIh

0.00534 0.00537 0.0014 0.001 72.689 (0.0039, 0.0041) 0.4904
PIv

0.0519 0.0424 0.016 0.0088 83.271 (0.0365, 0.0382) 0.6211

Table 9. Statistical estimates of quantities, RC , PAh
, PIh

, and PIv
, for VL in Sudan and India using

the 2 sample t-test and two-sample Kolmogorov–Smirnov test. All analysis were found to be significant,
i.e. p < 0.05.

India Sudan
Parameter PRCC(RC) Rank Parameter PRCC(RC)

θh -0.8867 1 βhv 0.8829
` 0.8279 2 b 0.8677
βvh 0.8025 3 θh -0.8673
βhv 0.7729 4 βvh 0.8480
b 0.5715 5 ` 0.7052
µv -0.5051 6 µv -0.4017
φh 0.0247* 7 φh 0.0243*
µh 0.0157* 8 µh -0.0236*

Table 10. A comparison of the partial rank correlation coefficients for input parameters of the output
value (RC), where (*) denotes p < 0.01. for India and Sudan.
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5 Discussion415

The regional risk factors associated with VL are complex and ambiguous. In face of this uncertainty416
systematic evaluation of ongoing VL control programs is essential but it remains challenging, as appro-417
priate measures of long-term success (where success correspond primarily to no locally acquired cases)418
with response to changing environmental and political platforms are needed. The objectives of this419
systematic mathematical analysis is to identify and classify risk factors for India and Sudan using the420
best available field evidence and data. It will help in determining the gaps in existing knowledge and421
control and optimally allocating limited resources of the regions. Literature searches were carried out422
using public health databases, cross sectional and cohort studies, government reports, and information423
from patients at Rajendra Memorial Institute of Medical Sciences. Due to the limited longitudinal data424
and no publications with information on comparisons between regions, consistent results could not be425
found and hence uncertainty and sensitivity analysis help was taken to magnify and identify the missing426
piece. Most data studies in the literature did not describe information on the criteria of selection of427
participants in sufficient detail, controlled for confounding variables, or used only one diagnostic test as428
proof of infection, hence in this study we used multiple data sets to obtained ranges of the parameters.429

This is the first study to best of our knowledge that review and make use of extensive collection of430
available data on epidemiological and ecological parameters to understand the dynamics of the Visceral431
Leishmaniasis (VL) and identify risk factors in India and Sudan using mathematical modeling approach.432
The study compares and contrasts quantities from two nations where the disease is endemic and spread433
via the same VL parasite species and hosts. The sources of the data were used to estimate parameters434
and uncertainty and sensitivity analysis was conducted on the model’s outcome. Parameter estimates435
were restricted specifically to India and Sudan to measure the current level of endemicity of VL in both436
nations. The dynamics of the model depends on the VL basic and control reproductive numbers (R0) and437
(R), which measures the likelihood and severity of an outbreak. The estimated value of the VL control438
reproductive number is found to be twice for India(2.1) as compared with Sudan(1.3). Uncertainty439
analysis on the RC also showed that there were eight parameters (see Table 2) that should be taken440
into consideration when assessing the uncertainty associated with the risk of increasing levels of VL. The441
parameter sensitivity analysis RC suggests that the biting rate, the average number of vectors per person442
in a given day, the probability of infection transmission between vector and humans, and the treatment443
rate were the most influential parameters in the complex disease transmission cycle between sand flies444
and humans for both countries. However, the order of parameter sensitivity differ between India and445
Sudan. The biting rate, of the P. Argentipes in India and the P. Orientalis in Sudan were also shown to446
be the highest contributing factor to the disease’s severity. Hence, controls reducing the biting rate may447
be the most effective in controlling VL.448

In India the P. Argentipes is the main sand fly species responsible for transmission of VL to human449
populations. During1960’s the man-biting rate of sand flies was significantly reduced from DDT spraying450
applications that were employed in the malaria eradication campaign and designed to kill mosquito451
vectors. This campaign reduced the number of VL cases during this period (1962-1963,) showing no new452
prorated cases. It was observed that soon after the DTT spraying campaign stopped the number of VL453
cases were elevated to higher epidemic levels [5]. High treatment rate is also found to be a critical factor454
in impacting the dynamics of VL but primarily in India. However, we assumed effective treatment for all455
individuals in the model and did not consider efficacy and toxicity of available drugs. These assumptions456
may influence our findings.457

