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Abstract

Objective. Countless associations between risk factors and outcomes are reported in epidemiological 

research, but often without estimating the contribution from genetics. However most outcomes and risk 

factors are substantially heritable, and genetic influences can confound these associations. Here we 

propose a two-stage approach for evaluating the role of shared genetic effects in explaining these 

observed associations.

Method. Genotyped unrelated participants from the Twins Early Development Study are included (N 

from 3,663 to 4,693 depending on the outcome) in our analyses. As an example for our proposed 

approach, we focus on maternal educational attainment, a risk factor known to associate with a variety 

of offspring social and health outcomes, including child educational achievement, Body Mass Index, 

and Attention Deficit Hyperactivity Disorders (ADHD). In the first stage of our approach we estimate 

how much of the phenotypic associations between maternal education and child outcomes can be 

attributed to shared genetic effects via regressions controlling for increasingly powerful polygenic 

scores. In the second stage, we estimate shared genetic effects using heritability estimates and genetic 

correlations equal to those derived in both SNP-based and twin-based studies. Finally, evidence from the

two stages are evaluated in conjunction to provide an overall assessment of the likelihood that the 

association is explained by genetics.

Results. Associations between maternal education and the three developmental outcomes are highly 

significant. The magnitude of these associations decrease when using polygenic scores to account for 

shared genetic effects, explaining between 14.3% and 24.3% of the original associations. For the three 

outcomes, the magnitude of these associations further decrease under a SNP-based heritability scenario 

and are almost entirely or entirely explained by genetics under a twin-based heritability scenario.

Conclusions. Observed association between maternal education and child educational attainment, BMI 

and ADHD symptoms may be largely explained by genetics. To the extent that available estimates of 

SNP-based and twin-based heritabilities are accurate, the present findings represent a call for caution 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 30, 2019. ; https://doi.org/10.1101/592352doi: bioRxiv preprint 

https://doi.org/10.1101/592352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genetic confounding  3

when interpreting non-genetically informed epidemiology studies of the role of maternal education or 

other 'environmental' risk factors. The two-stage approach that we propose adds a new tool to probe the 

robustness of findings regarding the role of a range of risk factors. Our approach, akin to a genetically 

informed sensitivity analysis, only requires a genotyped cohort with adequate phenotypic measurements,

and has the potential to be widely applied across the life and social sciences.  
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Introduction

Associations between risk factors and outcomes are commonly reported in epidemiological research, but

often without estimating the contribution from genetics. However most outcomes and risk factors are 

substantially heritable, and genetic influences can confound these associations. Here, we propose a new 

sensitivity analysis, which we call Gsens, to assess to what extent shared genetic effects can account for 

observed associations. The genetically informed sensitivity analysis we propose has the potential to be 

widely implemented across the life and social sciences. 

Genetic confounding and sensitivity analysis 

Identifying risk factors that can be targeted in effective interventions is a fundamental objective shared 

across the life and social sciences. To this end, identifying causal risk factors is essential as 

interventions that target non-causal risk factors will likely fail. To establish causation, it is necessary to 

account for confounding, which happens when a third variable causally influences both the risk factor 

and the outcome, thereby generating a non-causal association between them. Genetic confounding is a 

special case when genetic factors play the role of the third variable. The concept of genetic confounding 

was introduced during the controversy regarding the effect of smoking on lung cancer. In a letter entitled

'alleged dangers of cigarette-smoking', Ronald Fisher qualified smoking as ‘possibly and entirely 

imaginary cause’ for lung cancer1.  He argued that genetic factors could directly influence both smoking 

and lung cancer, generating a non-causal association between them. Although Fisher was mistaken in 

this particular instance,  the notion of genetic confounding remains relevant, in his words ‘a common 

cause, in this case the individual genotype’. During this controversy, Jerome Cornfield argued against 

this ‘constitutional hypothesis’2,3. He contended that implausibly large genetic effects (or other 

unobserved confounders) would be required to explain away all of the observed association. This led to 

the birth of the approach now called sensitivity analysis, which consists in estimating how strong an 

unknown confounder needs to be in order to explain away an observed association, providing insights 
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into the robustness of that association (i.e. how sensitive it is to confounding and whether it is likely 

causal or not)2. Since then, sensitivity analyses became common epidemiological tools to probe the 

robustness of findings under alternative scenarios. However, sensitivity analysis using genetic data has 

not progressed. We recently4 proposed to use polygenic scores – individual-level scores that summarize 

genetic risk (or protection) for a given phenotype – to estimate the proportion of observed associations 

explained by shared genetics effects.  However, because polygenic scores currently capture only a small 

part of heritability, controlling for polygenic scores cannot entirely capture shared genetic effects. We 

therefore proposed a sensitivity analysis using polygenic scores to gauge how likely it is that shared 

genetic effects account, in part or entirely, for a given risk factor-outcome association. Here, we 

implement this proposition in two stages. First, we test to what extent associations of interest are 

accounted for by observed polygenic scores. Second, in the sensitivity analysis per se, we create 

scenarios examining how a gradual increase in the predictive power of polygenic scores based on 

heritability estimates would affect association estimates. This can be thought of as adjusting for 

polygenic scores that would effectively capture as much of the variance in the risk factor and outcome as

suggested by available heritability estimates. 

Maternal education and child developmental outcomes

To illustrate our approach, we focus on maternal education as the risk factor of interest. Maternal 

education is associated with child developmental outcomes in several key domains : social development 

(e.g. better educational attainment), physical health (e.g. lower Body Mass Index, BMI), and mental 

health (e.g. lower levels of Attention-Deficit Hyperactivity Disorder symptoms).5–8 However, observed 

associations between maternal education and developmental outcomes are not free from confounding, in

particular genetic confounding as both maternal educational attainment and developmental outcomes are

heritable.9–14  
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Here, we illustrate the use of a new method, Gsens, to estimate the role of shared genetic effects in 

explaining the associations between maternal education and three developmental outcomes: educational 

attainment in the child, BMI, and ADHD. Each of these analyses will provide new insights on the 

likelihood that maternal education is a determinant or a mere correlate of these developmental 

outcomes. Importantly, the sensitivity analysis we propose has a wide scope of applications as it only 

requires genome-wide data on large samples and a focus on outcomes for which polygenic scores are 

available. Its applicability will further expand with the steady increase in the number and the power of 

available polygenic scores. 

