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Abstract

The ability to correctly predict the functional role of proteins from their amino acid
sequences would significantly advance biological studies at the molecular level by
improving our ability to understand the biochemical capability of biological organisms
from their genomic sequence. Existing methods that are geared towards protein
function prediction or annotation mostly use alignment-based approaches and
probabilistic models such as Hidden-Markov Models. In this work we introduce a deep
learning architecture (Function Identification with Neural Descriptions or FIND)
which performs protein annotation from primary sequence. The accuracy of our
methods matches state of the art techniques, such as protein classifiers based on Hidden
Markov Models. Further, our approach allows for model introspection via a neural
attention mechanism, which weights parts of the amino acid sequence proportionally to
their relevance for functional assignment. In this way, the attention weights
automatically uncover structurally and functionally relevant features of the classified
protein and find novel functional motifs in previously uncharacterized proteins. While
this model is applicable to any database of proteins, we chose to apply this model to
superfamilies of homologous proteins, with the aim of extracting features inherent to
divergent protein families within a larger superfamily. This provided insight into the
functional diversification of an enzyme superfamily and its adaptation to different
physiological contexts. We tested our approach on three families (nitrogenases,
cytochrome bd -type oxygen reductases and heme-copper oxygen reductases) and present
a detailed analysis of the sequence characteristics identified in previously characterized
proteins in the heme-copper oxygen reductase (HCO) superfamily. These are correlated
with their catalytic relevance and evolutionary history. FIND was then applied to
discover features in previously uncharacterized members of the HCO superfamily,
providing insight into their unique sequence features. This modeling approach
demonstrates the power of neural networks to recognize patterns in large datasets and
can be utilized to discover biochemically and structurally important features in proteins
from their amino acid sequences.
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Author summary

Introduction 1

A central idea of molecular evolution is that homologous proteins in different biological 2

organisms possess similar structural and functional properties. Homology of proteins is 3

based on their amino acid sequences, which have some structural and functional 4

properties encoded into them. The extent of sequence similarity of proteins can be used 5

to classify proteins as belonging to different groups that each perform distinct functions 6

or possess a specific set of properties. The proteins which fall within previously 7

identified clusters are then annotated as having a specific function, which is usually 8

experimentally determined for one or more proteins within a cluster. Computational 9

tools such as sequence alignment based methods have been used to infer the biological 10

roles of proteins, based on their similarity to experimentally characterized proteins [1]. 11

These methods can be effective when comparing sequences with a high degree of 12

similarity (60 percent or higher) but fail for more distantly related proteins [2]. 13

Improvements were made to such methods by adding some position specific information 14

to make local alignments [3], or by measuring sequence similarity against databases such 15

as Pfam, with curated domain assignments [4]. Other methods include probabilistic 16

models such as HMMer which calculate a sequence profile indicating the frequency of 17

occurrence of a given amino acid in each position of a protein sequence [5], models 18

incorporating information from phylogenetic trees such as SIFTER [6] or neural network 19

based models where proteins are trained based on InterPro or GO classifications [2]. All 20

of the above methods are more accurate for certain functions and biological systems, 21

and they are evaluated regularly using the critical assessment of functional annotation 22

(CAFA) challenge [7]. There are different challenges for each of the previous methods, 23

some of which have been empirically demonstrated - BLAST alignments for example, 24

cannot easily distinguish between parts of the sequence that align to conserved domains 25

and some variable and less functionally relevant parts of sequences, and HMMs are 26

more useful for annotation when built off a large data set for each protein domain. 27

Neural networks offer some advantages over these methods. 28

Neural networks are computationally different from traditional methods, which are 29

based on sequence alignments. Sequence alignments are computationally limited, and 30

align sequences in a pair-wise manner and iterate over all possible pairs of sequences to 31

compute the extent of similarity between proteins in a given database. In contrast, 32

neural networks can process a larger set of sequences simultaneously to model the 33

similarity in their amino acid sequences. With such advantages, neural networks have 34

been shown to perform classification tasks with a high level of accuracy, even with 35

smaller training sets [8] [9] [10] [11]. Another strength of neural networks is their ability 36

to identify patterns or signals in large sets of data. Large protein superfamilies 37

constitute such a large data set, from which it is conceivable that a neural network can 38

identify “patterns” or functional features that correlate with functional characteristics, 39

provided we curate a database with such specific and useful labels. An often cited 40

disadvantage of neural networks is that they provide little information on the features 41

that were used for classification. We have overcome this disadvantage by making our 42

neural network model interpretable. 43

Our neural network model uses a neural attention mechanism to identify sequence 44

features that are correlated with protein annotation. We use as input, a database of 45