This is an attempt to understand the collective impact of some risk factors contributing to the VL458
burden in two distinct geographical regions. The results are based on model’s parameter estimates459
collected and estimated from the available VL data reports. The study was limited to the particular460
regions of interest as well as to the time period in which data are obtained to estimate some of the461
parameter estimates from literature were established. As with similar studies, this research also had462
some limitations. For instance the data used came from various sub-regions and during different time463
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periods and therefore may not be a representative of the country. However, the study clearly identifies464
the type of data that are relevant and needs to be collected for thoroughly understanding of VL dynamics.465
In our future research, we plan to provide elaborate analytical methods for the estimation of partially466
observed data (usually temporal incidence data) for the two developing countries.467
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Supporting information753

A Complete Model Derivation754

The dynamics of Leishmania donovani transmission in humans and sandflies are modeled by the system of755
equations given by model (1)–(2) in which the force of infection is modeled by Equation C. Newly infected756
but not yet infectious individuals move into the asymptomatic population (sub-clinical infection, exposed757
to VL but not yet infectious), who may exit the system through natural death or through progress to758
clinical VL. The change in Ah population is759

dAh
dt

= λvhSh − (φh + µh)Ah.

The asymptomatic can then progress to a VL clinical symptoms stage (Ih) at the rate φh:760

dIh
dt

= φhAh − (µh + θh) Ih,

where θh is the per-capita treatment rate and µh is the per-capita departure rate. The infectious indi-761
viduals with clinical symptoms may enter treatment (Th) at the rate θh. Through successful treatment,762
individuals recover at the rate γh, and hence763

dTh
dt

= θhIh − (γh + µh)Th.

The population of recovered individuals from VL (Rh) is increased following successful treatment, leading764
to permanent immunity into the Rh class (at the rate γh). The population is decreased by natural death765
and is given by766

dRh
dt

= γhTh − µhRh.

The population of new female sandflies (Sv) is increased by an adult recruitment rate (λv) and decrease767
by natural mortality (µv). The vector in this population can acquire the L. Donovani parasite from an768
infectious human at a rate λv and is modeled by Equation 4. The change in the susceptible population769
is described by770

dSv
dt

= Λv − λhvSv − µvSv.

The population of infected female sandflies is generated at the per-capita rate λhv and diminished by the771
natural death rate µv. Thus,772

dIv
dt

= λhvSv − µv.

B Details of the Analytical Results of VL Model773

B.1 Derivation of the Control Reproductive Number774

For simplification, we let G1 = φh + µh, G2 = θh + µh and G3 = γh + µh. Considering the infected sub-
populations Ih(t), Ah(t), and Iv(t), we let F be the rate of new infections into the infected compartments
and V be the rate of exit of humans into infected compartments:

d

dt

 Ah
Ih
Iv

 = F − V =

 bmv:hβvhIvSh

Nv

0
bβhvIhSv

Nh

−
 (φh + µh)Ah
−φhAh + (θh + µh) Ih

µvIv

 . (19)
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We apply the next generation operator method presented in [84], where F is considered to be the vector775
of rates of inflow of new infections in each compartment and V = V+ + V− is the vector of rates776
transfer rates of individuals into and out of the infective compartments by all other processes. Taking777
the Jacobian matrix of each vector with respect to each of the infectious classes and evaluating at778
E0 = (Λh/µh, 0, 0, 0, 0,Λv/µv, 0) gives779

F =

 0 0 bmv:hβvh
0 0 0
0 bβhvΛvµh

Λhµv
0

 and V =


G1 0 0

−φh G2 0

0 0 µv

 . (20)

Computing FV−1, we obtain780

FV−1 =


0 0 bmv:hβvh

µv

0 0 0
bβhvΛvµhφh

µvΛhG1G2

bβhvΛvµh

µvΛhG2
0

 . (21)

Taking the spectral radius of the next generation matrix operator, ρ
(
FV−1), gives781

RC = ρ
(
FV−1) =

√
bβhv
µv
· bβvhφh

(φh + µh) (θh + µh) ·mv:h. (22)

B.2 Positivity and Boundedness of Solutions782

Since this model is of epidemiological relevance, all its associated parameters are non-negative. Further,783
the following non-negativity result holds. The state variables of the model (1) are non-negative for all784
time, so solutions are positively invariant in Ω = Ωh × Ωv, where785

Ωh =
{

(Sh, Ah, Ih, Th, Rh) ∈ R5
+ : Sh +Ah + Ih + Th +Rh ≤

Λh
µh

}
,

Ωv =
{

(Sv, Iv) ∈ R2
+ : Sv + Iv ≤

Λv
µv

}
.