 

Method

Participants

Participants were drawn from the Twins Early Development Study (TEDS), a longitudinal study 

of twin pairs born in England and Wales, between 1994 and 1996. Detail regarding TEDS, the 

recruitment process, and representativeness can be found elsewhere.15 A total of 7,026 unrelated 

individuals have been genotyped in TEDS. For each individual analysis, sample size comprised between

3,663 to 4,693 individuals with data for maternal education and each outcome. Written consent was 

obtained from all the families who agreed to take part in the study. This study was approved by the 

Institute of Psychiatry, Kings College London, Ethics Committee.

Measures   

Maternal education was reported by mothers at first contact, when children were on average 18 months 

old, with 8 levels: 1= no qualifications; 2 = CSE grade 2-5 or O-level/GCSE grade D-G; 3 = CSE grade 

1 or O-level/GCSE grade A-C; 4 = A-level or S-level; 5 = HNC; 6 = HND; 7= undergraduate degree; 8 

= postgraduate qualification. 
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Child educational achievement was operationalized as performance on the standardized UK-wide 

examination, the General Certificate of Secondary Education (GCSE), at 16 years. We computed a mean

of the three compulsory core subjects, mathematics, English, and science (further details in 11). A total of

3,785 genotyped individuals had data on both maternal education and child GCSE. 

Body Mass Index (BMI) was derived from parent reported (ages 11 and 14 years) and self-reported 

weight and height (age 16 years). Extreme BMI values (<1% and >99% quantiles) were winsorized and 

resulting values were averaged across ages 11 to 16 years. A total of 3,663 genotyped individuals had 

data on maternal education and the resulting BMI score. 

The DSM-IV ADHD symptom subscale, taken from the Conners’ Parent Rating Scales–Revised,16 was 

completed by mothers to assess inattentive and hyperactive/impulsive symptoms (9 for 

hyperactivity/impulsivity and 9 for inattention). Each item was rated on a 4-point Likert scale ranging 

from 0 (not at all true) to 3 (very much true). A total ADHD score was created by averaging scores 

across the following mean ages of participants at assessments: 8, 11, 14, and 16 years. The score 

measures population symptoms dimensionally and not the clinical disorder.  A total of 4,693 genotyped 

individuals had data on maternal education and the ADHD score. 

 Analyses

Genotyping, quality control procedures and principal component analysis are detailed in the 

supplementary material. A total sample of 7,026 participants with European ancestry remained after 

quality control. Single Nucleotide Polymorphisms (SNPs) were excluded if the minor allele frequency 

was <5%, if more than 1% of genotype data were missing, or if the Hardy Weinberg p-value was lower 

than 10-5. Non-autosomal markers and indels were removed.  

We computed genome-wide polygenic scores based on summary statistics from the following genome-

wide association studies (GWAS): (i) years of education17; (ii) ADHD14; and (iii) BMI12.  Polygenic 
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scores for all TEDS participants and all traits were computed using PRSice software18, with prior 

clumping to remove SNPs in linkage disequilibrium (r2 > 0.10). PRSice allowed us to select the best-

fitting polygenic score for each trait, e.g. maximizing the amount of variance explained by the polygenic

score for BMI in TEDS participants' BMI. To this end, we computed a series of polygenic scores 

including an increasing number of SNPs corresponding to increasing p-value thresholds (e.g. all SNPs 

associated to BMI at p <.0001 and p <.10) as illustrated in eFigures 1, 2, & 3 in the supplementary 

material. Using linear regression analyses, we estimated the proportion of variance explained by each 

generated polygenic score in the corresponding trait in TEDS. The following covariates were included in

regression analyses: sex, age (for GCSE), and 10 principal components of ancestry. 

 

Genetic confounding

Akin to third variable confounding, genetic confounding is represented in Figure 1a: genetic factors (G) 

– here measured by polygenic score(s) – influence both the risk factor (X) and the outcome (Y). 

MacKinnon et al. demonstrated that mediation and confounding are statistically identical in linear 

structural equation modelling19. Therefore, genetic confounding can be estimated using structural 

equation modelling by treating the confounder – here the polygenic score G – as a mediator of the effect

of X and Y (Figure 1b). The confounding effect is the indirect effect of X on Y through G:  β̂ XG β̂GY . We 

also calculated the proportion of the observed effect of X on Y that is accounted for by shared genetic 

effects, i.e. β̂ XG β̂GY

β̂ XG β̂GY+ β̂XY

. Further comments on the interpretation of 'genetic confounding' as shared 

genetic effects can be found in the discussion. 
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Figure 1. Genetic confounding, one polygenic score case. 

Caption. Figure 1 (a) represents the underlying causal model. (b) 
represents the model to calculate the confounding effect by treating
G as a 'mediator’. Of note is that the commonly-used terminology 
‘genetically-mediated’ can be confusing. Although ‘genetically-
mediated’ makes sense statistically, conceptually, a mediator is on 
the causal pathway from the predictor to the outcome. However, 
because germline genetic variants are set at conception and do not 
change throughout the lifespan, posterior risk factors (e.g. 
individual alcohol intake) cannot influence health outcomes (e.g. 
depression) through modifying germline genetic variants.20 
Although statistically treated as a mediator here to estimate 
confounding, conceptually G does not qualify as a true mediator. 

 When the polygenic scores for the predictor (G1) is different

from the polygenic score for the outcome (G2), the confounding effect is estimated in a similar fashion 

as the sum of all the indirect effects from X to Y through G1 and/or G2 (Figure 2a and 2b).

Figure 2. Genetic confounding, two polygenic score. 

