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Abstract

Associations between  exposures and outcomes reported in epidemiological studies are typically 

unadjusted for genetic confounding. We propose a two-stage approach for estimating the degree to 

which such observed associations can be explained by genetic confounding. First, we assess attenuation 

of exposure effects in regressions controlling for increasingly powerful polygenic scores.  Second, we 

use structural equation models to estimate genetic confounding using heritability estimates derived from

both SNP-based and twin-based studies. We examine associations between maternal education and three

developmental outcomes – child educational achievement, Body Mass Index, and Attention Deficit 

Hyperactivity Disorder. Polygenic scores explain between 14.3% and 23.0% of the original associations,

while analyses under SNP- and twin-based heritability scenarios indicate that observed associations 

could be almost entirely explained by genetic confounding. Thus, caution is needed when interpreting 

associations from non-genetically informed epidemiology studies. Our approach, akin to a genetically 

informed sensitivity analysis can be applied widely.  

Author summary

An objective shared across the life, behavioural, and social sciences is to identify factors that increase 

risk for a particular disease or trait. However, identifying true risk factors is challenging. Often, a risk 

factor is statistically associated with a disease even if it is not really relevant, meaning that even 

successfully improving the risk factor will not impact the disease.  One reason for the existence of such 

misleading associations stems from genetic confounding. This is when genetic factors influence both the

risk factor and the disease, which generates a statistical association even in the absence of a true effect 

of the risk factor. Here, we propose a method to estimate genetic confounding and quantify its effect on 

observed associations. We show that a large part of the associations between maternal education and 

three child outcomes - educational achievement, body mass index and Attention-Deficit Hyperactivity 

Disorder-  is explained by genetic confounding. Our findings can be applied to better understand the role

of genetics in explaining associations of key risk factors with diseases and traits. 
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Introduction

Associations between exposures and outcomes are commonly reported in epidemiological research, but 

often without estimating or accounting for the contribution from genetics. However, most exposures and

outcomes are substantially heritable, and genetics can confound these associations. Here, we propose a 

new genetic sensitivity analysis, which we call Gsens, to assess to what extent genetic confounding can 

account for observed associations. 

Genetic confounding and sensitivity analysis 

Identifying exposures that can be targeted in effective interventions is a fundamental objective shared 

across the life, behavioural and social sciences. To this end, identifying causal exposures is essential as 

interventions that target non-causal exposures will likely fail. To establish causation, it is necessary to 

account for confounding, which happens when a third variable causally influences both the exposure 

and the outcome, thereby generating a non-causal association between them. Genetic confounding is a 

special case when genetic factors play the role of the third variable. The concept of genetic confounding 

was introduced during the controversy regarding the effect of cigarette smoking on lung cancer. In a 

letter entitled 'alleged dangers of cigarette-smoking', Ronald Fisher qualified ’the mild and soothing 

weed’ as ‘possibly an entirely imaginary cause’ for lung cancer [1].  He argued that genetic factors could

directly influence both smoking and lung cancer, generating a non-causal association between them. 

Although Fisher was mistaken in this particular instance,  the notion of genetic confounding remains 

relevant, in his words ‘a common cause, in this case the individual genotype’. During this controversy, 

Jerome Cornfield argued against this ‘constitutional hypothesis’ [2,3]. He contended that implausibly 

large genetic effects (or other unobserved confounders) would be required to explain away all of the 

observed association. This led to the birth of the approach now called sensitivity analysis, which consists

of estimating how strong an unknown confounder needs to be in order to explain away an observed 

association, providing insights into the robustness of that association (i.e. how sensitive it is to 

3

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 17, 2020. ; https://doi.org/10.1101/592352doi: bioRxiv preprint 

https://doi.org/10.1101/592352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genetic confounding  4

confounding and whether it is likely causal or not) [2]. Since then, sensitivity analyses have become 

common epidemiological tools to probe the robustness of findings under alternative scenarios. However,

sensitivity analysis using genetic data has not progressed. We recently [4] proposed to use polygenic 

scores – individual-level scores that summarize genetic risk (or protection) for a given phenotype – to 

estimate the proportion of observed associations explained by genetic confounding.  However, because 

polygenic scores capture only a small part of heritability, controlling for polygenic scores cannot 

entirely capture genetic confounding. We therefore propose a sensitivity analysis using polygenic scores 

to gauge how likely it is that genetic confounding accounts, in part or entirely, for a given exposure-

outcome association. Here, we develop this proposition in two stages. First, we test to what extent 

associations of interest are accounted for by observed polygenic scores. Second, in the sensitivity 

analysis per se, we use structural equation models to examine how an increase in the predictive power of

polygenic scores based on heritability estimates would affect association estimates. This can be thought 

of as adjusting for latent polygenic scores that capture as much of the variance in the exposure and 

outcome as suggested by available heritability estimates. 

Maternal education and child developmental outcomes

To illustrate our approach, we focus on maternal educational attainment  (termed maternal education) as 

the exposure of interest. Greater maternal education is associated with child developmental outcomes in 

several key domains: social development (e.g. better educational outcomes), physical health (e.g. lower 

Body Mass Index, BMI), and mental health (e.g. lower levels of Attention-Deficit Hyperactivity 

Disorder (ADHD) symptoms)[5–8]. However, observed associations between maternal education and 

developmental outcomes are not free from confounding, in particular genetic confounding as both 

maternal education and developmental outcomes are heritable, and mother and child share half their 

genomes identical by descent [5,9–13].  