Remark B.1. If all initial conditions start in region Ω = Ωh × Ωv, then all corresponding solutions786
(Sh, Ah, Ih, Th, Rh, Sv, Iv)′ are non-negative for all t > 0, where ′ means vector transpose.787

Proof. Because this model is of epidemiological relevance, we first show that the region Ω is positively788
invariant in R7

+, with respect to the system (1) and (2). It is easy to see that Ṡh |Sh=0> 0, Ȧh |Ah=0>789

0, İh |Ih=0> 0, Ṫh |Th=0> 0, Ṙh |Rh=0> 0, Ṡv |Sv=0> 0, İv |IV =0> 0. Hence, all trajectories point to inside790
the region Ω (where the dot means derivative with respect to time). Also, the time derivative along all791
solutions of (1) is792

dNh
dt

= Λh −Nhµh
≤ Λh −Nhµh.

It is clear that dNh/dt < 0 if Nh > Λh/µh. Hence, on applying a (comparison) theorem from Birkhoff793
and Rota ( [10]) on differential inequality, we get794

0 ≤ Nh (t) ≤ Λh
µh

+
(
Nh(0)− Λh

µh

)
e−µht.
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When t → ∞, then Nh < Λh/µh. Thus, for initial conditions Nh(0) < Λh/µh, we have Nh(t) < Λh/µh.795
Similarly, let (Sv, Iv) ∈ R2

+ be the solution with non-negative initial solution. Taking the time796
derivative along the sum of all solutions curves of model (2) gives797

Nv
dt

= Λv −Nhµh
≤ Λv −Nhµh.

By differential inequality theorem in [10], we find798

0 ≤ Nv (t) ≤ Λv
µv

+
(
Nv(0)− Λv

µv

)
e−µvt,

where Nv (0) represents the initial sandfly population at the initial phase of the disease. As t→∞, the799
inequality becomes800

0 ≤ lim
t→∞

Nv (t) ≤ Λv
µv
.

In particular, we have Nv(t) < Λv/µv if Nv(0) < Λv/µv. Hence the region Ω is positively invariant.801
Furthermore, if we start with initial conditions Nh(0) > Λh/µh and Nv(0) > Λv/µv, then either the802
solutions enter Ω in finite time or Nh(t)→ Λh/µh and Nv(t)→ Λv/µv, as t→∞.803

804
Hence, for the model (1–2), the compact set Ω is a positively invariant and absorbing set that attracts805

all solutions of model (1–2) starting in R7
+.806

B.3 Stability Analysis of the Disease-Free Equilibrium Point (DFE)807

B.3.1 Local stability of the Endemic Equilibrium (DFE)808

Remark B.2. The disease-free equilibrium point, E0, of model system 1- 2 is locally asymptotically stable809
(LAS) if RC < 1, and unstable if RC > 1.810

Proof. Linearization at DFE gives

J(E0) =



−µh 0 0 0 0 0 −bβvh
0 −G1 0 0 0 0 bβvh

0 φh −G2 0 0 0 0

0 0 θh −G3 0 0 0

0 0 0 γh −µh 0 0

0 0 − bβhvΛvµh

µvΛh
0 0 −µv 0

0 0 bβhvΛvµh

µvΛh
0 0 0 −µv


(23)

The characteristic polynomial of the Jacobian matrix J(E0) is given by

P (λ) = (λ+ µv) (λ+ µh)2 (λ+G3)
(
λ3 + h2λ

2 + h1λ+ h0
)

(24)

where h0 = µv (φh + µh) (θh + µh)
(
1−R2

C

)
, h1 = (G1 + G2)µv + G1G2 and h2 = G2 + G1 + µv.811

We observe that four eigenvalues for this polynomial have negative real parts, and are given by λ =812
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{−µv,−G3,−µh,−µh} with geometric multiplicity of two. The remaining expression is a cubic polyno-813
mial, P (λ) = λ3 + h2λ

2 + h1λ+h0. Applying the Routh-Hurwitz criteria [43], we find the conditions for814
all eigenvalues to have negative real parts, that is H1 = h1 > 0, H2 = h0 > 0, and H3 = h2h1 − h0 > 0.815
Thus by Routh-Hurwitz criteria, E0 is locally asymptotically stable for RC < 1 and is unstable for816
RC > 1.817