Caption. Figure 2a represents the underlying causal model.
Figure 2b represents the model to calculate the confounding

effect, which is equal to: β̂ XG
1
β̂G

1
Y+ β̂XG

2
β̂G

2
Y
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Genetic confounding effects were calculated for all three developmental outcomes:

 Maternal education to child educational achievement using the best-fitting polygenic score for 

years of education (as in Figure 1).

  Maternal education to child BMI using best-fitting polygenic scores for years of education (G1) 

and BMI (G2) (as in Figure 2)

 Maternal education to child ADHD symptoms using best-fitting polygenic scores for years of 

education (G1) and ADHD symptoms (G2) (as in Figure 2)

In these analyses (Figures 1 & 2), the effect size of X on Y decreases as a function of the strength of 

shared genetic effects. However, this approach does not account for all shared genetic effects. This is 

because polygenic scores based on current GWAS capture a relatively small amount of all genetic 

influences. For example, the current polygenic score for BMI explains around 6% of the variance in 

BMI in TEDS, far less that SNP-based and twin heritability estimates of BMI heritability. The 

sensitivity analysis we propose contributes to address this issue. 

Sensitivity analysis

The sensitivity analysis aims to answer the following question: is it likely that X is associated with Y

after we control for all shared genetic effects? To say it otherwise, to what extent would β̂ XY decrease if

we were to control for ‘perfect’ polygenic scores capturing all genetic influences on X and Y rather than

a small fraction. This is done by estimating β̂ XY under plausible scenarios that combine information on:

1) existing polygenic scores; 2) heritability estimates; 3) genetic correlations.

Single polygenic score.  When predictor and outcome are of similar nature  – here maternal education

and child educational attainment – one polygenic score is used in the sensitivity analysis. In the present
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case,  a  polygenic  score  for  the  child,  derived  from  the  GWAS  of  years  of  education,  predicts  a

substantial amount of variance both in child GCSE but also in maternal education, confounding the

effect of maternal education. The effect of maternal education on child educational attainment can be

first  adjusted for  the observed best-fitting polygenic score.  However,  this  polygenic score does not

capture all the heritability of the outcome and therefore incompletely adjusts for genetic confounding.

The sensitivity analysis consists in re-examining the effect of maternal education under scenarios where

the polygenic score could capture additional variance in GCSE, i.e. up to SNP-based and twin-based

estimates of heritability.

Figure 1a shows the underlying model of relationships between the polygenic score (G), the predictor

(X) and the outcome (Y). We can obtain an estimate of the adjusted estimate of X on Y based on the

observed paths available with the following expression: 

β̂ XY=( r̂ XY −r̂GX r̂GY ) /(1− r̂GX

2 )  (1)

Where β̂ XY stands for the adjusted estimate and r̂ for observed associations. Details are presented in the

supplementary material eFigure 4.

When using the best-fitting polygenic score r̂GY  is simply the observed standardized association between

the polygenic score and Y. Under the sensitivity analysis scenarios r̂GY  is replaced by increasing values

reflecting  the  additional  variance  captured  in  the  outcome,  for  example  √(0.30),  the  path  value

corresponding to 30% of the variance explained by genetic influences on Y. The path to the predictor (

r̂G X) is also assumed to increase to k*√(0.30), where k reflects the ratio between the path to the predictor

and the path to the outcome k=r̂GX / r̂GY. The value of k is obtained from r̂G X and r̂GY  derived from the

observed best-fitting polygenic score. Note that if X and Y are measured in the same individuals and the

polygenic score for the outcome is used in the sensitivity analysis then: the minimum value for k is 0

(when the polygenic score for the outcome explains no variance in the predictor leading to no induced

genetic confounding), and the maximum is  k = 1 in the unlikely case that the polygenic score for Y

explains as much variance in the predictor as it does for the outcome. 
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Next,  to  estimate  the  quantity  of  interest,  β̂ XY,  under  these  different  scenarios,  two approaches  are

possible. First, as shown in eFigure  4, it is straightforward to express the model-based adjusted path

estimates as a function of the observed bivariate  estimates and the paths under different  sensitivity

scenarios. These model-based adjusted paths can then be used in a model simulating both X and Y and

estimating β̂ XY and confidence intervals. Second, using structural equation modelling, the model-based

paths can be estimated from a correlation matrix. Consequently,  a series of correlation matrices are

created under the different scenarios, prior to estimating corresponding adjusted Sxy values. This matrix

approach is  retained throughout  as  it  easily  generalizes  to  the two polygenic scores  case (detail  in

Supplementary material eFigure 4). 

Complete  genetic  confounding.  In  equation  (1),  the  association  between  X  and  Y is  completely

genetically confounded when the adjusted effect β̂ XY = 0. We can then express the observed standardized

association as a function of the heritabilities of X and Y under complete genetic confounding as:

r̂ XY=r̂GX r̂GY=√(hx
2 ) √(hy

2 ) (2)

Logically, we find that when the adjusted effect of X on Y is null, then r̂ XY  is equal to the indirect path

through G (i.e. genetic confounding). In the special case when X and Y are the same trait in parent and

child (e.g. BMI in the mother and in the child), and assuming constant heritability across generations

(i.e. equal heritability of X and Y),we thus obtain: 

r̂ XY=0.5 hy

2
  (3)

This means that the adjusted effect of X on Y is likely to be null whenever the observed association does

not exceed half of the trait heritability. As such, reported associations between maternal (or paternal) and

child traits can be assessed against Figure 3 and if they lie in the shaded area, it is likely that they can be

entirely accounted by genetic confounding. Of note is that associations not in the shaded area can still be

confounded  by  environmental  risk  factors.  See  supplementary  material  for  additional  details  on
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equations (2) and (3). Note that in this special case when X and Y are measured in the mother and the

child, then the minimum for  k is still 0; however, the maximum if X and Y measure the same trait,

should be k = 0.5 (detail in supplementary material). 

 

Figure 3. The role of genetics in explaining phenotypic associations between parent and child 
Caption.  Standardized  observed  associations  between  the  same traits  in  the  mother  (or  father)  and  the  child  are
represented as a function of trait heritability. An observed association of 0.20 with trait heritability of 0.60 is likely
entirely explained by genetic confounding. Conversely, an association of 0.40 with heritability of 0.40 is unlikely to be
entirely explained by genetics. 