Here, we illustrate the use of Gsens to estimate the role of genetic confounding in explaining the 
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associations between maternal educational and three developmental outcomes in the child: educational 

achievement operationalized by the General Certificate of Secondary Education (GCSE), BMI, and 

ADHD. Importantly, Gsens has a wide scope of applications as it only requires genome-wide data on 

large samples and a focus on outcomes for which polygenic scores are available. Its applicability will 

further expand with the steady increase in the number and the accuracy of available polygenic scores 

[14]. 

 Results

Method Overview

Participants were drawn from the Twins Early Development Study (TEDS), with sample sizes between 

3,663 and 4,693 individuals with data for maternal education and child educational achievement, BMI, 

and ADHD. Polygenic scores were estimated in the child using PRSice software [15] at different p-value

thresholds, explaining increasing amounts of variance in the corresponding phenotype. In the first stage, 

we estimated the proportion of the observed phenotypic association between the exposure and the 

outcome that was explained by polygenic scores at different p-value thresholds; we call these the 

observed scenarios. However, even the best-fitting polygenic scores only captured a fraction of the 

heritability of their corresponding phenotypes, thus underestimating the magnitude of genetic 

confounding. In the second stage, the sensitivity analysis therefore aimed to answer the following 

question: to what extent is the exposure X associated with the outcome Y after controlling for all genetic

confounding? In other words, if β XY is the coefficient of regression of Y on X, to what extent would it 

attenuate if we were to control for ‘perfect’ polygenic scores capturing all genetic influences on X and Y

rather than the small fraction accounted for by available polygenic scores? To this end, we estimated

β XY under plausible scenarios combining information on current polygenic scores and heritability 

estimates. The estimation of  β XY is based on the matrix of observed correlations between polygenic 

scores, exposure and outcomes. We then fit a Structural Equation Model to this matrix of correlations 

that aims to reflect the true extent of genetic confounding (see Methods). Approaches using one 
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polygenic score (for the exposure or for the outcome) or two polygenic scores (for the exposure and the 

outcome) were used. Three functions are provided that adjust the association of interest based on the 

polygenic score for the exposure (GsensX), for the outcome (GsensY) or both exposure and outcome 

(GsensXY). We conducted simulations to assess the relative accuracy of these functions and to assess 

the effect of unobserved non-genetic confounding on the estimates obtained from Gsens.  We provide a 

package and a tutorial at https://github.com/JBPG/Gsens.

Observed and heritability-based scenarios

As shown in Table 1, the best-fitting polygenic scores derived from the GWAS for years of education,

BMI and ADHD explained a substantial  amount  of  the  variance  of,  respectively,  child  educational

achievement (threshold of p = .158), BMI (threshold: p = .20) and ADHD symptoms (threshold: p =

0.358) in TEDS. All three were highly significant (largest p value = 1.6e-20 for ADHD). Table 1 shows

parameters  for  two main  heritability-based scenarios:  SNP-based and Twin-based heritability. SNP-

based heritability estimates were obtained through LD score regression [16,17], based on LD Hub [18]

for  years  of  education  and  BMI  and  the  most  recent  ADHD GWAS for  ADHD  [13].  Twin-based

estimates were derived from TEDS and from the literature (see Table 1 note). 

Table 1. Heritability and genetic correlation under different scenarios

Heritability (% variance) Exposure-outcome

genetic correlation

Education BMI ADHD Education~

BMI

Education~

ADHD

Best-Fitting Polygenic score 11.9 6.3  1.3 -0.185 -0.184 

SNP-based scenario 31.0 18.6  21.6 -0.279 -0.535

Twin scenario 63.01 64.0 62.02 -0.0453 -0.4443

1Heritability of the GCSE score estimated in TEDS was used. 2Twin estimates for ADHD in TEDS are superior to > .80 [5]. 
However, a twin meta-analysis has argued that commonly reported heritability estimates for ADHD may be biased, and 

estimated broad-sense heritability to be 62%, which is used here [19].  3As maternal education attainment does not vary 
within family, it is not possible to directly estimate the twin-based genetic correlation between maternal educational and child

BMI and ADHD in TEDS, so child GCSE was used as a proxy of educational attainment. 
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Genetic confounding and sensitivity analyses

Single polygenic score: child educational achievement

Supplementary material  S1 eTable 1 shows  correlations between study variables.  The  observational

estimate of the relationship between maternal educational attainment and child GCSE was 0.398 (95%

CI: 0.368, 0.427). Using the best fitting polygenic score for years of education, the effect explained by

genetic confounding was estimated at 0.073 (0.067, 0.080), corresponding to 18.2% of the total effect.

After  taking this  genetic  confounding effect  (as  captured  by the polygenic score)  into account,  the

relationship between maternal education and child GCSE was reduced to 0.324 (0.291, 0.357).

The sensitivity analysis is represented in Figure 1, where standardized estimates of the effect of maternal

education on child GCSE are plotted as a function of the variance explained in the latter. We first re-

estimated the effect of maternal education on child GCSE by adjusting for observed polygenic scores at 

different p value thresholds, explaining different amounts of variance in GCSE scores. We then 

estimated the effect of maternal education on child GCSE under scenarios in which polygenic scores 

could capture additional variance in educational outcomes (see Methods).  The  SNP-heritability 

scenario is based on the SNP-heritability of GCSE scores, which was previously estimated in TEDS to 

be 31% [10]. Under this scenario the effect of maternal education on child achievement further 

decreased to 0.175 (0.129, 0.222). The effect estimate was null under the twin-heritability scenario. 

We define k as the ratio of the standardized path from the polygenic score to the exposure divided by the

standardized path from the polygenic score to the outcome (see Methods). The estimated k was 0.84.  

