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Abstract 
We analysed the genomic architecture of neuroanatomical diversity using magnetic resonance imaging 
and SNP data from > 26,000 individuals. Our results replicate previous findings of a strong polygenic 
architecture of neuroanatomical diversity. SNPs captured from 40% to 54% of the variance in the volume 
of different brain regions. We observed a large correlation between chromosome length and the amount 
of phenotypic variance captured, r~0.64 on average, suggesting that at a global scale causal variants are 
homogeneously distributed across the genome. At a more local scale, SNPs within genes (~51%) 
captured ~1.5-times more genetic variance than the rest; and SNPs with low minor allele frequency 
(MAF) captured significantly less variance than those with higher MAF: the 40% of SNPs with MAF<5% 
captured less than one fourth of the genetic variance. We also observed extensive pleiotropy across 
regions, with an average genetic correlation of rG~0.45. Across regions, genetic correlations were in 
general similar to phenotypic correlations. By contrast, genetic correlations were larger than phenotypic 
correlations for the left/right volumes of the same region, and indistinguishable from 1. Additionally, the 
differences in left/right volumes were not heritable, underlining the role of environmental causes in the 
variability of brain asymmetry. Our analysis code is available at 
https://github.com/neuroanatomy/genomic-architecture ​. 
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Introduction 
 
Twin and extended pedigree studies have have shown the variability of various neuroanatomical 
structures to be heritable up to h ​2 ​~80% ​(Blokland et al. 2012; Wen et al. 2016)​. These estimations have 
been followed up by a series of studies on unrelated subjects which, based on whole-genome genotyping 
data, have estimated an heritability of up to h ​2 ​~55% ​(Toro et al. 2015; Hibar et al. 2015)​. Genome-wide 
association studies (GWAS) aiming at identifying associated variants through international collaborative 
efforts such as ENIGMA and CHARGE have revealed, however, only few statistically significant 
associated loci ​(Stein et al. 2012; Hibar et al. 2015; Satizabal et al. 2017)​. These results are compatible 
with the hypothesis of a highly polygenic architecture, where phenotypes are influenced by large numbers 
of loci of effect sizes too small to reach genome-wide significance (usually p<5×10 ​-8 ​). This hypothesis has 
been supported by the findings of several research groups ​(Toro et al. 2015; Ge et al. 2015, 2016; Zhao 
et al. 2018; Elliott et al. 2018)​, thanks to the development of methods to estimate heritability and genetic 
correlation from whole-genome genotyping data ​(reviewed by Yang et al. 2017)​. 
 
In a previous work ​(Toro et al. 2015)​ we used a sample of N=2,011 subjects with whole-genome 
genotyping data from the IMAGEN consortium combined with structural magnetic resonance imaging 
(MRI) data analysed according to the pipelines of the ENIGMA consortium, and showed that 
genome-wide SNPs were able to capture a substantial proportion of the variability in regional brain 
volume – up to 55% ± 25%. The advent of the UK Biobank project, in particular, has allowed researchers 
to greatly increase the number of subjects used for heritability estimation (see for example, Elliott et al 
2018, Zhao et al 2018). Here we replicate and follow up on these results using a sample ten times larger, 
N=26,818, including data from the UK Biobank project as well as 5 other projects that had previously 
participated in the ENIGMA consortium (IMAGEN, SHIP, TREND, Lothian, ADNI).  
 
We measured the same regional brain volumes as in the ENIGMA consortium studies by Stein et al 
(2012)​ and Hibar et al ​(2015)​: several subcortical structures, total brain volume and intracranial volume. In 
addition, we also studied height and intelligence scores. Brain volume correlates with height and 
intelligence scores ​(Taki et al. 2012)​, which are both known to be heritable ​(Yang et al. 2010; Plomin and 
Deary 2015)​. We aimed thus at determining to which extent the heritability of regional brain volumes was 
given by its relationship with height (i.e., affected by the same genetic factors that determine body size), 
or if different genetic factors affected them specifically. Similarly for intelligence scores, we aimed at 
better understanding its relationship with brain volume. 
 
For all phenotypes, we estimated how much genome-wide SNPs were able to capture the inter-individual 
variability in regional brain volumes, that is, we estimated the proportion of phenotypic variance captured 
by SNPs across the whole genome (also called SNP heritability). Additionally, we used our GWAS data to 
compute genome-wide polygenic scores, which provide a phenotypic prediction at the individual level. 
The analyses of the influence of the complete genome on our phenotypes were complemented with 
analyses on a series of genomic partitions: genic versus non-genic; preferential expression in the central 
nervous system; low, medium or high minor allele frequency. This can reveal whether specific genomic 
regions have a particularly large effect on phenotypic variability. Finally, we looked at the pleiotropy 
across phenotypes. We computed genetic correlations and phenotypic correlations for all pair of 
phenotypes, and for brain regions, we compared in particular to the genetic and phenotypic correlations 
between the left and side parts of the same structure as a mean to estimate the role of genetics and 
environment in brain asymmetry. All our estimations were computed for each project independently, and 
combined together meta-analytically. 
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Methods 
 