The two polygenic scores case

When predictor and outcome are different variables – for example maternal education and child BMI –

two polygenic scores are used in the sensitivity analysis, as shown in Figure 3. In theory, if we had a

polygenic score capturing all  genetic  influences for  Y,  this  score would also capture all  the shared

genetic variance between Y and X, and we could simply use the one polygenic score case above. In
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practice, polygenic scores do not capture all genetic influences on their respective phenotypes and are

differentially powered, which is why we use two polygenic scores in the sensitivity analysis. In the two

polygenic  scores  case,  new parameters  are  introduced:  (i)  the  genetic  correlation  between  the  two

polygenic  scores  β̂G
1
G

2
;  (ii)  the  cross  paths,  i.e.  the  paths  from each  polygenic  score  to  the  other

phenotype (β̂G
1
Y  and  β̂G

2
X). Due to these new parameters, the derivation of  β̂ XY becomes considerably

more complex than for the single case polygenic score. A simplifying assumptions is to assume that the

cross paths are null. This assumption is plausible to the extent that the influences of one polygenic score

on the other phenotype is entirely captured by the genetic correlation and the direct genetic influences.

For example, if the polygenic score for BMI explained the entire heritability of BMI (i.e. perfect β̂G
2
Y),

then the polygenic score for maternal education would not add to the prediction of BMI, so that cross

path (β̂G
1
Y) would be entirely accounted for through the genetic correlation ( β̂G

1
G

2
β̂G

2
Y ) leading to a null

adjusted cross path (β̂G
1
Y = 0, note that the observed  cross path is not expected to be null). Empirical

findings presented below support this assumption to a certain extent. eFigure 5 presents the expression

of β̂ XY under this assumption. However, current polygenic scores do not capture all genetic influences

and can be differentially powered (e.g. leading to a situation where β̂G
1
Y is superior even to β̂G

2
Y). In this

situation,  we cannot expect cross paths to be entirely null.  Consequently,  we adopted the structural

equation modelling approach based on a correlation matrix, as it does not impose null cross paths. A

maximum  likelihood  estimator  is  then  used  to  estimate  model-based  adjusted  paths  based  on  the

correlation matrix. In the two polygenic score cases, we also need parameters similar to k to derive the

two cross paths to input in the correlation matrix; the values of these parameters m depend on genetic

correlation  and  on  the  relevant  heritability  estimate,  such  that  :mG2 X=r̂G2 X /( r̂G1 X r̂G 1G 2
) and

mG1 Y=r̂G1 Y / (r̂G 2Y
r̂G1 G2

). Details on  m and how to specify the correlation matrices can be found in the

supplementary material. 
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Results

Observed and heritability-based scenarios

Observed scenarios were based on polygenic scores. As shown in Table 1, the best-fitting polygenic

scores derived from GWAS for years of education, BMI and ADHD, explained a substantial amount of

the variance in TEDS for educational achievement (for a threshold of p = .158), BMI (threshold: p

= .20) and ADHD symptoms (threshold: p = 0.358). All three were highly significant (larger p value for

ADHD = 1.6e-20). 

Two main heritability-based scenarios were used: (i) SNP-based heritability; (ii) Twin-based heritability.

Table 1 shows parameters for SNP-based and twin-based scenarios. SNP-based heritability estimates 

were obtained through LD score regression21,22, based on LD Hub for years of education and BMI and 

the latest ADHD GWAS for ADHD14. Twin estimates were derived from TEDS and from the literature 

(see Table 1 note). Table 1 also shows genetic correlations between years of education and BMI, and 

years of education and ADHD. 

Table 1: Heritability and genetic correlation under different scenarios

Heritability (% variance) Genetic correlation

Education BMI ADHD Education-

BMI

Education-

ADHD

Best-Fitting Polygenic score 11.9 6.3  1.3 -0.185 -0.184 

SNP-based scenario 12.4 18.6  21.6 -0.279 -0.535

Twin scenario 63.01 64.0 62.02 -0.0453 -0.4443

1Heritability of the GCSE score estimated in TEDS was used. 2Twin estimates for ADHD in TEDS are superior to > .80.9 
However, a twin meta-analysis has argued that commonly reported heritability estimates for ADHD are biased, and estimated
broad-sense heritability to be 62%, value that is used here23.  3As maternal education does not vary within family, it is not 
possible to directly estimate the genetic correlation between maternal education and child BMI and ADHD in TEDS. When 
using GCSE as a proxy, both twin estimates of genetic correlations were lower than SNP based estimates using LD score 
regression. Power was especially low for education-BMI given the low phenotypic correlation. Therefore, in the sensitivity 
analyses, we used SNP-based instead of twin-based genetic correlations for our two main scenarios.  
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Genetic confounding and sensitivity analyses

Single polygenic score: child educational attainment

The  observed  standardised  estimate  of  the  relationship  between  maternal  education  and  child

educational achievement was  Sxy = 0.40 (95% Confidence Intervals [CI]: 0.37, 0.43). Using the best

fitting polygenic score for years of education, the effect explained by genetics was estimated as 0.07

(0.06, 0.08), corresponding to 18.1% of the total effect. After taking this genetic confounding effect into

account, the relationship between maternal education and child educational achievement was reduced to

0.33 (0.30,0.36).