This is higher than the value of 0.5 expected when X and Y are the same trait measured in parents and 

children (meaning that the standardized association between the child polygenic score and maternal 

education should be, at most, half of the standardized association between the child polygenic score and 

the child educational outcome). In addition to sample-specific findings, this could be because the 

polygenic score for child educational achievement was derived from a GWAS of years of education in 

adults, which is closer to the maternal education phenotype (X) than the child GCSE phenotype (Y). A 
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Genetic confounding  8

similar finding was observed by Bates et al. [20].   When setting k = 0.5 under the twin-heritability 

scenario, the estimate of β̂ XY  is still considerably reduced compared to the observed correlation but 

remains positive at 0.098 (0.066, 0.129). 

Figure 1. Gsens analysis of the effect of maternal educational attainment on child educational 

achievement

Caption. Estimated standardized effect of maternal education on child educational achievement (Y axis) after 

accounting for genetic confounding using observed polygenic scores and heritability-based scenarios explaining 

an increasing percentage of variance (X axis). Point estimates and confidence intervals in black represent main 

estimates of interest, after accounting for (from left to right): 1: the best-fitting polygenic score; 2:  SNP-

heritability of educational achievement as assessed by GCSE scores in TEDS; 3: twin-heritability of educational 

achievement. A lower bound of 0 was imposed on the estimate, which is reached for the twin estimate of 

heritability (63%). The line “k = Observed” corresponds to heritability-based scenarios using values of model 

parameter k derived from observed polygenic scores (see Methods). “k = theoretical” corresponds to the value of 

k when the same trait is in parents and children and the heritability is the same in parents and children.  In this 

case k=0.5 (see Methods).
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Two polygenic scores: BMI and ADHD

The observational estimate of the relationship between maternal education and child BMI was β XY = -

0.089 (-0.122, -0.057). Using the best fitting polygenic scores for years of education and BMI, the 

genetic confounding effect was estimated at -0.021 (-0.028, -0.013), corresponding to 23.0% of the total 

effect. After taking this genetic confounding effect into account, the relationship between maternal 

education and child BMI was -0.069 (-0.100, -0.037).  The first scenario used SNP-based heritability 

estimates for years of education and BMI (see Table 1). In that scenario, the relationship between 

maternal education and child BMI further attenuated to -0.043 (-0.077,-0.009). In the twin heritability 

scenario, the estimate was null, meaning that, under this scenario, the entire association between 

maternal education and child BMI is accounted for by genetic confounding.  Table 2 presents sensitivity 

analyses for BMI adjusting for both polygenic scores for the exposure and the outcome (GsensXY), only

the outcome  (GsensY), or only the exposure (GsensX).  Estimates in bold are estimates from GsensXY 

reported in the text; other results presented in Table 2 are further explained in the next sections.  

 Table 2. Sensitivity analysis for BMI

GsensXY GsensY GsensX

Best 
Fitting PS

Unconstrained Residual1 -0.081 (-0.114;-0.048) -0.069 (-0.101;-0.037) -0.089 (-0.123;-0.055)

G confound2 -0.009 (-0.021;0.004) -0.021 (-0.029;-0.013) 0.000 (-0.010;0.010)

Constrained Residual -0.069 (-0.100;-0.037) -0.069 (-0.100;-0.037) -0.089 (-0.123;-0.055)

G confound -0.021 (-0.028;-0.013) -0.021 (-0.028;-0.013) 0.000 (-0.010;0.010)

SNP 

heritability

Unconstrained Residual -0.060 (-0.097;-0.022) -0.028 (-0.065;0.009) -0.089 (-0.123;-0.056)

G confound -0.030 (-0.057;-0.002) -0.061 (-0.086;-0.037) 0.000 (-0.009;0.009)

Constrained Residual -0.043 (-0.077;-0.009) -0.028 (-0.065;0.009) -0.089 (-0.123;-0.055)

G confound -0.052 (-0.072;-0.033) -0.061 (-0.086;-0.037) 0.000 (-0.010;0.009)

Twin 

heritability

Unconstrained Residual - 0.132 (0.036;0.230) -0.089 (-0.127;-0.051)

G confound - -0.222 (-0.320;-0.124) -0.001 (-0.020;0.019)

Constrained Residual 0.00 (0;0) 0 (0;0) -0.089 (-0.127;-0.051)

G confound -0.099 (-0.130;-0.067) -0.098 (-0.130;-0.065) -0.001 (-0.020;0.019)

Note.  Estimates and 95% CI are provided for each scenario.  1Residual association after adjusting for 
genetic confounding. 2Genetic Confounding.

 The observational estimate of the relationship between maternal education and child ADHD was-0.124

(-0.152, -0.096). Using the best fitting polygenic scores for years of education and ADHD, the genetic

confounding effect was estimated to be -0.018 (-0.027, -0.009), corresponding to 14.3% of the total
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Genetic confounding  10

effect.  After  taking  genetic  confounding  as  captured  by  the  polygenic  scores  into  account,  the

relationship between maternal education and child ADHD attenuated to -0.106 (-0.135; -0.076). Table 3

shows  results  under  different  scenarios.  In  heritability-based  scenarios,  the  relationship  between

maternal education and child ADHD was further attenuated, reducing to null in the twin-based scenario.