primary amino acid sequences that have been assigned “labels” that are defined based 46

on phylogenetically identified clusters. The network is then trained on these protein 47

sequences and labels to generate a classification model. This model is then used to 48

provide annotation to a test set of sequences. The neural attention mechanism forces 49
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the model to use small sets of a protein’s sequence to classify it, thus identifying small 50

functional or structural motifs that are inherent to a protein and correlated with the 51

label it is assigned. While traditional methods require rigorous analysis of sequence 52

alignments, extensive knowledge of prior biochemical literature and biochemical 53

intuition, use of interpretable neural network models such as ours offers a useful 54

time-saving tool. Direct extraction of sequence features unique to protein families will 55

aid in mechanistic understanding of proteins unique to different organisms and 56

pathways. Many attempts have been made to use certain characteristics such as % 57

conservation, solvent accessibility or information on neighboring residues to correlate 58

structural features with a protein’s function [12] [13] [14] but, our model is able to 59

identify conserved sequence features directly from primary sequence and without being 60

fed such curated information. 61

To evaluate our method, we built models to classify three different enzyme 62

superfamilies – cytochrome bd -type oxygen reductases, nitrogenases and heme-copper 63

oxygen reductases. We achieved a classification accuracy greater than 97 % for all of 64

these families ; comparable to a classification model we built based on Hidden-Markov 65

Models. In addition, our model extracts structurally and functionally important 66

sequence features. We compare the strengths and weaknesses of the above two 67

approaches and discuss different parameters that can be optimized to enhance 68

classification by the neural network. Further, we focused on and evaluated sequence 69

features identified in the model as belonging to each protein family of the heme-copper 70

oxygen reductase (HCO) superfamily. HCOs are a large superfamily of enzymes with 71

several biochemically well-characterized family members. By using the case of 72

experimentally characterized HCO enzymes, we validated our algorithm. Then, we 73

utilized the model to discover several new interesting features in previously 74

uncharacterized members of the HCO superfamily. The HCO superfamily classification 75

model can be used to investigate new HCO sequences – to automatically identify the 76

family they belong to, and extract novel features characteristic of that protein. Finally, 77

our neural network approach is applicable to many protein databases, either small or 78

large in dataset provided they are curated with appropriate labels to train on. When 79

used with different protein superfamilies, we gain additional insight into their 80

biochemical characteristics and into their evolutionary diversification. In order to make 81

our tool accessible, we have made FIND available as a Jupyter notebook, allowing 82

users to train any curated and labelled database of their choice for classification and 83

feature extraction. Given the abundance of genomic and metagenomic sequence data 84

that is currently available and the dearth of functional information, this tool will be 85

helpful in generating additional insight into the possible role of divergent protein 86

sequences as they are discovered. 87

Heme-copper Oxygen Reductase Superfamily 88

Background 89

The heme-copper oxygen reductase superfamily consists of families of respiratory 90

enzymes – Oxygen reductases (O2-reductases) which perform oxygen reduction to water, 91

or nitric oxide reductases (NOR) which perform nitric oxide reduction to nitrous 92

oxide [15] [16]. It was hypothesized that one family (NOD) performs nitric oxide 93

dismutation [17]. Briefly, these transmembrane enzymes receive electrons from a 94

periplasmic or membrane bound electron donor (cytochrome c or quinol respectively) 95

and use these electrons to perform oxygen or NO reduction. The core architecture of 96

this enzyme typically constitutes a 12-transmembrane helix subunit where the active 97

site is present (subunit I) and an electron-donor binding subunit where electrons are 98
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Fig 1. The heme-copper oxygen reductase superfamily is divided into 18 families based
on monophyletic clades recovered through phylogenetic clustering of HCO amino acid
sequences. The same clades were recovered using PhyML and MrBayes. The base
sequence alignment used for the generation of this tree, as well as the phylogenetic trees
are available on our Github database https://github.com/ybisk/FIND.

received from the physiological electron donor (subunit II). However, in one of the 99

families (qNOR), these two subunits are fused into a single polypeptide. The central 100

subunit I consisting of 12 transmembrane helices includes several features, conserved 101

across the families that aid in catalyzing the reduction of O2 or NO. These features can 102

be categorized in terms of protein components needed for (1)electron transfer to the 103

active site, (2)proton transfer to the active site, (3)gas diffusion to the active site and 104

(4) stabilization of redox-active components during catalysis. Co-factors which aid 105

electron tranfer within HCOs include a high-spin heme that transfers electrons from 106

subunit II to the active site and, the active site constituting a low-spin heme and a 107

metal ion. Multiple sequence alignments (MSAs) and experimental studies have 108

identified the amino acids which bind the above mentioned hemes and metals [16]. 109