The sensitivity analysis is represented in Figure 4, including the standardized estimates of the effect of 

maternal education on child achievement as a function of the variance explained by observed polygenic 

scores on GCSE and under heritability-based scenarios. We first re-estimated the effect of maternal 

education on achievement by adjusting for observed polygenic scores at different p value thresholds (i.e.

explaining different amounts of variance in GCSE). We then estimated what the effect of maternal 

education on achievement would be under scenarios where polygenic scores could capture additional 

variance in educational outcomes (see methods).  Note that the SNP-heritability scenario for years of 

education (12.4%) is very close to the variance effectively captured in TEDS by the polygenic score 

(11.9%) (See Table 1). Therefore, we estimated  SNP-heritability scenario based on the SNP-heritability 

of GCSE, which was previously estimated in TEDS to be 31%11. Under this scenario the effect further 

decreased to 0.20 (0.17;0.23). The effect estimate was null under the twin-heritability scenario when 

using k estimated from the best-fitting polygenic score. 
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Figure 4: Gsens analysis of the effect of maternal education and child educational attainment

Caption. Estimated standardized effect of maternal education on child educational attainment (Y axis) after accounting 
for shared genetic effects using observed polygenic scores and heritability-based scenarios explaining an increasing 
percentage of variance (X axis). Each estimate is computed independently using the procedure described in 
methods. Therefore, estimates under the SNP-heritability or twin-heritability scenarios are not based on a direct 
extrapolation of what was observed for polygenic scores. Point estimates and confidence intervals in black represent
estimates of interest, from left to right: 1: the best-fitting polygenic score; 2:  SNP-heritability of educational 
achievement as assessed by GCSE in TEDS; 3: twin-heritability scenario. A lower bound of 0 was imposed on the 
estimate, which is reached for the twin estimate of heritability (63%). The line k = Observed corresponds to 
heritability-based scenario using k values derived from observed polygenic scores (i.e. average of the values of k 
calculated for each of the four polygenic scores). k = theoretical corresponds to the value of k if the same trait was 
measured in parents and children and the heritability was the same in parents and children, i.e. k = 0.5.

 

Note that the average k derived from the observed polygenic score was k = 0.75, superior to the 

expected value of 0.5 expected when X and Y are the same trait measured in parents and children. In 

addition to sample-specific findings, this can be because the polygenic score used was derived from the 

GWAS which measured years of education in adults, i.e. closer to the maternal education phenotype 

than to child achievement phenotype used for Y. A similar finding was observed by Bates et al.24 When 
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using k = 0.5 under the twin-heritability scenario, the value of β̂ XY  is still considerably reduced 

compared to the phenotypic estimate but remains significant, with  0.10 (0.08;0.12).

Two polygenic scores: BMI and ADHD

The observed estimate of the relationship between maternal education and child BMI was S = -0.087 (-

0.119, -0.055).  Using the best fitting polygenic scores for years of education and BMI, the genetic

confounding effect was estimated at -.021 (-.028, -0.014), corresponding to 24.3% of the total effect.

After taking this genetic confounding effect into account, the relationship between maternal education

and child BMI was -0.066 (-.098,-.035). Table 2 presents model parameters under different scenarios,

with increasingly predictive observed polygenic scores as well as two heritability-based scenarios. The

first  scenario  relied  on  SNP-based heritability  estimates  for  years  of  education  and  BMI and  their

genetic correlation (see Table 1). In that scenario, the relationship between maternal education and child

BMI further decreased to -0.047 (-0.076,-0.017). In the twin heritability scenario, the  estimate was null,

meaning that, under this scenario, the entire association between maternal education and child BMI is

accounted for by genetic confounding (Table 2). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 30, 2019. ; https://doi.org/10.1101/592352doi: bioRxiv preprint 

https://doi.org/10.1101/592352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genetic confounding  19

Table 2 Sensitivity analysis for BMI

Sxy
1 Sg2y

1 Sg1x
1 Sg1g2

1 

Unadjusted for PS scores2 -0.087 (-0.119, -0.055) - - -
Observed polygenic scores
     PS3 (p=0.000001) -0.075 (-0.107,-0.043) 0.219 (0.191,0.247) 0.170 (0.143,0.197) -0.122 (-0.145,-0.098)
     PS (p=0.0001) -0-0.073 (-0.104,-0.041) 0.237 (0.209,0.265) 0.211 (0.184,0.238) -0.155 (-0.178,-0.131)
     PS(p = 0.01) -0.070 (-0.101,-0.039) 0.241 (0.213,0.269) 0.265 (0.238,0.292) -0.183 (-0.207,-0.159)
     Best-Fitting PS4 -0.066 (-0.098,-0.035) 0.247 (0.219,0.275) 0.283 (0.256,0.31) -0.185 (-0.208,-0.161)
Heritability-based with m 
from best-fitting 
    SNP scenario5 -0.047 (-0.076,-0.017) 0.415 (0.384,0.445) 0.167 (0.134,0.2) -0.279 (-0.313,-0.245)
    Twin scenario5 0 (0,0) 0.774 (0.754,0.794) 0.376 (0.345,0.407) -0.279 (-0.313,-0.245)
Heritability-based with m = 1
    SNP scenario -0.066 (-0.095,-0.037) 0.427 (0.398,0.457) 0.176 (0.144,0.208) -0.279 (-0.313,-0.245)

    Twin scenario 0 (0,0) 0.800 (0.781,0.819) 0.397 (0.366,0.428) -0.279 (-0.313,-0.245)
Note. 1Sxy: effect of maternal education on BMI; Sg2y: BMI polygenic score on observed BMI, the squared estimate
yields the variance explained; Sg1x: Years of education polygenic score on maternal education. For the heritability-
based scenarios, the path entered in the simulation is based on the heritability of years of education adjusted as the
child genotype is used (see Supplementary Material). Vg1g2: genetic correlation estimated by the correlation between
the polygenic scores or by the LD score regression in simulated scenarios. 2Initial bivariate observed estimate of Sxy
before  accounting  for  genetic  confounding.  3All  observed  scenarios  are  based  on  polygenic  scores  computed  for
different pvalue thresholds given in brackets (the same for BMI and years of education), which explain increasing
percentages of variance.  4Based on observed values for the best fitting score for years of education (p = 0.158) and
BMI (p = 0.20). 5Genetic correlation is equal in both scenarios, see Table 1 note).

The observed estimate of the relationship between maternal education and child ADHD was S = -0.127

(-0.155, -0.098). Using the best fitting polygenic scores for years of education and ADHD, the genetic

confounding effect was estimated to -0.018 (-0.026, -0.010), corresponding to 14.3% of the total effect.