 Table 3. Sensitivity analysis for ADHD

GsensXY GsensY GsensX

Best 

Fitting PS

Unconstrained Residual1 -0.106 (-0.135;-0.076) -0.117 (-0.145;-0.089) -0.107 (-0.137;-0.077)

G confound2 -0.018 (-0.027;-0.009) -0.007 (-0.010;-0.004) -0.017 (-0.026;-0.008)
Constrained Residual -0.106 (-0.135;-0.076) -0.117 (-0.145;-0.089) -0.107 (-0.136;-0.077)

G confound -0.018 (-0.027;-0.009) -0.007 (-0.010;-0.004) -0.017 (-0.026;-0.008)

SNP 

heritability

Unconstrained Residual -0.063 (-0.158;0.031) -0.01 (-0.074;0.054) -0.108 (-0.138;-0.079)

G confound -0.061 (-0.153;0.032) -0.114 (-0.173;-0.055) -0.016 (-0.024;-0.008)
Constrained Residual -0.052 (-0.096;-0.008) -0.01 (-0.074;0.054) -0.107 (-0.136;-0.077)

G confound -0.078 (-0.113;-0.043) -0.114 (-0.173;-0.055) -0.016 (-0.025;-0.008)

Twin 

heritability

Unconstrained Residual - - -0.089 (-0.123;-0.055)

G confound - - -0.035 (-0.053;-0.017)

Constrained Residual 0 (0;0) 0 (0;0) -0.089 (-0.123;-0.055)

G confound -0.129 (-0.158;-0.1) -0.127 (-0.156;-0.099) -0.035 (-0.053;-0.017)

Note.  Estimates and 95% CI are provided for each scenario.  1Residual association after adjusting for 
genetic confounding. 2Genetic Confounding. 

Model constraints

Tables 2 and 3 present constrained and unconstrained models.  Unconstrained models, while closely

fitting the data, can yield manifestly impossible values such as heritabilities above 100%, standardized

paths above 1, or negative variances, in which case estimates are unreliable (which was the case for

empty cells  in  Table  2 and 3). Implausible values  are also  observed.  For  example,  in  Table  2,  the

unconstrained GsensY estimate in the twin heritability scenario is positive, which would correspond to

higher  maternal  education  being  linked  to  higher  rather  than  lower  BMI  in  children.  This  is

understandable given that the best fitting polygenic score, which explains only 6.3% of variance in child

BMI already explains 23% of the negative association between maternal  education and child BMI.

Under the twin heritability scenario, with BMI heritability of 64%, the association is likely to flip to a
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Genetic confounding  11

positive sign. This may be due to sampling. For example, if the cross path from BMI polygenic score to

maternal education is, by chance, overestimated in TEDS, this will overestimate genetic confounding as

captured by the polygenic score and impact estimation under the twin heritability scenario. It may also

be because the true heritability of BMI is overestimated by the twin design. The constrained models

therefore impose constraints on parameters to avoid impossible values (standardized paths above one

and negative variances) and implausible values (cross-paths and residual associations flipping sign).

While these models fit the observed data less well than the unconstrained models, they accommodate

our prior beliefs about the plausible range of parameter values.

 Bias amplification and simulations 

Gsens uses estimates of heritability that provide useful benchmarks to estimate the extent of genetic 

confounding. It provides estimates of the strength of genetic confounding and of the residual association

comprising the causal effect plus association through non-genetic confounders.  However, these 

estimates are biased by the association between genetic and non-genetic confounders induced by 

conditioning on the exposure X, an instance of collider bias (see Methods).  The bias is most pronounced

when adjusting for polygenic scores that explain more variation in X than in Y, and may lead to 

estimates of residual association that are more biased than the observational association, a phenomenon 

termed bias amplification [21]. We therefore expect more bias amplification for GsensX compared to 

GsensY. 

We conducted two sets of simulations based on the underlying causal model presented in Methods. In 

the first, we simulated polygenic scores capturing all genetic influences to examine the effect of bias 

amplification independent of measurement error. We compared estimates from the three Gsens functions

to the true residual association net of genetic confounding (comprising the causal effect and non-genetic 

confounding). As shown in Figure 2, bias amplification can be particularly severe when there is no 

genetic confounding (top left panel, Figure 2), and when the heritability of X is high (bottom left panel, 
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Genetic confounding  12

Figure 2). In such cases, adjusted estimates can indeed be higher than the observational association. In 

the presence of genetic confounding, the adjusted estimates are always closer to the true residual 

association than to the observational association (top and bottom right panels, Figure 2). However, bias 

is still present. Bias is greatest for GsensXY and  GsensX. However, in all cases, estimates from GsensY

have little or no bias, even when the heritability of X and the genetic correlation are high (bottom right 

panel, Figure 2). When there is no non-genetic confounding (0 on the X-axis), bias amplification does 

not occur and all Gsens estimators recover the causal effect. 
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Genetic confounding  13

Figure2. Bias amplification: simulation results
The standardized association between X and Y (Y-axis) is plotted as a function of the correlation between the
non-genetic factors for X and Y that generate non-genetic confounding (X-axis). The figure is faceted left to right

according to the genetic correlation that generates genetic confounding (gen cor), and top to bottom according to
the heritability of X (hx). A subset of results is plotted with causal effect = 0.20, N = 10,000, heritability of Y =

70% and the full set of results is provided in S2. Note that estimates from GsensX and GsensXY are very similar
in this first set of simulations but can differ in the second when polygenic scores are set to capture varying levels

of the heritability of X and Y. 

In  the  second  set,  we  simulated  polygenic  scores  that  captured  only  a  fraction  of  heritability.  We

simulated scenarios under which the polygenic score for X captures more of the variance of Y than the

polygenic score for Y itself.  This may happen with differentially powered GWAS. In our empirical
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Genetic confounding  14

example,  the  polygenic  score  for  education  captures  almost  as  much  variance  in  ADHD than  the

polygenic score for ADHD itself. Conceivably under such scenarios, using GsensX or GsensXY may

better account for genetic confounding than GsensY. In our example, both GsensX and GsensXY using

the  polygenic  score  for  education  found  a  larger  genetic  confounding  effect  than  when  using  the

polygenic score for ADHD in GsensY alone. However, our simulations showed that, even under such

circumstances,  bias  amplification  under  twin  heritability  scenarios  remains  larger  for  GsensX  and

GsensXY.  Results are reported in S2.