For proton transfer to the active site, there are conserved proton channels within 110

some of the families, which (i) uptake protons from the cytoplasm for oxygen reduction 111

to water and (ii) translocate protons from the cytoplasm to the periplasm (pumping 112

protons) for generation of proton-motive force(pmf) [18]. This latter mechanism for 113

generation of pmf is absent in cNOR and the proton channel leading from the periplasm 114

replaces the cytoplasmic channel [19]. A gas diffusion channel for diffusion of O2 or NO 115

to the active is present in all of the characterized HCO enzymes, with variations 116

depending on whether the substrate is O2 or NO and the substrate affinity of a given 117

enzyme [20] [21]. 118

Finally, the two hemes involved in catalysis are stabilized by conserved arginines in 119

the A and B-type O2 reductases, and by a Ca2+ in C-type O2 reductases and cNOR. 120
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Table 1. Conserved features in subunit I of heme-copper oxygen reductases, which are
important for binding of heme or metal co-factors, transport of substrates to the active
site, or catalysis of oxygen reduction to water

Functional characteristic Location in polypeptide sequence

Low spin heme binding site Helix 2 and Helix 10
High spin heme binding site Helix 10
CuB or FeB binding site Helix 6 and Helix 7
O2 diffusion channel Helix 2

and periplasmic loop between Helix 3 and 4
D proton channel Helix 2, Helix 3, Helix 4,

(present only in the A-family) and cytoplasmic loop between Helix 2 and 3
K proton channel Helix 6 and Helix 8
Stabilization of hemes (in C, cNOR) Periplasmic loop between Helix 1 and Helix 2
Stabilization of hemes (in A, B) Periplasmic loop between Helix 11 and Helix 12

The latter Ca2+ is stabilized by interactions with two glutamic acid residues. These 121

glutamates are further stabilized by hydrogen bonding interactions with conserved 122

residues, including a conserved arginine in both families [22] [19]. A fundamental 123

difference in the active site of O2 reductases and NORs involves a unique co-factor - a 124

conserved histidine and a tyrosine, found in all O2 reductases make a crosslink to each 125

other and provide an electron to oxygen during catalysis [23]. The tyrosine from the 126

cross-link is absent in the NORs and is replaced by a glutamate or asparagine in the 127

experimentally characterized NORs [24] [25] [26]. All of the above mentioned features 128

are detailed in Figure 2 and Table 1. 129

To classify protein families within our model, only subunit I was used as was done 130

for their original assignment using phylogenetics [15] Figure 1. 11 O2-reductase 131

families and 7 NOR families were used to train the model for classification. NODs were 132

left out of the model because of the smaller set of sequences available for this family. 8 133

of the O2-reductase families were previously described [15] while the I,J,K families have 134

not been previously reported. The cNOR, qNOR and bNOR1, eNOR and sNOR [15] 135

families have been previously described and so has the gNOR family [27]. The remaining 136

family, nNOR is being reported for the first time but will be described in detail in a 137

separate study2. A number of the conserved features mentioned above, as well as 138

variations unique to families within the superfamily were discovered by the model. 139

Materials and Methods 140

Data 141

Our model represents all proteins as a string of characters. Sequences from within the 142

heme-copper oxygen reductase superfamily were used as input, with their functional 143

annotation assigned by protein phylogenetics. The number of sequences within each 144

family/class are reported in Table 2. 145

Computational Model (FIND) 146

In this section we introduce our model for Function Identification with Neural 147

Descriptions or FIND for short. Our task is to predict the function of a protein based 148

1previously referred to as the qCuANOR
2Hemp, Murali publication in preparation
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Fig 2. Conserved features in subunit I of the heme-copper oxygen reductases. These
features, mentioned in Table 1 were mapped onto the crystal structre of the A-family
enzyme from Rhodobacter sphaeroides RCSB ID:2gsm.Panels A and B present identical
views of the enzyme locating structural features within the context of their
transmembrane helices. A. Structure of A-family enzyme color-coded according to the
location of transmembrane helices in the enzyme. B. Location of the active-site heme
and metal co-factors as well as conserved D- and K-proton channels within the HCO
enzyme. C.Conserved histidines binding the low-spin heme in HCO. D.Conserved
amino acids in the binuclear active site including the histidine-tyrosine crosslink that is
unique to HCO.
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Table 2. Database of protein sequences used in this study from the following
superfamilies - heme-copper oxygen reductase (HCO), nitrogenase, cytochrome bd.
These sequences were split into a training set (Tr), validation set(Val) and test set(Te)
for training the artificial neural network for protein classification, and for testing the
accuracy of the model, respectively.