Data sharing 
 
We obtained whole-genome genotyping from N=26,818 subjects from 6 different projects: UK Biobank, 
IMAGEN, ADNI, Lothian Birth Cohort 1936, SHIP and TREND. The UK Biobank project 
(​https://imaging.ukbiobank.ac.uk​) is a large, long-term biobank study in the United Kingdom aiming at 
investigating the contributions of genetic predisposition and environmental exposure to the development 
of disease. The study is following about 500,000 volunteers enrolled at ages from 40 to 69 years old, 54% 
females. IMAGEN (​https://imagen-europe.com​) is a project to identify and characterise specific 
genetically-influenced alterations in reinforcer sensitivity and executive control which are manifest in 
adolescence and carry the risk for overt psychopathology later in life. It includes general population 13 to 
17 years old adolescents (49% of females) from Germany, France, Ireland, and the United Kingdom. 
ADNI, the Alzheimer’s Disease Neuroimaging Initiative (​http://adni.loni.usc.edu ​), is a longitudinal 
multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early 
detection and tracking of Alzheimer’s disease in the United States of America. The dataset combines data 
from the initial five-year study (ADNI-1), and the follow-ups ADNI-GO, ADNI-2, and ADNI-3. It includes 
subjects 54 to 90 years old, 42% female. The Lothian Birth Cohort 1936 
(​https://www.lothianbirthcohort.ed.ac.uk​) is a follow-up of the Scottish Mental Surveys of 1947, which 
tested the intelligence of almost every child born in 1936 and attending school in Scotland in the month of 
June 1947. It includes subject 71 to 73 years old, 47% female. The SHIP and TREND cohorts contain 
data from the Study of Health in Pomerania (SHIP, 
http://www2.medizin.uni-greifswald.de/cm/fv/ship.html ​), a population-based epidemiological study 
consisting of two independent cohorts SHIP and SHIP-TREND. These projects investigate common risk 
factors, subclinical disorders and diseases in a population of northeast Germany. The dataset included 
data from subjects 21 to 90 years old, 44% female for TREND, 48% female for SHIP. All data sharing was 
approved by our local ethical board as well as by those of the participating projects wherever required. 
The list of projects and their respective number of subjects is described in Table 1. 
 

Project Total sample 
size 

Percentage 
of females 

Mean age 
(standard 
deviation) 

Sample size 
included 

Total 
number of 
variants 

Number of 
variants 
included 

IMAGEN 2,011 49% 14.6 (0.4) 1,736 573,299 267,151 

Lothian Birth 
Cohort 1936 

1,005 47% 72.7 (0.7) 544 529,015 256,417 

TREND 858 44% 50.0 (13.5) 813 2,389,858 597,902  

SHIP 963 48% 56.5 (12.6) 941 863,230 271,635 

ADNI 1,189 42% 74.2 (7.1) 986 331,088 227,005 

UK Biobank* 20,792 54% 62.6 (7.5) 19,270 734,447 490,061 

 
Table 1.​ Sample sizes and number of variants per project. *The UK Biobank dataset was split in two parts: N=14,144 
subjects were used for heritability analyses (13,086 included), and N=6,678 subjects were used for validation of 
genome-wide polygenic scores (6,184 included). 
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Regional brain volumes 
 
The measurements of regional brain volume coming from projects that had previously participated in 
ENIGMA (IMAGEN, Lothian Birth Cohort 1936 , TREND, SHIP and ADNI) were the same that had been 
used in Stein et al ​(2012)​ and Hibar et al ​(2015)​. For the UK Biobank subjects, the estimation of the 
volumes were performed using FreeSurfer 6.0 (​https://surfer.nmr.mgh.harvard.edu ​). We also included for 
comparison the estimations using FSL FIRST (​https://fsl.fmrib.ox.ac.uk/fsl ​) that were made available by 
UK Biobank (the processing pipeline is described in 
https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf​). In addition to the subjects excluded in the quality 
control made by the UK Biobank, we excluded 52 additional subjects showing an extreme relationship 
between total brain volume and intracranial volume. For this, we used a kernel density estimator to fit a 
probability density function to the intracranial versus brain volume data, and tagged as outliers all subjects 
in with a local density inferior to 1% of the maximum density for UK Biobank, and 2% for other datasets. 
 
The regions included in our analyses were: nucleus accumbens (labelled as Acc), amygdala (Amy), 
putamen (Pu), pallidum (Pa), caudate nucleus (Ca), hippocampus (Hip) and thalamus (Th); along with 
brain volume (BV) and intracranial volume (ICV). In addition to these regions, we investigated height and 
intelligence scores (IS), available from the UK Biobank and IMAGEN projects. It is important to note that 
the fluid intelligence score in UK Biobank (a 2 minutes test aiming at evaluating ​the capacity to solve 
problems that require logic and reasoning ability, independent of acquired knowledge; see 
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100027 ​), ​is not the same as the intelligence score used 
by the IMAGEN project, which was obtained using the WISC test. 
 
Genotype filtering 
 
All genetic analyses were performed for each project independently. The genotyping data was converted 
to the hg19 reference wherever required using UCSC LiftOver 
(​http://genome.ucsc.edu/cgi-bin/hgLiftOver​). We used genotyped autosomal SNPs (single nucleotide 
polymorphisms) which passed UK Biobank quality control for all batches 
(​http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-w
eb.pdf​). Additionally, we removed SNPs in 24 regions with long range linkage disequilibrium (LD, see 
Price et al. 2008 ​). SNPs were then filtered to exclude those with minor allele frequency (MAF) <0.1%, 
missing rate >1%, or Hardy-Weinberg disequilibrium with a p<10 ​-6 ​. Individuals were removed when >10% 
of their SNPs were missing. We finally pruned SNPs which were in linkage disequilibrium with a variance 
inflation factor >10, which corresponds to a multiple R ​2 ​ for the regression over linked SNPs <0.9. The 
filtering was made using PLINK v1.90b3.46 ​(Purcell et al. 2007)​. 
 