In the two sets of simulations, constraints imposed on the model to avoid impossible or implausible

results often removed part or all bias. However, we caution against systematically applying constraints

as  they  do  not  necessarily  remove  bias  and  may  artificially  reduce  standard  errors.   Results  of

constrained models, as well as standard errors for all models, are reported in S2.  Of note, standard

errors for GsensY were systematically lower than for GsensX and GsensXY.  Empirical standard errors

closely matched the analytic estimates.

These results suggest that GsensY should be preferred in all situations and that Gsens is best adapted 

when the outcome of interest is strongly predicted by its polygenic score. When the polygenic score for 

the exposure is more predictive, GsensXY can be used, particularly to estimate genetic confounding 

with observed polygenic scores, but should be interpreted with caution under heritability scenarios.

Importantly, simulations show that  small remaining bias for GsensY is conservative in the sense that it 

underestimates genetic confounding. This lessens the risk  of overadjusting the association between X 

and Y.  
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Genetic confounding  15

Discussion

In the present study, we combined polygenic scores with heritability estimates in a genetic sensitivity 

analysis – Gsens – aiming to gauge to what extent genetic confounding can account for observed 

epidemiological associations. The genetic sensitivity analysis we propose adds a new tool to probe the 

robustness of associations between exposures and outcomes. This approach requires a genotyped cohort 

with relevant phenotypic measurements, which is increasingly the rule for epidemiological cohorts 

rather than the exception. It is therefore possible to envisage Gsens analysis becoming routine. Below, 

we first discuss our empirical findings regarding the associations between maternal education and child 

educational attainment, BMI, and ADHD. We then discuss the interpretation and applicability of Gsens. 

Maternal education and developmental outcomes

Our findings show that the association between maternal education and developmental child outcomes 

were still present under a SNP-heritability scenario but were null under a twin-heritability scenario. 

Overall, the observed association between maternal education and these three developmental outcomes 

may largely be due to genetic confounding.  

Relevant to our findings is previous research using causal inference designs to investigate the effect of 

parental educational attainment on child educational attainment. In particular, a systematic review on the

topic has summarized evidence from twin and adoption designs, as well as non-genetic instrumental 

variable estimations [22]. The systematic review suggested that intergenerational associations between 

parent and child educational attainment are largely driven by selection effects, including genetic 

confounding; it suggests only small but still significant causal effects. A new method – the ‘virtual-

parent design’ – has recently emerged, which consists of splitting parental genetic variants associated 

with a parental exposure into variants transmitted and nontransmitted to the child [20,23]. Parental 

polygenic scores including only nontransmitted variants are free from genetic confounding and index 
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Genetic confounding  16

plausible causal effects of the parental exposure on the child outcome. Empirical findings implementing 

this method in education research suggest substantial genetic confounding and small but still significant 

causal effects of parental attainment on child attainment. Our findings on educational attainment are 

consistent overall with this literature. Although genetic confounding accounted entirely for the 

association between parental education attainment and child achievement, we detected a small but 

significant effect when using the upper theoretical limit of the k parameter, consistent with previous 

findings. In addition, scenarios based on lower heritability estimates also yielded small but significant 

effects, raising the possibility that null findings resulted from overestimated twin heritability estimates, a

possibility further discussed below. Taken together, this set of findings represents a clear call for caution 

when interpreting non-genetically informed epidemiological studies on the role of maternal education.

Interpreting the sensitivity to genetic confounding analysis

Two key points regarding the interpretation of Gsens findings must be highlighted. First, the reliability 

of findings depends on the accuracy of heritability estimates. Overestimating heritability would lead to 

overestimating genetic confounding and thus underestimating the residual association between exposure

and outcome. For example, a recent study of 193,518 twins across 16 countries has showed that  

educational attainment is 43% heritable [24]. As can be seen in Figure 1, this lower estimate would lead 

to a substantially larger adjusted association. Improved estimates of heritability that better reflect true 

genetic effects can be plugged into our method as they become available. In addition, power increase in 

GWAS will improve the reliability of Gsens in the following ways: (i) by increasing the predictive 

power of polygenic scores and therefore the accuracy of observed scenarios; (ii) by improving the 

accuracy of parameter estimates for the sensitivity analysis. 

Second, Gsens aims to estimate genetic confounding and the residual association net of genetic 

confounding. This is distinct from the genetic overlap as estimated by bivariate twin or mixed-model 

methods,  which decomposes the phenotypic association into genetic and environmental components 
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Genetic confounding  17

(the percentage of the phenotypic correlation that is due to genetic overlap is called bivariate 

heritability). This is because a genetic correlation can arise from genetic effects on the outcome 

mediated via the exposure and the causal path (i.e. mediated pleiotropy) or by direct genetic effects on 

the outcome (i.e. unmediated pleiotropy). In twin-based methods, the corresponding residual association

is an environmental association in that it excludes all genetic components from the observed association,

including those mediated by the causal effect. In contrast, Gsens aims to remove only the genetic 

confounding or unmediated pleiotropy. In the absence of nongenetic confounding, the Gsens residual 

association would correspond to the causal effect, while the environmental association would be lower 

than the causal effect. Further clarifications regarding these conceptual differences can be found in S1 

Annex 1.