818

B.3.2 Global Stability of the Disease-free Equilibrium (DFE)819

Remark B.3. The disease-free equilibrium E0 =
(

Λh

µh
, 0, 0, 0, 0, Λv

µv
, 0
)

of model system 1- 2 is globally820

asymptotically stable in Ω whenever RC < 1 and unstable if RC > 1.821

Proof. Consider a candidate Lyapunov function defined in Ω,

L (t) =L1

(
Sh − S∗h − S∗h log

(
Sh
S∗h

))
+ L2Ah + L3Ih

+ L4

(
Sv − S∗v − S∗v log

(
Sv
S∗v

))
+ L5Iv

(25)

where the constants Li, i = 1...5 are taken to be L1 = L2 = µhR2
C , L3 = L2

φh
, and L4 = L5 = µvR2

C

bβvh
.822

The function L is positive definite, in the sense that it vanishes only at the disease-free equilibrium while823
otherwise it is positive in Ω. Moreover, taking the time derivative of the function in (25) along solutions824
of system 1–2 and then substituting the expression for the derivatives, gives825

˙L =L1

(
1−

S∗h
Sh

)(
Λv −

bβvhIvSh

N∗
h

− µhSv

)
+ L2

(
bβvhIvSh

N∗
h

−G1Ah

)
+ L3 (φhAh −G2Ih)

+ L4

(
1−

S∗v
Sv

)(
Λv −

bβhvSvIh

N∗
h

− µvSv

)
+ L5

(
bβhvSvIh

N∗
h

− µvIv

) (26)

826
Substituting the Li constants in equation 26 and then grouping and collecting terms, gives

L̇ = µhR2
C

(
2−

Sh

S∗
h

−
S∗h
Sh

)
+
µvR2

C

bβvh

(
2−

Sv

S∗v
−
S∗v
Sv

)
+
(
R2

C − 1
) µv

φh

(
G1R2

CG2Kh + bβvhKvφh

)
. (27)

The first two terms are negative, as the arithmetic mean is greater than or equal to the geometrical mean.827
However, the third term is negative for values of RC < 1. Therefore, by Lyapunov-LaSalle asymptotic828
stability [52], the disease-free equilibrium E0 is globally asymptotically stable if RC < 1 for all t > 0.829

B.4 Stability Analysis of the Endemic Equilibrium Point, E∗830

As a result of no disease deaths, observeD in Figure ??, the existence of a DFE and an Endemic Equilib-831
rium (EE) that depends on RC . In this section, we show the local and global stability of the EE when832
R∗C become 1.833

Remark B.4. If RC > 1, then the unique positive endemic equilibrium(EE), E∗, for Model system834
equations 1–2 is locally asymptotically stable.835

Proof. The EE of the Model system equations 1–2 is given by E∗. The Jacobian matrix at EE gives by836
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J(E∗) =



−bβvhI∗v − µh 0 0 0 0 0 −bβvhS∗

bβvhI
∗
v −G1 0 0 0 0 bβvhS

∗

0 φh −G3 0 0 0 0

0 0 θh −G3 0 0 0

0 0 0 γh −µh 0 0

0 0 −bβhvS∗v 0 0 −bβhvI∗h − µv 0

0 0 bβhvS
∗
v 0 0 bβhvbβhvI

∗
h −µv


.

It’s characteristic polynomial is given by

P (λ) = (λ+ µh) (λ+G3) (µv + λ)
(
λ4 + h3λ

3 + h2λ
2 + h1λ+ h0

)
,

where837

h3 =bβvhI∗v + bβhvI
∗
h +G2 +G1 + µv + µh,

h2 =b2βhvI∗hβvhI∗v + bβhvI
∗
hµh + µvbβvhI

∗
v +G2bβvhI

∗
v + bβhvI

∗
hG2

+G1bβvhI
∗
v + bβhvI

∗
hG1 +G1µh + µvµh +G2µh + µvG2 + µvG1 +G2G1,

h1 =
φh,βhvb(βvhµhβhvφh (G1+G2)b2+((G2+µv)G1+µvG2)G1G2βvhb+µhG2

2G1
2)µh

G1(G2G1µv+µhbβhvφh)G2

+
G1G2µvµh

(
R2
C − 1

)
bβvh + µh

,

h0 =µvµhG1G2
(
R2
C − 1

)
.