Genetic relationship matrices (GRM) 
 
GRMs were computed based on autosomal chromosomes using GCTA v1.91.3 ​(Yang, Lee, et al. 2011)​. 
We included only one of each pair of subjects with an estimated relatedness >0.025 (approximately 
corresponding to cousins two to three times removed). GRMs were computed per chromosome and then 
merged for the whole genome. 
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Population structure 
 
Genetic variance estimations based on genomic estimates of relatedness are sensitive to cryptic 
relatedness and population structure. These factors can influence the phenotypic similarity beyond the 
estimated degree of genetic relatedness ​(Yang, Manolio, et al. 2011; Browning and Browning 2011)​. In 
addition to the exclusion of subjects with a degree of genetic relatedness greater than 0.025 (that is, more 
related than third or fourth cousins), we used the first 10 principal components of the GRM as covariates 
in our statistical analyses. 
 
Genetic variance 
 
We estimated the amount of phenotypic variance captured by SNPs using a linear mixed model with age, 
sex, imaging centre, and the first 10 principal components of the GRM as fixed effect covariates, and a 
random effect with a covariance matrix corresponding to the GRM (GCTA GREML method, ​Yang et al. 
2011 ​). We estimated SNP heritability as the ratio of the genetic variance to the phenotypic variance, with 
genetic variance being the variance of the random component, and the phenotypic variance being the 
sum of random component and residual component with fixed effects removed. We used GCTA v1.91.3 
(Yang, Lee, et al. 2011)​  for those computations and did not constrain genetic variance estimations in 
order to obtain unbiased estimates (option ​--reml-no-constrain​). 
 
Genetic correlation 
 
Genetic correlation was estimated using GCTA REML bivariate analysis ​(Lee, Yang, et al. 2012)​  in 
constrained mode (option ​--reml-bivar​).  Both phenotypic and genetic correlation were adjusted for age, 
sex, imaging centre, and the first 10 principal components of the GRM unless specified in the manuscript. 
We compared genetic and phenotypic correlations using the delta method to estimate standard errors (R 
package msm). We report estimations with their standard errors (s.e.). 
 
Genetic variance partitioning 
 
In its simplest form, GCTA allows to estimate the amount of variance captured by the matrix of genetic 
relationships, assuming that each SNP captures the same amount of variance. Through genomic 
partitions we can create different genetic relationship matrices based on non-overlapping regions of the 
genome. The SNPs on each of these partitions can capture then a different amount of variance (although, 
as before, SNPs within a same partition are supposed to capture all the same amount of variance). 
 
We grouped SNPs based on the partitions used in Toro et al ​(2015)​: 
 

1. Partition based on genic status. Using 66,632 gene boundaries from the UCSC Genome Browser 
hg19 assembly, we made a first set with all SNPs within these boundaries, two further sets that 
included also SNPs 0 to 20 kbp and 20kbp to 50 kbp upstream and downstream of each gene, 
and a last set including the SNPs not located in regions less than 50 kbp upstream or 
downstream of genes. These partitions do not correspond exactly to those used by Toro et al 
(2015)​. The previous partitions were one with strict genic/non-genic boundaries (0 kbp), another 
with genic ± 20 kbp versus the rest, and finally genic ± 50 kbp versus the rest. 

2. Partition based on preferential central nervous system (CNS) expression ​(Raychaudhuri et al. 
2010; Lee, DeCandia, et al. 2012)​ using ± 50 kbp as gene boundaries. 
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3. Partition based on allele frequency. A partition based on MAF with 4 groups: from 0.1 to 5%, from 
5 to 20%, from 20 to 35% and from 35 to 50%. In the original article, only the last 3 partitions 
were included, covering the range from 5 to 50% of MAF. 

 
Partition genetic variance enrichment 
 
Once the variance captured by each partition is computed, we can estimate the significance of the 
difference in variance captured by an individual partition against a model where each SNP captures 
exactly the same amount of variance. In this latter case, the amount of variance capture by each partition 
should be directly proportional to the number of SNPs it contains. 
 
We first aimed to assess the statistical significance of the partition enrichment using a permutation test as 
in Toro et al ​(2015)​ and a derivation of statistical significance obtained from the covariance matrix of 
variance estimates reported by GCTA. 
 
In the permutation test, SNPs were randomly selected to build the partitions, keeping the same number of 
SNPs as in the original partition. For each set of random partitions, the same linear mixed-effects model 
as before was fitted (including age, sex, centre and 10 PCs). We tested whether any of these partitions 
captured more variance than what could be expected given its number of SNPs. Briefly, a Z-score was 
computed by comparing the SNP-set genetic estimated variance  of partition  to the SNP-set geneticV Gi i  
variance  expected under no enrichment:f i · V Gtot  
 

 ,                                                                                                                 (Eq. 1)Z =
V −f ·VGi i Gtot

√V ar(V −f ·V )Gi i tot
 

 
where  is the fraction of the SNPs included in partition .  The p-value of enrichment was computed byf i i  
comparing the observed Z score to those obtained from 1,000 permutations. 
 