In contrast, a conceptually similar approach to ours is taken in the latent causal variable (LCV) model 

[25], which also estimates genetic confounding parameters without identifying the causal effect of the 

exposure.  The emphasis of LCV is however on comparing the genetic confounder effects on the risk 

factor to those on the outcome. Mendelian Randomization (MR) methods impose stronger assumptions 

on the genetic confounding effects to explicitly identify the causal effects [26].   In comparison with MR

and LCV methods, our approach requires only the standard assumptions of structural equation 

modelling, and retains much of the precision of the observational association. However we cannot 

identify the causal effect from the residual association, unless we assume no non-genetic confounding.  

We contend that where there is substantial genetic confounding, our approach provides insights into the 

likely existence and magnitude of a causal effect. Indeed, our approach recreates a standard regression 

adjustment for a polygenic score explaining the entire heritability, should such a score be available.  In 

this respect we follow traditional lines of sensitivity analysis in epidemiological studies, accepting that 

bias may still remain from residual confounding.

 

Limitations and research avenues
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Genetic confounding  18

As TEDS does not include parental genotypes, we did not model their role directly.  Where such data are

available, Gsens could be extended  in the intergenerational context. However, although our  examples 

were of intergenerational associations, Gsens can be generally implemented when both the exposure and

the outcome are measured for the same individuals, without considering parental effects. Furthermore, 

providing the sampling populations are exchangeable, it is not necessary for the genetic and 

observational associations, nor the heritabilities, to be estimated in the same data sets. Gsens may be 

extended in future to explicitly consider measured confounders, which may further reduce residual 

amplification bias due to nongenetic confounding. 

Conclusions 

We propose a genetic sensitivity analysis aiming to adjust for genetic confounding in epidemiological 

associations.  Gsens implements structural equation models to adjust for genetic confounding based on 

polygenic scores and heritability estimates. Gsens can be applied as long as a suitable GWAS for the 

outcome is available, even when a GWAS for the exposure is not available or does not provide adequate 

instruments for MR analyses. For example, Gsens can be applied to test whether the association between

urbanicity and schizophrenia is susceptible to genetic confounding based on the polygenic score and 

heritability estimates for schizophrenia. We therefore propose that Gsens can be conceived as a 

complementary method, suited for complex environmental exposures that are of interest for health, 

behavioural and social sciences. 

Methods

Participants

Participants were drawn from the Twins Early Development Study (TEDS), a longitudinal study 

of twin pairs born in England and Wales, between 1994 and 1996. Detail regarding TEDS, the 

recruitment process, and representativeness can be found elsewhere [27]. A total of 7,026 unrelated 
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Genetic confounding  19

individuals have been genotyped in TEDS. For each individual analysis, sample size comprised between

3,663 to 4,693 individuals with data for maternal education and each outcome. Written consent was 

obtained from all the families who agreed to take part in the study. This study was approved by the 

Institute of Psychiatry, Kings College London, Ethics Committee.

Measures   

Maternal educational attainment was reported by mothers at first contact, when children were on 

average 18 months old, with 8 levels: 1= no qualifications; 2 = CSE grade 2-5 or O-level/GCSE grade 

D-G; 3 = CSE grade 1 or O-level/GCSE grade A-C; 4 = A-level or S-level; 5 = HNC; 6 = HND; 7= 

undergraduate degree; 8 = postgraduate qualification. 

Child educational achievement was operationalized as performance on the standardized UK-wide 

examination, the General Certificate of Secondary Education (GCSE), at 16 years. We computed a mean

of the three compulsory core subjects, mathematics, English, and science (further details in [10]). A total

of 3,785 genotyped individuals had data on both maternal education and child GCSE. 

Body Mass Index (BMI) was derived from parent reported (ages 11 and 14 years) and self-reported 

weight and height (age 16 years). Extreme BMI values (<1% and >99% quantiles) were winsorized and 

resulting values were averaged across ages 11 to 16 years. A total of 3,663 genotyped individuals had 

data on maternal education and the resulting BMI score. 

The DSM-IV ADHD symptom subscale, taken from the Conners’ Parent Rating Scales–Revised [28] 

was completed by mothers to assess inattentive and hyperactive/impulsive symptoms (9 for 

hyperactivity/impulsivity and 9 for inattention). Each item was rated on a 4-point Likert scale ranging 

from 0 (not at all true) to 3 (very much true). A total ADHD score was created by averaging scores 

across the following mean ages of participants at assessments: 8, 11, 14, and 16 years. The score 

measures population symptoms dimensionally and not the clinical disorder.  A total of 4,693 genotyped 
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Genetic confounding  20

individuals had data on maternal education and the ADHD score. 

 Analyses

Genotyping, quality control procedures and principal component analysis are detailed in S1 section 1. A 

total sample of 7,026 participants with European ancestry remained after quality control. Single 

Nucleotide Polymorphisms (SNPs) were excluded if the minor allele frequency was <5%, if more than 

1% of genotype data were missing, or if the Hardy Weinberg p-value was lower than 10-5. Non-

autosomal markers and indels were removed.  

We computed genome-wide polygenic scores based on summary statistics from the following genome-

wide association studies (GWAS): (i) years of education [29]; (ii) ADHD [13]; and (iii) BMI [11].  In 

some cases, like ADHD, the GWAS phenotypes do not match our measures exactly; however they still 

explain substantial variation and can be extrapolated up to the heritability of our measure. Polygenic 

scores for all TEDS participants and all traits were computed using PRSice software [15], with prior 

clumping to remove SNPs in linkage disequilibrium (r2 > 0.10). PRSice allowed us to select the best-

fitting polygenic score for each trait, e.g. maximizing the amount of variance explained by the polygenic

score for BMI in TEDS participants' BMI. To this end, we computed a series of polygenic scores 

including an increasing number of SNPs corresponding to increasing p-value thresholds (e.g. all SNPs 

associated to BMI at p <.0001 and p <.10) as illustrated in S1 eFigures 1, 2, & 3. Using linear regression

analyses, we estimated the proportion of variance explained by each generated polygenic score in the 

corresponding trait in TEDS. The following covariates were included in regression analyses: sex, age 

(for GCSE), and 10 principal components of ancestry. 