We observe that the characteristic polynomial P (λ) can be factored to roots λ = −µh,−µv,−G3 and838
P (λ) =

(
λ4 + h3λ

3 + h2λ
2 + h1λ+ h0

)
. Applying the Routh-Hurwitz conditions: hi > 0, (i = 0, ..., 4),839

h1h2 − h0h3 > 0, and h1h2h3 > h1 + h0h
2
3, we find that840

h1h2 − h0h3 = IhIvβvhβhv (Ihβhv + Ivβvh) b3 +
[

(Ihβhv + Ivβvh)2
G1 + (Ihβhv + Ivβvh)2

G2

+Iv2µvβvh
2 + 2 IhIvβhv (µh + µv)βvh + Ih

2µhβhv
2

]
· b2

+
[

(Ihβhv + Ivβvh)G2
1 + 2 (Ihβhv + Ivβvh) (G2 + µh + µv)G1 + (Ihβhv + Ivβvh)G2

2

+2 (µh + µv) (Ihβhv + Ivβvh)G2 + 2 Iv (µh + 1/2µv)µvβvh + Ihµhβhv (µh + 2µv)
]
· b

+ ((G2 + µh + µv)G1 + (µh + µv) (G2 + µh)) (G1 +G2 + µv) > 0
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h1h2h3 − h2
1 + h0h

2
3 =

[
βhvIhIvβvh (G1 +G2) b2+

+ (((Ihβhv + Ivβvh)G2 + µhβhvIh + µvβvhIv)G1 +G2 (µhβhvIh + µvβvhIv)) a

+µh ((G2 + µv)G1 + µvG2)
]
·

[(
b2IhIvβvhβhv+

+ ((Ihβhv + Ivβvh)G1 + (Ihβhv + Ivβvh)G2 + µhβhvIh + µvβvhIv) b

+ (G2 + µh + µv)G1 + (µh + µv)G2 + µhµv

)
−βhvIhIvβvh (G1 +G2) b2

−

(
((Ihβhv + Ivβvh)G2 + µhβhvIh + µvβvhIv)G1 +G2 (µhβhvIh + µvβvhIv)

)
b

−µh ((G2 + µv)G1 + µvG2)
]

− (b (Ihβhv + Ivβh) +G1 +G2 + µh + µv)2
bG1G2 (aIhIvβvhβhv + µhβvIh + µvβvhIv)

> 0

hold when RC > 1. Thus, the endemic equilibrium, E∗, is locally asymptotically stable because all841
eigenvalues of the septic polynomial have all negative real parts for RC > 1.842

B.4.1 Global stability of the Endemic Equilibrium (EE)843

Remark B.5. If RC > 1, then the unique positive endemic equilibrium, E∗, for Model (1–2) is globally844
asymptotically stable.845

Proof. Consider a candidate Lyapunov function defined in Ω,

L (t) = L1

[
Sh − S∗h − S∗h log

(
Sh
S∗h

)]
+ L2

[
Ah −A∗h −A∗h log

(
Ah
A∗h

)]
+ L3

[
Ih − I∗h − I∗h log

(
Ih
I∗h

)]
+ L4

[
Sv − S∗v − S∗v log

(
Sv
S∗v

)]
+ L5

[
Iv − I∗v − I∗v log

(
Iv
I∗v

)]
,

(28)

where the constants Li, i = 1...5 are given by L1 = L2 = N∗
h

bβvhI∗
vS

∗
h

, L3 = 1
φhA∗

h
, and L4 = L5 = N∗

h

bβhvS∗
vI

∗
h

.
Taking the time derivative of the Lyapunov function in (28) along solutions of system 1–2 and then
substituting the expression for the derivatives gives

L̇ = L1

(
1− S∗h

Sh

)(
Λh −

bβvhIvSh
N∗h

− µhSv
)

+ L2

(
1− A∗h

Ah

)(
bβvhIvSh

N∗h
−G1Ah

)
+ L3

(
1− I∗h

Ih

)
(φhAh −G2Ih) + L4

(
1− S∗v

Sv

)(
Λv −

bβhvSvIh
N∗h

− µvSv
)

+ L5

(
1− I∗v

Iv

)(
bβhvSvIh

N∗h
− µvIv

)
.

(29)
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Substituting the Li in 29 and performing some algebra gives

L̇ = µhN
∗
h

bβvhI∗vS
∗
h

(
2− Sh

S∗h
− S∗h
Sh

)
+ µhN

∗
h

bβhvS∗vI
∗
h

(
2− Sv

S∗v
− S∗v
Sv

)
+ 5− S∗v

Sv
− I∗vSvIh
S∗vI

∗
hIv
− S∗h
Sh
− A∗hIvSh
I∗vS

∗
hAh

− I∗hAh
A∗hIh

(30)

The first two terms in parenthesis and the remaining expression are negative, as the arithmetic mean846
is greater than or equal to the geometrical mean. Therefore, by LaSalle’s Invariable Principle [52], the847
endemic equilibrium point E∗ is globally asymptotically stable in Ω for R0 > 1 for all t > 0.848