One limitation of this approach is that it does not preserve the local LD relationships among SNPs. We 
observed that the standard errors of the genetic variance estimates reported by the permutation approach 
were systematically larger than those computed from the covariance matrix of variance estimates. To 
better preserve the original LD, we tried an alternative permutation method in which we permuted blocks 
of contiguous SNPs. For the partitioning based on genic status, the standard errors of the simulated 
partitions estimates were compatible with the standard error of the original partitions (Fig. S1). However, 
this alternative permutation method did not reduce the gap with the theoretical values for the partitioning 
by MAF since they depend only on the frequency of the individual SNPs, and not on their contiguity over 
the genome (Fig. S2). Because of this, and because the permutation approach was much more 
demanding in terms of computation, we decided to use only the theoretical derivation of enrichment test: 
We evaluated whether  was statistically significantly positive with a one-sided Z-test,V Gi − f i · V Gtot  
considering that in the null hypothesis of no enrichment, each genomic partition should carry an amount 
of variance proportional to its number of SNPs. We estimated the variance of the observed enrichment 
using equation 2: 
 

.                             (Eq. 2)ar(V ) ar(V ) f ar(V ) ov(V , )V Gi
− f i · V Gtot

= V Gi
+  i

2 · V Gtot
− 2 · f i · C Gi

V Gtot
 

 

Here,  represents the genetic variance of partition  and .V Gi
i V Gtot

= ∑
 

i
V Gi
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Meta-analysis 
 
The independent estimations obtained from each of the projects were combined into a single one using 
an inverse variance weighting method. We validated the meta-analytical approach by comparing the 
distribution of genetic variance estimates from simulated heritable phenotypes with their theoretical 
normal distribution in sub-samples of ADNI and UK Biobank datasets. 
 
Genome-wide polygenic scores 
 
We used the SNP effects estimated in the association analysis from the 13,086 subjects of UK Biobank to 
estimate the phenotypes of 6,184 additional unrelated subjects with MRI data from the latest release of 
the UK Biobank. The scores were estimated from the filtered SNPs (not LD pruned). SNPs under various 
association p-value thresholds were selected and the ones in LD with a more significantly associated 
SNP were clumped. The p-value threshold that produced the best fit with the target dataset was selected. 
We used the software PRSice associated with plink for the computation of genome-wide polygenic scores 
(Euesden, Lewis, and O’Reilly 2015)​. We covaried out the effects of age, sex, imaging centre, and the 10 
first principal components of the GRM. The analyses were performed on the residuals of this linear 
regression. We then estimated the variance captured by genome-wide polygenic scores using the 
coefficient of determination r​2 ​. For comparison, we also computed the predicted height of the 6,000 
subjects using summary statistics of the GIANT GWAS (​Wood et al. 2014 ​; 
https://www.nature.com/articles/ng.3097 ​), N=253,288. We used this to evaluate how more precise SNP 
effect estimates from a larger dataset could improve prediction. 
 
 
Results 
 

Genetic variance estimates 
 
We obtained estimates of the ratio of total genetic variance to phenotypic variance ( V​G​/V​p ​) for all projects. 
We did not constrain the estimates to lie between 0 and 100%. Estimates outside this range were often 
obtained when sample sizes were small. For example, for the Lothian project 4 out of the 9 brain region’s 
estimates were outside the 0% to 100% range, with 95% confidence intervals often encompassing the 
complete 0% to 100% range (Table S1.1, Fig. 1). The standard errors of the estimates greatly decreased 
with sample size, from about 76% for ~550 individuals, 43% for ~1,000 individuals, 24% for ~1,750 
individuals (IMAGEN), down to 4% for UK Biobank with more than 13,000 individuals. Our result from 
simulated phenotypes showed that the estimations of V​G​/V​P​ on simulated phenotypes obtained with 
sub-samples of N=800, N=400, N=200 and even N=100 subjects from the UK Biobank project were 
unbiased relative to the expected normal distribution. The simulations based on the ADNI project, 
however, showed a significant bias towards positive values when the sub-samples included N=100 to 
N=400 subjects, probably due to the heterogeneity of the population (Figures S10-11 and Table S6-7). 
 
In all cases, the meta-analytic estimations (inverse variance weighted) closely corresponded with the 
values obtained for the UK Biobank project (Table S1.2), which because of its large sample size 
accounted for ~94% of the weighted estimates. Standard errors agreed well with the theoretical values 
proposed by Visscher et al ​(2014)​, and implemented in the GREML statistical power calculator 
(​http://cnsgenomics.com/shiny/gctaPower​): they were from 1.01 to 1.05 times higher than the theoretical  
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Figure 1.​ ​a. ​ Proportion of variance capture by common genotyped variants (V​G​/V​P​) for brain regions, height and 
intelligence score. Meta-analytic estimates were obtained using inverse variance weighting of the estimates of the 
different projects studied. ​b.​ V​G​/V​P​ estimates for each project.  The estimates were obtained using GCTA, without 
constraining the results to lie in the 0% to 100% range. The diamond shows the meta-analytic estimation. Age, 
sex, center, and the first 10 principal components were included as covariates. The error bars show the standard 
errors of the V​G​/V​P​ estimates. Acc: nucleus accumbens, Amy: amygdala, Pu: putamen, Pa: pallidum, Ca: caudate 
nucleus, Th: thalamus, Hip: hippocampus, BV: brain volume, ICV: intracranial volume, IS: intelligence score (fluid 
intelligence for UK Biobank, full intelligence quotient for IMAGEN). 
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values when taking into account the variance of the genetic relationships, except for ADNI where they 
were 1.21 times higher). 
 