After taking shared genetic effects into account, the relationship between maternal education and child

ADHD was -0.109 (-0.138; -0.079). Table 3 presents model parameters under different observed and

simulated scenarios. In the heritability-based scenario, the relationship between maternal education and

child ADHD was further reduced and null in the twin-based scenario.
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 Table 3: Sensitivity analysis for ADHD

βxy
1 βg2y

1 βg1x
1 βg1g2

1 

Unadjusted for PS scores2 -0.127(-0.155, -0.098)
Observed polygenic scores
     PS3 (p=0.000001) -0.119 (-0.148,-0.089) 0.003 (-0.022,0.028) 0.175 (0.148,0.202) -0.081 (-0.104,-0.057)
     PS (p=0.0001) -0.115 (-0.144,-0.085) 0.028 (0.003,0.053) 0.218 (0.191,0.244) -0.112 (-0.135,-0.088)
     PS(p = 0.01) -0.112 (-0.141,-0.082) 0.066 (0.041,0.091) 0.271 (0.244,0.298) -0.160 (-0.184,-0.136)
     Best-Fitting PS4 -0.109 (-0.138,-0.079) 0.105 (0.08,0.13) 0.289 (0.262,0.316) -0.184 (-0.208,-0.16)
Heritability-based with m 
from best-fitting5

    SNP scenario 0 (0,0) 0 (0,0) 0.162 (0.129,0.195) -0.535 (-0.567,-0.502)
    Twin scenario6 -  -  -  -
Heritability-based with m = 1
    SNP scenario -0.084 (-0.109,-0.059) 0.457 (0.432,0.482) 0.176 (0.143,0.209) -0.535 (-0.567,-0.502)

    Twin scenario 0 (0,0) 0.787 (0.77,0.805) 0.397 (0.366,0.428) -0.535 (-0.567,-0.502)
Note.  1-3See Table 2.  4Based on observed values for the best fitting score for ADHD (best threshold p = 0.351).
5Genetic correlation is equal in both scenarios (see Table 1 note).  6The twin scenario did not converge for  m values
based on the best-fitting polygenic score, see section 'additional parameters and constraints' for comments. 

Two polygenic scores: additional parameters and constraints

Compared with the one polygenic score scenario, the model with two polygenic scores described above

includes new parameters. First the size of the genotypic correlation between the two traits plays a role.

The genetic correlation effect size increases with increasingly predictive polygenic scores. As shown in

Table 3, the genetic correlation between the polygenic scores for years of education and ADHD goes

from -0.081 for less predictive polygenic scores to -0.184 for the best fitting polygenic scores and to -

0.535 when using LD score regression. The cross paths also represent new parameters (i.e. direct path

from the polygenic score of BMI to education and vice versa). Effect sizes for cross paths are rather

small but precision also increases with more accurate polygenic scores, for example observed bivariate

cross paths from polygenic scores of years of education to BMI phenotype ranged between 0.009 and

-.027 (see Supplementary eTable 1). These increasingly negative observed cross paths are consistent

with the expected negative correlation between the polygenic score for education and BMI. Increasingly

negative observed cross paths are observed in all cases (eTable 1 to  eTable 4). On the other hand, the

adjusted cross paths are close to 0 and not increasing, consistent with the fact that the observed cross

paths are largely generated by the genetic correlation and the relevant heritability estimates. In some
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cases  (eTable  1  and  4),  cross  paths  even  flip  to  a  positive  sign,  which  is  implausible  (e.g.  higher

polygenic score for education predicting higher  BMI or higher  ADHD).  To avoid such implausible

cases, an upper bound of 0 was imposed on parameters for the cross paths ( β̂G
1
Y,  β̂G

2
X). Similarly, a

bound of 0 was imposed on the main estimate ( β̂ XY), corresponding to the case where  shared genetic

effects accounts for all the association between X and Y (Table 2 & 3).  

The heritability-based scenarios depend substantially on the values of m. Whether for BMI or ADHD,

the value of  β̂ XY was null under twin-based heritability, whatever the value of m. However, for SNP-

heritability, the point estimate of β̂ XY changed from -0.047 when using m values based on the best-fitting

polygenic  scores  to  -0.066  when  using  the  minimum values  of  m =  1  (Table  3).  For  ADHD,  the

difference was more substantial as the point estimates for β̂ XY varied from -0.084 to 0. This is because,

in the case of ADHD, m values were imprecisely estimated as the polygenic score for ADHD predicts

little variance in ADHD. The resulting large m value leads to an impossible value of the cross path to

input in the heritability-based scenario (i.e. standardized absolute cross path superior to 1). This explains

the non-convergence of the model in the twin heritability-based scenario based on m values from the

best-fitting polygenic score reported in Table 3. Further considerations on the estimation of  m and its

consequences on the estimates are proposed in the supplementary material. Importantly, the method we

propose here,  as most sensitivity analyses, thus offers a range of possible values of a parameter of

interest (here  β̂ XY) under different scenarios, rather than a unique point estimate. In addition, this range

will  become  narrower  as  the  power  of  GWAS  increases,  which  will  lead  to  better  estimated

heritabilities, genetic correlations and  m values. In the meanwhile, results should be considered with

caution in particular for polygenic scores with very low predictive power (e.g. ADHD). 
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Discussion

In the present study, we combined polygenic scores with heritability estimates in a sensitivity analysis – 

Gsens – aiming to gauge to what extent shared genetic effects can account for observed epidemiological 

associations. The genetic sensitivity analysis we propose adds a new tool to probe the robustness of 

findings regarding the role of genetics in associations between risk factors and outcomes. This approach 

only requires a genotyped cohort with adequate phenotypic measurements, which is increasingly the rule

rather than the exception. It is therefore possible to envisage that such sensitivity to genetic confounding

analysis becomes routine in the not too distant future. Below, we first discuss empirical findings 

regarding the associations between maternal education and child educational attainment, BMI, and 

ADHD. We then discuss the interpretation and applicability of Gsens.   