C Estimating Model Parameters849

After extensive searching of the literature, annual reports, and census data, ecological and epidemiological850
parameter ranges for the respective human and sandfly populations in India and Sudan were gathered851
and estimated. See Table 2 for a summary of these estimates.852

b: The per-capita daily biting rate on humans by female Phlebotomus sandflies species differ by geo-853
graphical region.854

P. Argentipes (India): On average, the biting rate of a sandfly on a human per night was esti-855
mated to be 0.85 per day and range from 0.2 to 2.5 per day [51]. More current studies found856
a mean estimates biting density per day to be 0.7997 with a range of 0.1667 to 2.0833 per857
day [22]. From these studies, we calculated the mean number of bites on a human to be 0.7997858
with a range of 0.1667 to 2.083 bites per human.859

P. Orientalis (Sudan): In a field investigations conducted by Elnaiem, et al., the average bites860
per man-night was estimated to range from 23.7 to 40.3 for no bed net and 4.2 to 9.6 for those861
using untreated bed nets over a period of 12 nights [27]. In both studies, an average of 32 bites862
per man-night was established over a period of 12 nights. In our model we took the average863
biting rate to be 1.6208 per man-night with a range of 0.35 to 3.3583 per man-night.864

βhv: The transmission probability that an uninfected sandfly acquires a VL parasite from an infectious865
human.866

India Parameter estimates were taken from a recent modeling study on VL in India by Stauch A,867
et al. [77, 78]. From these, we took the mean transmission potential to be 0.025 with a range868
between 0.013 and 0.063.869

Sudan We use the infection rate for sandflies, using an equation from our model to estimate βhv.870
We first solve for βhv in this expression and use average infection rates of 9.6% [72], 8.6% [39]871
and 6.9%, and 3.6% [30] and the average biting rates in Table 2. The average transmission872
potential in human for P. Orientalis was estimated to be 0.1275 with a range of 0.0640 to873
0.1706.874

βvh: The transmission probability, is the probability that a VL-infectious sandfly transmits to a human.875

India Parameter estimates were generated by solving for βvh in our RC expression

βvh = R
2
Cµv (µh + θh) (φh + µh)

βhvφhb2mV :h
(31)

and then pairing samples of known values in Table 2 together with an estimated RC value of876
2.01 by Mubayi, et al. (2010 [57]). From this calculation, the mean transmission coefficients877
were estimated as 0.0694 with a range of 0.0266–0.1652.878
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Sudan A similar approach from India was taken and applied to Sudan using know parameter879
estimates from Table 2 and an estimated RC value of 1.3 from ELmojtaba, et al, 2010 [26].880
The calculations yield an average estimate for βvh as 0.0012 with a range of 0.0007–0.0020.881

µv: The per-capita daily mortality rate of an adult sandfly, taken as 1/ (life expectancy of sandflies)882

P. Argentipes (India) The mortality for this species of sandfly varies between 0.125 to 0.1 [75]883
and 0.0667 to 0.1 [65] per day. Some studies established the average lifespan to be, 0.0833 per884
day [44,50] and 0.091 per day [77]. For this species, the per-capita mortality rate was averaged885
out from these studies to be µv = 0.0833 per day with a range of 0.0667 to 0.1 per day.886

P. Orientalis (Sudan) The adult life span of this species has not been well studied. In one887
extensive study, the whole life cycle range was 48–60 days [38]. From this study, the combine888
time of the four (4) different developmental larval stages and the pupation stage gives a range889
of 40 to 56 days. So, the life span of adult sandflies ranges from 10 to 14 days and average 12890
days. For this species, the per-capita mortality rate was averaged out to be, µv = 0.0857 per891
day and ranges from 0.1 to 0.0714 per day.892

`: The human landing rate of an adult female sandflies was used as a approximate measure of the human893
biting rate. Before the late 1990s, the human landing catches (HLC), was a common way for894
measuring the human landing rate of Phlebotomine sandflies. However, for ethical reasons, this895
method is less commonly used and has been replaced with the use of human baits and Centers for896
Disease Control light traps (CDCLT) to attract female sandflies. In a comparison study, Dilger, E.897
(2013) investigated the relationship between the number of sandflies caught by HLC and CDCLT898
upon humans and showed that CDCLT are appropriate for estimating the number of sandflies899
visiting humans [21]. Various comparatives on HLC and CDCLT were used as measured to establish900
an appropriate parameter range for the human landing rate.901

P. Argentipes (India) In this study conducted by Joshi B, et al. (2009) [45] on the collection of902
P. Argentines per house per night using CDC LT, we took the mean number of landing 12.15903
with a range of 8.68 to17.904