Meta-analytic estimates of genetic variance are shown in Figure 1, which combine the results from all the 
independent projects we analysed. Estimates for intracranial volume and total brain volume were large: 
V​G​/V​P​(ICV) = 53 ± 4.5% (all our variance estimates are reported as estimation ± s.e.), V​G​/V​P ​(BV) = 52 ± 
4.5%). Similarly, the genetic variance estimates for subcortical structures were all above 40%: 
Accumbens (V​G​/V​P ​= 40 ± 4.5%), amygdala (V​G​/V​P ​= 45 ± 4.5%), putamen (V​G​/V​P ​= 48 ± 4.5%), palladium 
(V​G​/V​P ​= 40 ± 4.5%), caudate (V​G​/V​P ​= 52 ± 4.5%), thalamus (V​G​/V​P ​= 54 ± 4.5%), hippocampus (V​G​/V​P ​= 
53 ± 4.5%). All estimates were highly statistically significant with p<10 ​-11 ​in all cases (log-likelihood ratio 
statistics from 49 to 242 in UK Biobank alone) (Fig. 1, Table S1.2). The V​G​/V​P​ estimate for caudate 
nucleus (V​G​/V​P ​= 52 ± 4.4%) was statistically significant and very different from what was observed in the 
IMAGEN cohort (V​G​/V​P ​= 4 ± 24%) which, as mentioned in Toro et al ​(2015)​, may reflect an age bias 
specific to IMAGEN (individuals were on average 14 years old). 
 
The meta-analytic V​G​/V​P​ estimate for height (which combines only UKB and IMAGEN) was large: V​G​/V​P ​= 
71 ± 3.1%  and close to those obtained from twin studies ​(Polderman et al. 2015)​ and from previous SNP 
heritability estimates (V​G​/V​P​ = ​68.5 ± 0.4% in ​(Ge et al. 2017)​). The fluid intelligence score in UKB had the 
lowest heritability among all 11 studied phenotypes, V​G​/V​P ​= 35 ± 4.8%. This estimate is similar to the one 
obtained by Davies et al. ​(2011)​ on 30,801 UKB subjects (V​G​/V​P ​= 31% ± 1.8%). The verbal and 
performance intelligence scores (VIQ and PIQ) in IMAGEN, although not based on the same test as fluid 
intelligence (FI) in UK Biobank, aim at capturing a similar phenotype. The estimate for fluid intelligence in 
UK Biobank seem smaller than those for verbal and performance intelligence quotients in IMAGEN (~56 ± 
26%), however, they were not statistically significantly different. 
 
Similarly to what we had observed previously ​(Toro et al. 2015)​, the genetic variance estimates were not 
significantly affected by population structure: the non-inclusion of the 10 first PCs did not impact the 
estimates of variance, which changed on average by less than 4% (Fig. S3). 
 
Comparison of genetic variance estimates of the UK Biobank project across previous studies 
 
Several recent studies have used the UK Biobank data to estimate genetic variance of regional brain 
volumes. The reported estimates vary across studies, with subcortical volumes, in particular the volume of 
the amygdala, showing the largest differences. 
 
We compared our genetic variance estimates with those obtained by two recent studies ​(Elliott et al. 
2018; Zhao et al. 2018)​. Zhao et al. ​(2018)​ used GCTA to compute V​G​/V​P​ estimates of the left and right 
volumes of various subcortical structures on a smaller sample of 9,031 subjects from the UK Biobank 
project. Regional brain volumes were quantified using ANTs (Advanced Normalization Tools software 
(Avants et al. 2014)​ together with the MindBoggle-101 atlas ​(Klein and Tourville 2012)​. Elliott et al. ​(2018) 
reported genetic variance estimates for thousands of phenotypes on 8,411 subjects, using SBAT (Sparse 
Bayesian Association Test ​(Elliott et al. 2018)​). These phenotypes included the volumes of subcortical 
structures that we report here. Elliott et al ​(2018)​ provide V​G​/V​P​ estimates obtained from measurements of 
subcortical structures performed using FSL’s FIRST (FMRIB’s Integrated Registration and Segmentation 
Tool ​(Patenaude et al. 2011)​) and FreeSurfer. In the original study of the IMAGEN data we reported only 
total volumes (left plus right) computed using FIRST. For the sake of comparison, we computed V​G​/V​P 
estimates in the UK Biobank data for the left and right volumes separately, using both FIRST and 
FreeSurfer (Table S2). 
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The largest difference of hemispheric variance estimates was observed for the amygdala and the nucleus 
accumbens (Fig. 2), which are the smallest structures of those we studied. These structures also 
displayed the lowest correlation between right and left volumes (Fig. S4) and between FIRST and 
FreeSurfer measurements (Fig. S5), which suggests that their measurement may be less precise than for 
larger structures. A similar discrepancy between left and right amygdala volume was observed by both 
Zhao et al. ​(2018)​ and Elliott et al. ​(2018)​  (Fig. 2). Discrepancies between V​G​/V​P​ estimates were more 
important when comparing different methods to estimate subcortical volumes (FreeSurfer, FIRST, or 
MindBoggle/ANTs) than when comparing different methods to estimate genetic variance (GCTA or 
SBAT). The inclusion of the brain volume as a covariate did not change noticeably our variance estimates 
and thus could not fully explain the differences observed with the study of Zhao et al ​(2018)​ (Fig. S6). In 
all cases, however, 95% CIs built from the standard errors of each study contained the estimates of the 
other studies. 
 
We also compared our V​G​/V​P​ estimates for the ADNI project with those obtained by Zhao et al. ​(2018)​. 
After filtering and merging of the non-imputed genotypes across the two ADNI sub-projects, we included 
982 subjects and  210,543 SNPs; Zhao et al ​(2018)​ included 1,023 subjects and 7,368,446 SNPs (after 
imputation). Despite both analyses using the same covariates, the V​G​/V​P​ estimates showed differences 
ranging from 7% to 99%. These differences are not surprising, however, given the small sample size, and 
thus the large standard errors of the estimates (Fig. S6). 
 