Maternal education and developmental outcomes

Findings show that the association between maternal education and both child educational attainment 

and BMI were still significant under a SNP-heritability scenario but were null under a twin-heritability 

scenario. The association between maternal education and ADHD was null even when assuming only 

SNP-heritability. Overall, the observed association between maternal education and these three 

developmental outcomes may largely be due to shared genetic effects.  

Relevant to our findings is previous research using causal inference designs to investigate the effect of 

parental educational attainment on child educational attainment (although note that our outcome was 

educational achievement rather than attainment). In particular, a systematic review on the topic has 

summarized evidence from twin and adoption designs, as well as non-genetic instrumental variable 

estimations25. The systematic review of findings from such designs suggest that intergenerational 

associations between parent and child educational attainment are largely driven by selection effects, 

including genetic confounding; it suggests only small but still significant causal effects. A new method –
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the ‘virtual-parent design’ – has recently emerged, which consists in splitting parental genetic variants 

associated with a parental risk factor into variants transmitted and nontransmitted to the child24,26. 

Parental polygenic scores including only nontransmitted variants are free from genetic confounding and 

index plausible causal effects of the parental risk factor on the child outcome. Empirical findings 

implementing this method in education research suggests substantial genetic confounding and small but 

still significant causal effects of parental attainment on child attainment (as index by nontransmitted 

polygenic scores). Our findings on educational attainment are overall consistent with this literature. 

Although shared genetic effects accounted entirely for the association between parental education 

attainment and child achievement, we detected a small but significant effect when using the upper 

theoretical limit of the k value, consistent with previous findings. In addition, scenarios based on slightly

lower heritability estimates also yielded small but significant effects, raising the possibility that null 

findings resulted from overestimated twin-heritability estimates, a possibility further discussed below. 

Taken together, this set of findings represent a clear call for caution when interpreting non-genetically 

informed epidemiology studies on the role of maternal education.

Interpreting the sensitivity to genetic confounding analysis

Two key points regarding the interpretation of Gsens findings must be highlighted. First, the reliability 

of findings depends on the accuracy of heritability estimates. Overestimated heritability would lead to 

underestimating the plausible causal role of risk factors. Whether heritability estimates are accurate 

remains an open debate. The notion of ‘missing heritability’ is central in this debate (i.e. the double gap 

between the variance explained by polygenic scores versus SNP-heritability and by SNP-heritability 

versus family-based estimates of heritability)27,28. Recent research suggests that current heritability 

estimates include environmentally mediated effects29. Once such effects are removed, heritability - 

defined as the fraction of trait variation due to direct genetic effects –can be substantially lower for traits

like education or BMI, thereby affecting the findings from Gsens. Increasing power in GWAS and 
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improved estimation methods will contribute to resolving the issue of missing heritability, and provide 

more accurate parameters for Gsens. In addition, power increase in GWAS will improve the reliability 

of Gsens in the following ways: (i) by increasing the predictive power of polygenic scores and therefore 

the accuracy of observed scenarios; (ii) by improving the accuracy of parameter estimates for the 

sensitivity analysis – including values of k and m, SNP-heritability, and genetic correlation. 

Second, Gsens is fundamentally different from instrumental variable approaches like Mendelian 

Randomization (MR). In MR, genetic variants influencing risk factors (i.e. the genetic instrument, 

corresponding to β̂GX in Figure 1a) are used to estimate causal effects of risk factors on outcomes. 

Conversely, Gsens aims to remove all shared genetic effects between risk factors and outcomes (β̂ XG β̂GY

). Importantly, if MR assumptions are satisfied, the effect of the genetic instrument on Y is entirely 

mediated by the risk factor X (i.e. exclusion restriction assumption). In other words, there is no direct 

effect of G on Y and the observed r̂GY  reflects the indirect effect of the genetic instrument through the 

risk factor β̂GX β̂ XY. In this case, there is no genetic confounding per se as G predicts X but does not 

directly predict Y. Our estimate of shared genetic effects thus amalgamates both genetic confounding 

and indirect genetic effects through the  risk factor, which is not per se confounding (it other words, it 

amalgamates unmediated pleiotropy and mediated pleiotropy).4  This is not specific to genetic 

confounding and can happen when controlling for potential environmental confounders, which can 

include environmental sources of variance in the predictor that  behave as instrumental variables. 

Similarly, in a discordant twins design, in order to strengthen causal inference, we compare identical 

twins exposed or non-exposed to a given risk factor. In such a design, all shared genetic effects are 

controlled for, including genetic confounding and genetic effects that directly affect the risk factor but 

only indirectly affect the outcome. As such, in Gsens as in the discordant twins design, we must assume 

that there will be enough environmental variance left in the risk factor to detect the causal effect on the 

outcome. A caveat of this approach is that it is theoretically possible that all the variance in the risk 
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factor is genetic in origin but that this risk factor still has a direct causal effect on the outcome; this 

causal effect would thus remain undetected in a discordant twins analysis and would be ruled out by 

Gsens. However, genetic influences almost never explain all the variance in risk factors and, when 

heritability is high, it is likely that adequate genetic instruments can be found to conduct MR analyses. 