P. Orientalis (Sudan) From a studies conducted on the effectiveness of impregnated bed net on905
the landing/bite of female P. Orientalis human volunteers by Elnaiem et al. (1999, 2011), we906
took the mean number of human landing rate to be 32 landing/human/per day with a range907
15.7 to 48.3 landing/human/per day [27,32].908

µh: For both India and Sudan, the average life expectancy at birth in a year was collected from multiple909
censored data sources. Using these sources, we estimate the per-person/day natural death rate as910
(average life expectancy ×365)−1. For each of these respective regions, the mean and range of the911
natural death rates was estimated to be:912

India From the mean data from multiple survey sites, we found the per-capita natural death rate913
to be 4.55e-5 (Census of India, 2001), 4.28e-5 (hetv.org, 2012), 4.08e-5 (cia.gov, 2010), 4.33e-5914
(WHO, 2012), and 4.27e-5 (un.org, 2012). Combining the estimates of these various value gave915
a mean death rate of per human/day and range of 4.05e-5 to 5.03e-5 per human/day.916

Sudan Similarly from India, the per-capita natural death rate was found to be 4.55e-5 (Coutinho,917
2005), 4.38e − 5 (cia.gov, 2012), 4.49e − 5 (unicef.org, 2012), 4.09e − 5 (WHO, 2012) and918
4.54e-5 (un.org, 2012). The mean death rate of 4.3e− 5 per human/day and range of 4.e− 5919
to 4.54e− 5 per human/day.920

φh : The per-capita rate of progression of humans from the asymptomatic state to the infectious state921
here is taken at incubation of VL before becoming symptomatic. The incubating period is known922
to vary from weeks to years among different individuals.923
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India The day−1 asymptomatic rate has been estimated to be 0.0086 (day−1) [79], 0.0055 [60,83]924
and range between 0.0055 − −0.0164 (day−1) [17] and 0.0167 to 0.0083 (day−1) [63]. We925
consider these estimates and took the asymptomatic rate incubating period, φh, to be 0.00975926
(day−1) with a range of 0.006–0.0167 (day−1).927

Sudan For this region, the day−1 asymptomatic rates ranges were estimated to be 0.0083 to 0.01667928
(day−1) [34], 0.0055 to 0.0164 (day−1) [14, 17], and specific mean rates are give in 0.0167929
(day−1) with a rang of 0.0111 to 0.0042 (day−1) [37]. The asymptomatic rate incubating930
period, taken as an average of all these studies was taken to be φh = 0.0098 (day−1) and range931
from 0.0042 to 0.0167 (day−1).932

θh: Treatment rate from VL here is defined as the mean duration of illness before seeking treatment in933
some treatment fertility.934

India Current estimates for treatment were found to be 1.996 (who2007), 4 months (0.5–19 months)935
[2], 4 months [7], and 3.5 [8]. From these study we took the mean estimated treatment rate936
per day was θh = 0.0351 (day−1) with a range of 0.0067 to 0.0597 (day−1).937

Sudan The estimated mean rates per person/day varied from 0.0164 [18, 59], 0.0130, 0.0055 [3],938
0.0108 (0.0027–0.0408) [46], (0.0033–0.0235) [56] and a range of 0.0111–0.0056 in [73]. We took939
the mean estimate for θh as 0.014275 (day−1) with a range of 0.0027 to 0.0408 (day−1).940

Λh: The per-capita recruitment rates is defined as the sum per-capita birth rate and per-capita net941
migration rate of the population.942

India To estimate the per-capita recruitment rate, we use demographic data on population size,943
birth rate, and migration from CIA World Factbook. The average estimated recruitment rate944
was calculated as the sum of the birth rate and net immigration per day and is given by 8.3e-5945
persons per day, ranging from 7.67e-5 to 9.22e-5 persons per day.946

Sudan Similar to the estimation for India, the average estimated recruitment was 1.27e-4 persons947
per day, with a range of 1.1e-4 to 1.35e-4 persons per day.948

Λv: The per-capita daily adult sandfly recruitment rate of female phlebotomus sandfly. Seasonality plays949
a role in the abundance of the sandfly population in each geographical region. Few studies have950
established an average recruitment rate for sandflies to 0.02128 × Nh per day [75] and 0.299 per951
day [47]. For our model, we consider the recruitment rate for both species to be Λv = 0.1601 per952
day and range from 0.0213 to 0.299 per day.953