 

 
 
Figure 2.​ Comparison of our estimations of genetic variance (V​G​/V​P​) in the UK Biobank project with 2 recent 
studies: Elliot et al (2018) and Zhao et al (2018). V​G​/V​P​ estimates were computed for brain, intracranial volume 
(ICV), and subcortical volumes of the right and left hemispheres measured using different methods  (FreeSurfer, or 
MindBoggle/ANTs, FIRST​) represented by the shapes of the dots.  In yellow are represented the estimates of 
V​G​/V​P​ we computed​  ​using GCTA REML unconstrained method, the other V​G​/V​P  ​estimates were published by Elliott 
et al. 2018 (green) and  Zhao et al. 2018 (orange). Age, sex, center, and the top 10 principal components were 
included as covariates. The error bars show the standard errors of the V​G​/V​P​ estimates. 
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Figure 3.​ Scatter plots of the number of SNPs per chromosome versus the V​G​/V​P​ estimates computed for each 
chromosome independently. V​G​/V​P​ estimates were obtained by partitioning SNPs across chromosomes and 
computed using the GCTA REML unconstrained method for total subcortical volumes. Age, sex, center, and the 
top 10 principal components were included as covariates. The error bars show the standard errors of the V​G​/V​P 
estimates. 
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Enrichment of genetic variance partitions 
 
We partitioned the total genetic variance in different ways and computed the enrichment in variance 
captured by each partition relative to their number of SNPs. The following partitions were investigated: 
 
Partition per chromosome (autosomes). ​ The correlation between V​G​/V​P​ estimates and chromosome 
size was significant for all phenotypes except the pallidum (Fig. 3). The correlation coefficients ranged 
from 0.30 ± 0.21 to 0.80 ± 0.13, capturing on average 41% of the variance (estimated as ).r2  
 
Partition between genic and non-genic regions. ​ We first partitioned the total genetic variance into four 
sets of SNPs: those within gene boundaries, those located 0 to 20 kbp, those 20 kbp to 50 kbp upstream 
and downstream of each gene, and the rest. Across projects, the genic SNP set (± 0 kbp) contained 51% 
of all genotyped SNPs and captured on average 69% of the variance attributable to SNPs of most of the  
 

 
 
 
Figure 4.​  Variance enrichment for partitions based on closeness to genic regions. Top: V​G​/V​P​ estimates computed 
for four sets of SNPs based on their distance to gene boundaries: all SNPs within the boundaries of the 66,632 
gene boundaries from the UCSC Genome Browser hg19 assembly, two further sets that included also SNPs 0 to 
20 kbp and 20kbp to 50 kbp upstream and downstream of each gene, and a remaining set containing SNPs 
located farther than 50kb from one of the gene boundaries. V​G​/V​P​ estimates were computed using the GCTA 
REML unconstrained method for height, intelligence, and brain, intracranial and total subcortical volumes. The 
error bars represent the standard errors. Bottom: ​Enrichment of variance captured by each partition. The y-axis 
shows the ratio of the fraction of genetic variance explained by each partition divided by the fraction of SNPs 
contained in each partition. If all SNPs explained a similar amount of variance, this ratio should be close to 1 
(dashed line). A Z-test was used to compare the ratios to 1 and p-values were FDR adjusted (*​p​<0.05, ** ​p​<0.01, 
*** ​p​<0.001). 
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studied phenotypes, significantly more than what we would expect from its length (FDR < 5%). The only 
exceptions were fluid intelligence and nucleus accumbens, for which it explained respectively 59 ± 9% 
and 55 ± 6% of the total genetic variance (Fig. 4, Table S4). Height was the only phenotype for which we 
observed an enrichment of V​G​/V​P​ captured by one of the non-genic SNP sets: the set of SNPs within 0 ± 
20 kbp of the genic set. This set contained 15% of all SNPs but explained 27% of the variance of the 
height phenotype attributable to SNPs (FDR corrected p < 0.01). In total, the variants located between 0 
and 50 kbp away from genes captured 36 ± 4% of the genetic variance of height (FDR corrected p < 
0.05). 
  
Partition by involvement in preferential CNS expression. ​ No statistical enrichment was found when 
comparing the genetic variance between SNP sets overlapping and not overlapping with functional 
annotations (genes involved in central nervous system function ​(Raychaudhuri et al. 2010; Lee, 
DeCandia, et al. 2012)​). All results of V​G​/V​P​ partitioning are available in Table S3 and Table S4. 
 
 

 
 
 
Figure 5.​   Variance enrichment for partitions based on minor allele frequency (MAF). Top: V​G​/V​P​ estimates 
computed for four sets  of SNPs based on their MAF: from 0.1 to 5%, from 5 to 20%, from 20 to 35% and from 35 
to 50%. V​G​/V​P​ estimates were computed using the GCTA REML unconstrained method for height, intelligence, and 
brain, intracranial and total subcortical volumes. The error bars represent the standard errors. Bottom: ​Enrichment 
of variance captured by each partition. The y-axis shows the ratio of the fraction of genetic variance explained by 
each partition divided by the fraction of SNPs contained in each partition. If all SNPs explained a similar amount of 
variance, this ratio should be close to 1 (dashed line). A Z-test was used to compare the ratios to 1 and p-values 
were FDR adjusted (*​p​<0.05, ** ​p​<0.01, *** ​p​<0.001). 
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Partition by allele frequency. ​ We grouped SNPs in four different partitions based on their MAF: (1) 0.1% 
to 5% (40% of SNPs), (2) 5% to 20% (30% of SNPs), (3) 20% to 35% (12% of SNPs), and (4) 35% to 
50% (9% of SNPs). We observed that SNPs within the low MAF partition (MAF<5%) captured less 
genetic variance than those with medium and high MAF (the 3 partitions with MAF>5%) (Fig. 5), as 
previously described by Speed et al ​(2017)​. The partition of SNPs with low MAF contained 40% of the 
SNPs, however, it captured on average only about 16% of the total genetic variance. This is less than 
expected in the GCTA model where each SNP captures the same amount of phenotypic variance, but 
slightly more than expected in a neutral theory of evolution, where the captured variance is proportional to 
the size of the MAF bin ​(Yang et al. 2017; Visscher et al. 2012)​. 
 