 

Genetic confounding

We assume a linear structural equation model framework [30]. Akin to third variable confounding, 

genetic confounding is represented in Figure 3a: genetic factors (G) – here measured by polygenic 
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Genetic confounding  21

score(s) – influence both the exposure (X) and the outcome (Y). MacKinnon et al. demonstrated that 

mediation and confounding are statistically identical in linear structural equation modelling [31]. 

Therefore, genetic confounding can be estimated by treating the confounder– here the polygenic score G

– as a mediator of the effect of X and Y (Figure 3b). The confounding effect is the indirect effect of X on

Y through G:  β XG βGY . We also calculated the proportion of the observed effect of X on Y that is 

accounted for by genetic confounding , i.e. β̂ XG β̂GY

β XG βGY+ βXY

.  

Figure 3. Genetic confounding, one polygenic score case. 

Caption. Figure 3 (a) represents the underlying model. (b) 

represents the model to calculate the confounding effect by treating 
G as a 'mediator’. Of note is that the commonly-used terminology 

‘genetically mediated’ can be confusing. Although ‘genetically 
mediated’ makes sense statistically, conceptually, a mediator is on 

the causal pathway from the predictor to the outcome. However, 
because germline genetic variants are set at conception and do not 

change throughout the lifespan, posterior exposures (e.g. individual 
alcohol intake) cannot influence health outcomes (e.g. depression) 

through modifying germline genetic variants [32]. Although 

statistically treated as a mediator here to estimate confounding, 
conceptually G does not qualify as a mediator. Variances not 

represented for simplicity. 

 When the polygenic scores for the predictor (G1) is different from the polygenic score for the outcome 

(G2), the confounding effect is estimated in a similar 

fashion as the sum of all the indirect effects from X to 

Y through G1 and/or G2 (Figure 4a and 4b).

Figure 4. Genetic confounding, two polygenic score. 

Caption. Figure 4a represents the underlying causal model.

Figure 4b represents the model to calculate the confounding

effect, which is equal to:  β XG1
βG1 Y+ βXG2

βG2 Y. Note that

when  model  variables  are  standardized,  the  genetic
confounding effect can also be obtained based on 4a
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by βG1 X βG1 Y+βG2 X βG2 Y +βG1 X βG1 G2
βG2 Y +βG2 X βG1 G2

βG1 Y  Variances not represented for simplicity. 

 

Genetic confounding effects were calculated for all three developmental outcomes:

 Maternal education to child educational achievement using the best-fitting polygenic score for 

years of education (as in Figure 3);

  Maternal education to child BMI using best-fitting polygenic scores for years of education (G1) 

and BMI (G2) (as in Figure 4);

 Maternal education to child ADHD symptoms using best-fitting polygenic scores for years of 

education (G1) and ADHD symptoms (G2) (as in Figure 4).

In these analyses, the effect size of X on Y decreases as a function of the strength of genetic 

confounding. However, this approach does not account for all the genetic confounding. This is because 

polygenic scores based on current GWAS capture a relatively small amount of all genetic influences. For

example, the current polygenic score for BMI explains around 6% of the variance in BMI in TEDS, far 

less than SNP-based and twin heritability estimates of BMI heritability. The sensitivity analysis we 

propose aims to address this issue. 

Sensitivity analysis

The sensitivity analysis aims to answer the following question: is X is associated with Y after we control

for all genetic confounding? In other words, to what extent would β XY decrease if we were to control for

‘perfect’ polygenic scores capturing all genetic influences on X and Y rather than a small fraction. This

is done by estimating  β XY under plausible scenarios that combine information on existing polygenic
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scores and heritability estimates.

Single polygenic score. For maternal education and child educational achievement, we used a polygenic

score for the child, derived from the GWAS of years of education, which predicts a substantial amount

of variance both in child GCSE but also in maternal education. The effect of maternal education on child

educational attainment can be first adjusted for the observed best-fitting polygenic score. However, this

polygenic score does not capture all the heritability of the outcome and therefore incompletely adjusts

for  genetic  confounding.  The  sensitivity  analysis  consists  in  re-examining  the  effect  of maternal

education under scenarios where the polygenic score could capture additional variance in child GCSE

up to SNP-based and twin-based estimates of heritability.

Figure 3a shows the underlying model of relationships between the polygenic score (G), the predictor

(X) and the outcome (Y). We can obtain an adjusted effect of X on Y based on the observed associations

available with the following expression: 

β XY=(r XY −rGX rGY ) /(1− rGX

2 )  (1)

where β XY is the adjusted effect and r denotes observed standardized associations. Details are presented

in  S1 section 2. Importantly,  β XY corresponds to the standardized association between X and Y minus

genetic confounding, i.e. the residual association between X and Y net of genetic confounding. In other

words,  Gsens removes only genetic confounding and not all genetic effects shared between X and Y,

which comprise both genetic confounding and genetic effects on Y mediated by X via a causal pathway.

When subtracting all shared genetic effects, including those arising from the causal effect,  the residual

association  becomes  the  'environmental  association'.  This  is  similar  to  what  happens  in  bivariate

decomposition of the phenotypic correlation in  twin and mixed model  designs and is  distinct  from

Gsens estimates. This distinction is further clarified in S1 Annex 1.
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Figure 5. Sensitivity analysis, one polygenic score.