PIh
: Prevalence for VL in humans is defined as the proportion of people with the disease at a given point954

in time.955

India To estimate the per day prevalence, a study based on Serodiagnostic Test in Madhepura956
District of Bihar, India, was considered by Srivastava N, et al., 2014 [76]. From this study, we957
use the annual prevalence per 10000 of 26.92 in 2010 and 23.78 in 2011 together with the total958
population of Madhepura assumed to be at risk to estimate the per person per day prevalence.959
The prevalence range was estimated to be between 0.0013 to 0.0015 persons per day.960

Sudan A Survey study by Khalil et al. 2000 [48], gave the prevalence of active disease a range961
from 40 to 80 per 1000. Using these estimates, together with reported estimates of the at risk962
population in Pigott et al., 2014 [66], a rough estimate of the daily prevalence range of 0.0006963
to 0.0013 persons per was generated for Sudan’s population.964

PIv : Prevalence for VL in sandflies is defined as the proportion of sandflies with VL at a given point in965
time.966
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Point Prevalence of sandflies
Species Min Max Mean Reference
P. argentipes 0.0085 0.0284 - [82]

0.005 0.05 - [58]
0.007 0.02 - [64,69,71,81]

P. orientalis 0.019 0.05 - [32]
0.0054 0.037 0.0157 [40]
0.035 0.071 - [30]

Table 14. Point Prevalence Estimates for VL in India and Sudan for Host and Vector From Various
Sample-Based Field Studies.

RC : Estimated ranges for both countries were taken from previous mathematical and modeling studies.967

India RCI
was estimated to 2.0± 0.25 [57,77]968

Sudan RCS
was estimated to be 1.3± 0.25 [26]969

India
Year µv µh Nh Λh = µhNh Nv = mv:hNh Λv = µvNv
2000 0.0833 4.41e-5 1042261758 45937 5492719465 392337105
2001 0.0833 4.38e-5 1059500888 46402 5583569680 398826406
2002 0.0833 4.35e-5 1076705723 46861 5674239160 405302797
2003 0.0833 4.33e-5 1093786762 47311 5764256236 411732588
2004 0.0833 4.30e-5 1110626108 47750 5852999589 418071399
2005 0.0833 4.27e-5 1127143548 48178 5940046498 424289036
2006 0.0833 4.25e-5 1143289350 48597 6025134875 430366777
2007 0.0833 4.23e-5 1159095250 49011 6108431968 436316569
2008 0.0833 4.21e-5 1174662334 49425 6190470500 442176464
2009 0.0833 4.19e-5 1190138069 49847 6272027624 448001973
2010 0.0833 4.17e-5 1205624648 50280 6353641895 453831564
2011 0.0833 4.15e-5 1221156319 50723 6435493801 459678129
2012 0.0833 4.14e-5 1236686732 51173 6517339078 465524220
2013 0.0833 4.12e-5 1252139596 51621 6598775671 471341119

Min 4.42e-5 1042261758 45937 5492719465 392337105
Mean 4.55e-5 1149486935 48794 6057796146 432699725
Max 4.73e-5 1252139596 51621 6598775671 471341119

Table 15. Estimate for Parameters Λh and Λh Using Mean Estimates for India in Table 2 and World
Bank’s Demographic Estimates in [35]
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Sudan
Year µv µh Nh Λh = µhNh Nv = mv:hNh Λv = µvNv
2000 0.0857 4.73e-5 27729798 1310 146136035 10438288
2001 0.0857 4.70e-5 28434810 1335 149851449 10703675
2002 0.0857 4.67e-5 29186427 1362 153812470 10986605
2003 0.0857 4.63e-5 29973979 1389 157962869 11283062
2004 0.0857 4.60e-5 30778572 1417 162203074 11585934
2005 0.0857 4.57e-5 31585871 1444 166457540 11889824
2006 0.0857 4.54e-5 32397535 1472 170735009 12195358
2007 0.0857 4.52e-5 33218250 1500 175060178 12504298
2008 0.0857 4.49e-5 34040065 1529 179391143 12813653
2009 0.0857 4.47e-5 34853178 1559 183676248 13119732
2010 0.0857 4.46e-5 35652002 1589 187886051 13420432
2011 0.0857 4.44e-5 36430923 1618 191990964 13713640
2012 0.0857 4.43e-5 37195349 1647 196019489 14001392
2013 0.0857 4.42e-5 37964306 1676 200071893 14290849

Min 4.42e-5 27729798 1310 146136035 10438288
Mean 4.55e-5 32817219 1489 172946744 12353339
Max 4.73e-5 37964306 1676 200071893 14290849

Table 16. Estimate for Parameters Λh and Λh Using Mean Estimates for Sudan in Table 2 and World
Bank’s Demographic Estimates in [36]
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