Genetic and phenotypic correlations among traits 
 
We computed phenotypic and genetic correlation matrices for the UK Biobank project, shown in figure 
Fig. 6 (Table S5). Genetic correlations represent the correlation between genetic effects of two 
phenotypes. 
 
We had previously observed ​(Toro et al. 2015)​ that the correlation between brain volume and intelligence 
scores was higher than the correlation between brain volume and height. Here, the genetic correlation 
between height and brain volume was significant, r​G​ = 0.164 ± 0.053, and smaller than the genetic 
correlation between brain volume and intelligence: r​G​ = 0.343 ± 0.080. However, the difference was not 
statistically significant: r​G:BV.FI​ - r​G:BV.height ​ = 0.179 ± 0.095, 95% CI: , -0.008, 0.365 (computed using the 
formula xxxvii in Pearson and Filon ​(1898)​)​. The correlations between fluid intelligence and height – 
phenotypic and genetic – were the smallest we observed across all phenotypes: r​P​ = 0.101 ± 0.009 and r​G 
= 0.048  ± 0.073. 
 
In general, the concordance between phenotypic and genetic correlation was high (R ​2 ​ = 0.80, Fig 6.C), as 
reported by Sodini et al ​(2018)​ for other traits, and the correlation matrices were similar (Figure S7). 
When considering total volumes, differences between genetic and phenotypic correlations were not 
different from zero (Z-test FDR > 50%, Table S5). When considering the left and right hemispheres 
separately, however, the genetic correlations between the left and right parts of each subcortical structure 
were not statistically different from r​G​ = 1 and were different from the phenotypic correlations (Z-test FDR 
< 5%, Figure S9 and Table S5), reflecting the influence of environment in hemispheric asymmetry. To test 
this hypothesis, we measured the V​G​/V​P​ of the differences between left and right volumes of each 
structure. Only the heritability of the difference in volume of the left and right accumbens was significantly 
different from zero (V​G​/V​P ​= 16 ± 4.5). Except for this structure, the differences in volumes between right 
and left hemispheres of all the other brain regions seemed to be only environmental. 
 
Prediction using genome-wide polygenic scores 
 
Finally, we computed the genome-wide polygenic scores for ~6,000 additional participants from the UK 
Biobank who were not used for the heritability estimate. Genome-wide polygenic scores captured a very 
small, although statistically significant proportion of the phenotypic variance, ranging from 0.5% (p < 
10e-22) for the amygdala to 2.2% (p<10e-31) for brain volume (Figure S13, Figure S14, and 
Supplemental Table S8). For height, a genome-wide polygenic score obtained based on GWAS summary 
statistics from  ~13k UK Biobank subjects captured ~3% of the variance. To evaluate the impact of the 
number of samples used in the GWAS on the amount of variance captured by the genome-wide polygenic 
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Figure 6.​ UK Biobank data. Values of phenotypic (A) and genetic (B) correlations are shown in the lower triangles. 
Circles in the upper triangles have a diameter proportional to the strength of the correlation, and a thickness 
proportional to the size of the confidence interval. Stars indicate statistical significance of the correlation being non 
null ​(* ​P​<0.05, ** ​P​<0.01, *** ​P​<0.001). ​ ​C. ​Scatter plot of phenotypic versus genetic correlations. The following 
phenotypes are represented: the volumes of accumbens (Acc), amygdala (Amy), brain, caudate (Cau), 
hippocampus (Hip), pallidum (Pa), putamen (Pu), and thalamus (Th) ; height and intelligence score (IS) are also 
represented. Phenotypic correlations were adjusted for age, center, and sex. Genetic correlations were adjusted 
for age, center, sex, and the top 10 principal components of the genetic relationship matrix. 
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score, we also computed the genome-wide polygenic scores using the GWAS summary statistics from 
the GIANT consortium (N~250k).  This allowed to capture ~17% of the variance of height (almost 6-times 
more) (Figure S15). 

Discussion 

 
Our results confirmed that a substantial proportion of the diversity in regional brain volume is captured by 
genome-wide SNPs, that the genetic architecture of this effect seems to be highly polygenic, and that 
SNPs close to genic regions capture a significantly higher proportion of the variability than the rest of the 
genome. The estimates we obtained were similar to our original results ​(Toro et al. 2015)​. Thanks to data 
sharing, and the recent availability of the UK Biobank project data, we were able to collect a sample size 
more than 10-times larger than the one used in the original study, which greatly increased the precision of 
our estimates. All our scripts have been released open source to facilitate further replication and 
extension of our results. 
 
Whole-genome frequent variants captured a substantial proportion of the variability in regional brain 
volumes, ranging from 40% (pallidum) to 55% (thalamus). The genomic architecture of neuroanatomical 
diversity appeared to be strongly polygenic: a partition of variance per chromosome showed a significant 
correlation between chromosomal size and the amount of variance captured. The regression between 
chromosomal length and heritability captured on average 63% of the variance in their relationship. Only a 
very small fraction of this variance could be captured by genome-wide polygenic scores. 
 
We confirmed the genetic correlation between total brain volume, intelligence scores, and height, 
however, we did not find evidence for a significantly higher genetic correlation between brain volume and 
intelligence scores compared with the genetic correlation between brain volume and height. 
 