Applicability of the sensitivity to genetic confounding analysis

 A wealth of methods have been developed to account for confounding in observational studies, 

including genetically informed methods4. Among such methods, MR has become an approach of choice 

in the past decade.  Major challenges in MR analyses are: (i) weak instrument(s), i.e. the genetic 

variant(s) do(es) not strongly predict the risk factor; (ii) unmediated pleiotropy, i.e. the instrument 

predicts the outcome not only via the risk factor; (iii) the genetic instrument is not independent from 

confounders. MR can be implemented to test the effect of proteins, such as the C-Reactive Protein 

(CPR), an inflammatory marker, on a variety of health outcomes30,31. In such a case, variants in the CRP 

gene naturally strongly predict variation in circulating CRP levels, ruling out the problem of weak 

instruments. As such variants in the CRP gene are directly implicated in the synthesis of CRP, it is 

reasonable to assume that their effect on later outcomes is mediated by their effect on CRP. Although the

third challenge cannot be fully tested, genetic variants in the CRP gene have been shown to be 

independent of a number of observed potential confounders that are associated with circulating CRP 

levels32. MR has also been implemented to test the causal effect of other molecules, relatively proximal 

to the genome like lipids, where the path from the genetic sequence to the risk factor is relatively well 

characterised. The risk of unmediated pleiotropy is greater in this case and MR analyses examining 

separately the effect of one lipid can be biased. For example, High-Density Level cholesterol (HDL-c), 

appears protective for cardiovascular diseases when considered separately, but this effect disappears 

when HDL-c is considered jointly with other lipids, accounting for plausible pleiotropy pathways4. More

distal from the genome are complex individual traits such as BMI or intelligence, where the pathways 
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from the many genetic variants used as instruments to their corresponding risk factors are poorly 

characterised. Considerable methodological developments using multiple instruments to statistically 

deal with MR challenges have recently been proposed4. As shown by the lipid example, the application 

of such methods may still lead to biased estimates when plausible pleiotropic pathways are not directly 

modelled (which becomes increasingly difficult as the complexity of the risk factor increases). Thus, the

reliability of these improved MR estimators to establish the effect of complex individual risk factors 

remains difficult to establish. An additional level of complexity arises for 'environmental' risk factors 

such as education, income, urbanicity or exposure to bullying. These risk factors are by nature 'external' 

to the individual and largely dependent on the wider social context (e.g. exposure to bullying is not an 

individual characteristic but implicates acts of others towards the individual; and assessing years of 

education is only possible in a society with an education system in place). However, such 

'environmental' risk factors have been demonstrated to be partly, and often substantially heritable33. The 

concept of gene-environment correlation clarifies how such risk factors can still be heritable: genetic 

variants first influence a number of 'internal' individual characteristics – biological intermediate 

phenotypes, cognitive traits, personality –, which in turn contribute to shaping the individual 

environment and thus influence these 'external' risk factors. Although such dichotomy between internal 

and external risk factors is reductionist, it is used here simply to highlight that genetic influences on 

some risk factors can only manifest through indirect pathways through 'internal' risk factors, which are 

themselves complex (e.g. intelligence). For these risk factors, GWAS are often not available and when 

they are, implicated genetic variants will only reflect a multitude of indirect pathways. For example, in a

recent study, we showed that polygenic scores for BMI, education, depression, ADHD, and risk taking 

were associated with the likelihood of being exposed to bullying34. Using results from a GWAS of 

bullying victimization to assess its effect would amount to using many unspecific instruments related to 

other complex individual traits.  Genetic influences on such environmental influences are not only 

complex and indirect but they are also fairly unspecific as, for example, education, depression and risk 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 30, 2019. ; https://doi.org/10.1101/592352doi: bioRxiv preprint 

https://doi.org/10.1101/592352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genetic confounding  27

taking found to impact exposure to bullying can impact other environmental risk factors such as income 

or urbanicity. For such risk factors, the aforementioned challenges for MR are thus magnified: (i) 

genetic effects on such factors are by nature indirect and thus likely to be weak; (ii) top associated SNPs

will reflect a number of underlying individual traits, making unmediated pleiotropy a rule rather than an 

exception; (iii) top associated SNPs will be associated with a number of other environmental risk 

factors, and therefore be unlikely independent from confounders. 

In Gsens, whether variants composing the polygenic scores are valid or invalid instruments is 

unimportant. In addition, Gsens can be implemented even when GWAS for the risk factor are not 

available, as long as a GWAS for the outcome is. For example, Gsens  could be applied to test whether 

the association between urbanicity and schizophrenia is susceptible to shared genetic effects. In this 

case, the single polygenic score case would be implemented, using a polygenic score for schizophrenia 

and testing for its association with urbanicity as a base for the sensitivity analysis. As noted in the 

method section, genetic factors solely affecting urbanicity and not schizophrenia do not confound the 

association (and vice versa). As such, only one polygenic score for either the risk factor or the outcome 

is theoretically needed, to the extent that it captures shared genetic effects appropriately. We therefore 

propose that Gsens can be conceived as a complementary method, suited for complex environmental 

risk factors that are of interest for health and social sciences. 

Limitations and research avenues

As all sensitivity analyses in observational studies, the sensitivity to genetic confounding analysis 

cannot provide a definite answer to the question of causality. The convergence of findings across 

designs and methods – i.e. triangulation – will provide the most robust evidence of causal effects.

TEDS does not include maternal (or paternal) genotype, which prevented us from modelling their role 

directly. Of note is that the sensitivity to genetic confounding analysis can be implemented when both 
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the risk factor and the outcome are measured for the same individual, without modelling parental 

effects. 

As a first future research avenue, a sensitivity analysis based on jointly modelling shared genetic effects 

and observed environmental confounders could be envisaged. A second research avenue could consist in

using mixed-linear modelling35 instead of polygenic scores. Genomic Restricted Maximum Likelihood 

(GREML) estimates SNP-heritability based on a Genomic Relatedness Matrix of distantly related 

individuals36,37. Extensions of GREML enable a better identification of causal SNPs among the many 

SNPs in LD tagged by GWAS. Mixed linear models are a method of choice to perform a conditional 

analysis estimating the effect of each SNP, while adjusting for all genotyped markers35. We note that the 

candidate causal SNP can be replaced by any environmental exposure of interest, to examine the effect 

of this exposure on an outcome, independently of the joint effect of genotyped markers. This can be 

thought of as adjusting for a polygenic score that would effectively capture as much of the variance in Y 

as SNP-heritability. Mixed linear models accommodate covariates, enabling the inclusion of key 

environmental confounders. Contrasting models with and without modelling genotyped markers should 

help in determining the role of genetic confounding for the association under scrutiny. Sensitivity 

analyses similar to the ones described above could also be performed. Finally, such models could be 

extended to examine the intergenerational transmission of risk factors based on multivariate GREML 

methods38.
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