When using the best-fitting polygenic score,  β XY can be 

estimated using standardized associations between the 
observed polygenic score, X and  Y, as in expression (1).  In 

the sensitivity analysis, a structural equation model is fitted 
with a latent variable G* representing  heritability,  as 

presented in Figure 5. This can be understood as correcting 
for measurement error, i.e. G being an imperfect measure of 

G*. Genetic confounding estimated under this model reflects 
heritability under the chosen scenario rather than only what is 

captured by the polygenic score. We fitted structural equation 
models using the R package ‘lavaan’ [33].

The latent variable is set to capture the heritability of Y under
the sensitivity analysis scenario (e.g.  twin-heritability).  The

following constraint is is applied:

 βG*Y+βG* X β XY=√(h y

2 ).  Variances  not  represented  for

simplicity. 

Complete  genetic  confounding.  In  equation  (1),  the  association  between  X  and  Y is  completely

genetically confounded when the adjusted effect β XY = 0. We can then express the observed standardized

association as a function of the heritabilities of X and Y under complete genetic confounding as:

r XY=rGX rGY=√(hx
2 ) √(hy

2 ) (2)

When the adjusted effect of X on Y is null, then r XY  is equal to genetic effects through G. In the special

case where X and Y are the same trait in parent and child and assuming constant heritability across

generations, we thus obtain: 

r XY=0.5∗√(hy
2 )√ (hy

2 )=0.5hy
2

  (3)
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This means that the adjusted effect of X on Y is likely to be null whenever the observed association does

not exceed half of the trait heritability. As such, a given association between parental and child traits can

be assessed against Figure 6 and if it lies in the shaded area, it is  consistent with complete genetic

confounding. Importantly, associations not in the shaded area can still be confounded by environmental

exposures. See S1 section 3  for additional details on equations (2) and (3). 

Figure 6. The role of genetics in explaining phenotypic associations between parent and child 
Caption.  Standardized  observed  associations  between  the  same traits  in  the  mother  (or  father)  and  the  child  are

represented as a function of trait heritability. An observed association of 0.20 with trait heritability of 0.60 is consistent

with complete genetic confounding. Conversely, an association of 0.40 with heritability of 0.40 is not consistent with

complete genetic confounding . 

The two polygenic scores case

When predictor and outcome are different variables – for example maternal education and child BMI –

two polygenic scores can be used in the sensitivity analysis, as shown in Figure 4. In theory, if we had a

polygenic score capturing all  genetic influences for Y, this  score would also capture all  the genetic

overlap between X and Y, and we could use the one polygenic score case above. In practice, polygenic
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scores  do  not  capture  all  genetic  influences  on  their  respective  phenotypes  and  are  differentially

powered, which is why we examine the utility of a two polygenic scores solution. In the two polygenic

scores case, new parameters are introduced including the cross paths from each polygenic score to the

other phenotype (βG1 Y  and  βG2 X). Due to these new parameters, the derivation of  β XY becomes more

complex than for the single case polygenic score.  We thus generalize the structural equation model to

two latent variables and polygenic scores as in Figure 7. Further details in S1 Section 4. 

Figure 7: Sensitivity analysis, two polygenic scores. 
The  following  constraints  are  imposed  on  the  model:

βG1*X +βG*1G *2 βG*2X=√(hx

2) and 

βG* 2 Y+(βG* 2 X +βG*1 G* 2 βG *1 X) βXY +βG* 1G* 2 βG *1 Y=√(hy

2 )
Variances not represented for simplicity. 

Model assumptions

Our approach requires the standard assumptions of structural equation modelling, including normality of

the observed and latent variables and no unmodelled confounding or interaction effects.  For polygenic

traits the normality assumptions are reasonable. Note that although polygenic scores are constructed

from additive models, we make no such assumption for the true latent genetic value, only that it has a

linear relationship with the polygenic score. Unmodelled confounders can create bias amplification, as

we show in our simulations.  However note that all heritable confounders would be included in the latent

genetic values under the heritability scenarios, and so only the non-genetic components of unmodelled

confounders would create bias. 
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Simulations

In order to verify the performance of Gsens under its own assumptions, and to study the possibility of 

bias amplification , we conducted simulations based on the underlying causal model presented in Figure 

8.  Simulations were conducted with the SimulateData() function in package 'lavaan' embedded within 

the wrapper simulation package SimDesign [34,35]. 

In  the  first  set  of  simulations,  loadings  from  G1

*
 to  G1 and  G2

*
 to  G2 were fixed  to  unity  (thereby

simulating polygenic scores capturing the whole heritability) in order to examine amplification bias

independently of the latent structure of the model. We chose parameters based on reasonable values,

with the following combinations: X and Y were 30% or 70%  heritable, and influenced by respective

non-genetic influences of 55% or 15% (leaving 15% of unexplained variance); genetic and non-genetic

correlations of 0 or 0.40; a causal effect of 0 or 0.2. 

In the second set of simulations, we fixed the causal effect to 0.20 and heritabilities to 70% but values of

the loadings were set so that the resulting polygenic scores G1 and  G2  would capture 1% or 10% of the

variance of X and Y, respectively. This resulted in either polygenic scores with equal explanatory power

or asymmetric situations where, e.g. one polygenic score explained 10% of the variance in X and the

other polygenic score explained only 1% of the variance in Y.

In  this  case,  the  resulting  association  between  the  first

polygenic  score  and  Y  may  actually  be  greater  that  the

association between the second and Y, which can result  in

non-null  cross-paths.   Such  a  situation  can  stem from the

differential accuracy of GWAS for X and Y. 

Figure 8. Simulation generative model
The figure represents the generative model for simulations.   
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