Additionally, we observed that SNPs with higher minor allele frequency captured in average more 
variance that those with lower minor allele frequency, and that genetic correlations between the left and 
right parts of a same region were significantly higher than the phenotypic correlations, suggesting an 
important effect of environmental, non-genetic factors in shaping brain asymmetry. 
 
Genic regions and those immediately adjacent presented a statistically significant enrichment in variance 
captured for all phenotypes, with the exception of intelligence. Overall, a genic variant would capture 
about two times more variance than a non-genic variant. The partitions of SNPs with medium to high 
minor allele frequency (MAF>5%) captured proportionally more variance than the one with low MAF. 
Despite low per-SNP heritability, the per-SNP effect sizes have been shown to be on average higher for 
SNPs with low MAF, in accordance with a model of negative selection (the relationship between captured 
heritability h ​2 ​ and allele effect b for a given SNP is , with f being the allele frequency.· 1 )h2 = 2 b2 · f · ( − f  
See Schoech et al. 2017; and Zeng et al. 2018 ​). 
 
The genetic correlation between height and brain volume was not significantly different from the genetic 
correlation between intelligence scores and brain volume, contrary to what we had observed previously 
(Toro et al. 2015)​. The genetic correlation between height and intelligence scores was, however, the 
smallest across all phenotypes, suggesting that their relationship with brain volume may be due to 
different genetic factors. 
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The sources of brain asymmetry may be mostly due to non-genetic, environmental factors. The genetic 
correlations between the left and right parts of the same brain regions were in general indistinguishable 
from r​G​=1. Their phenotypic correlations, however, although strong, were statistically significantly smaller. 
Only for one brain region, the nucleus accumbens, did the asymmetry in volume seem to have a partly 
genetic source. 
 
The difficulty to accurately segment small, poorly defined, subcortical structures such as the amygdala or 
the nucleus accumbens, may explain the large differences in volume measurements and hence the 
differences in heritability estimates that we reported when comparing segmentation methods.​ The method 
used to measure volumes had a larger impact on the estimations of genetic variance than the method 
used for the estimation of heritability. ​Large volume differences both between manual and automated 
segmentation and between FreeSurfer and FIRST segmentations have been previously reported, in 
particular for the amygdala ​(Morey et al. 2009; Schoemaker et al. 2016)​. 
 
Rather than combining our genetic datasets into a single one, we chose to estimate the part of phenotypic 
variance captured by SNPs independently in each dataset and then combine estimates in a 
meta-analysis. While our chosen solution helps to handle heterogeneity, it trades on statistical power. The 
reason for this is that the standard error of the GCTA GREML heritability estimate is approximately 
inversely proportional to the number of subjects ​(Visscher et al. 2014)​ (Figure S13). 
 
In the present analysis, the UK Biobank project accounted for ~94% of the estimations, largely driving the 
results. Indeed, the standard error of the estimates based on the UK Biobank project were reduced only 
by a factor of ~1.03 through the inclusion of the other projects. If the raw genotyping data had been 
combined in a single mega-analysis instead of in a meta-analysis, the decrease in standard error would 
have been ~1.36 smaller than what we reported. The meta-analytical approach may prove interesting in 
the future, however, with availability of large imaging genetics datasets other than UK Biobank, as well as 
in cases where raw genotyping data cannot be easily shared. 
 
Genome-wide polygenic scores computed from GWAS summary statistics on ~13k subjects captured a 
very small, although statistically significant proportion of the variance. For brain volume, for example, they 
captured ~2.5% of the variance, for a SNP heritability of more than 50%. This is the expected result in 
presence of a strongly polygenic phenotype ​(Wray et al. 2013)​. It is also expected that the prediction 
accuracy will improve as the number of subjects increases. In the case of height, by using 250k subjects 
instead of 13k, the amount of variance captured increased from ~3% to ~17%. The UK Biobank project 
will provide at term a sample of 100k subjects with MRI data, which should allow us similarly to increase 
the amount of regional volume variance that genome-wide polygenic scores can capture to ~12% ​(based 
on Wray et al. 2013 and Daetwyler, Villanueva, and Woolliams 2008)​. 
 
Our results support to the hypothesis of a strongly polygenic architecture of human neuroanatomical 
diversity. They confirming our original findings ​(Toro et al. 2015)​ as well as those of others ​(Elliott et al. 
2018; Zhao et al. 2018)​, and provide new information on the genetic bases of brain asymmetry. The 
importance of strongly polygenic architectures in the determination of physiological and anthropometric 
phenotypes is now well documented ​(Ge et al. 2017)​, as is their influence on various cognitive 
phenotypes as well as the risk to develop several psychiatric conditions ​(Zhang et al. 2018)​. The 
detection of candidate genes of large effect is an appealing tool for gaining mechanistic insight on normal 
and pathological phenotypes. However, this approach is ill adapted to strongly polygenic architectures, 
where not only a few large-effect alleles are involved, but potentially hundreds of thousands of alleles of 
almost infinitesimal effect ​(Wray et al. 2018)​. Neuroimaging endophenotypes such as those obtained 
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using structural and functional MRI can provide a powerful, relevant, alternative source of mechanistic 
insight. The brain imaging literature is rich in examples of associations between different brain regions 
and networks with normal and pathological cognitive phenotypes. The automatic mining of these 
associations could provide a layer of annotation for brain regions and networks similar to those available 
today for genome annotation. Further investigation of the genomic architecture of neuroimaging 
endophenotypes should prove an important tool to better understand the biological bases of brain 
diversity and evolution in humans, as well as the biological bases of the susceptibility to psychiatric 
disorders. 
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