heme-copper oxygen reductase cyt bd nitrogenases

Tr/Val/Te Tr/Val/Te Tr/Val/Te Tr/Val/Te
A 2569/384/729 bNOR 41/ 5/ 8 A 47/ 6/ 21 Anf 15/ / 5
B 535/ 87/160 cNOR 98/ 19/ 24 B 33/ 1/ 7 nifDI 164/ 28/ 61
C 819/126/229 eNOR 209/ 33/ 55 C 206/24/ 51 nifDII 107/ 15/ 21
D 66/ 9/ 15 gNOR 46/ 5/ 15 E1 373/58/118 nifD ANME 4/ 1/ 4
E 41/ 11/ 11 nNOR 33/ 4/ 7 E2 123/17/ 33 VnfD 8/ / 3
F 26/ 4/ 8 qNOR 284/ 32/ 74 E3 26/ 8/ 10
G 13/ 2/ 3 sNOR 140/ 23/ 40 E4 41/ 3/ 9
H 13/ 1/ 8
I 17/ 1/ 3
J 11/ 1/ 3
K 5/ 1/ 1

solely on its amino acid sequence. For this task, we use prior information in the form of 149

a database of protein sequences which are correlated with a functional label. We then 150

generate a computational model to identify parts of sequence features in the database 151

sequences that correlate with its functional label. Then, the model is used to apply one 152

of the previously curated functional labels to the query amino acid sequence by 153

identifying the predictive features inherent in them. In computational terms, we need to 154

find predictive regions of strings for a multi-class prediction which we train with 155

gradient descent and a standard cross-entropy loss. Our task presents two unique 156

challenges: long sequences and a comparatively small dataset. 157

The traditional approach to processing strings for categorization within Natural 158

Language Processing is to use a Recurrent Neural Network (RNN) [28] sequence model 159

to compress the input. Because our sequences range from 232 to 1095 characters, 160

averaging over 500, RNNs, even when used with an long short-term memory (LSTM) 161

cell [29], will suffer from vanishing gradients [30] and fail to learn. Secondly, as our goal 162

is the construction of a model which provides interpretable insights into functionally 163

predictive aspects of the input, we want to build an attention mechanism [31] which 164

does not dramatically increase our parameter space, given the limited data we have 165

access to. We are able to overcome both of these issues efficiently by using a weighted 166

sum of local predictors, each resulting from a shallow stack of convolutions, and 167

normalized confidence. 168

We present the basic structure of our model in Figure 3. A stack of 169

convolutions [32] are applied until we reach a kernel of width 16 (k = 16). The final 170

hidden vector is then passed through two feed-forward layers in order to produce both 171

an attention weight and a set of predictions. The attention weights are normalized 172

across the sequence and then multiplied by their corresponding prediction distributions 173

(logits). This provides a single reweighted logit for the whole sequence scaled by each 174

sub-predictor’s confidence. Finally, these values are summed and used for prediction at 175

inference time or updated via a cross-entropy loss during training. 176

More formally, each unique amino acid type is assigned a random vector in Rn, 177

represented simply as an embedding matrix E ∈ Ra×n. An input sequence S is 178

therefore embedded as e = S · E, before passing e through 1-dimensional convolutions 179

with kernel widths 2, 4, 8, and 16. This produces a final representation of the sequence 180
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Attention
Class Prediction

p(f |seq)
<latexit sha1_base64="JYZftvFx5BkcP1zx3sL7kv1txsc=">AAAB+3icbVBNS8NAFHzxs9avaI9eFotQLyURQb0VvXisYG2hDWWz3bRLd5O4uxFCrH/FiwcVr/4Rb/4bN20O2jqwMMy8x5sdP+ZMacf5tpaWV1bX1ksb5c2t7Z1de2//TkWJJLRFIh7Jjo8V5SykLc00p51YUix8Ttv++Cr32w9UKhaFtzqNqSfwMGQBI1gbqW9X4lqAHlFPYD2SIlP0fnLct6tO3ZkCLRK3IFUo0OzbX71BRBJBQ004VqrrOrH2Miw1I5xOyr1E0RiTMR7SrqEhFlR52TT8BB0ZZYCCSJoXajRVf29kWCiVCt9M5iHVvJeL/3ndRAfnXsbCONE0JLNDQcKRjlDeBBowSYnmqSGYSGayIjLCEhNt+iqbEtz5Ly+S1kn9ou7enFYbl0UbJTiAQ6iBC2fQgGtoQgsIpPAMr/BmPVkv1rv1MRtdsoqdCvyB9fkDj4mURg==</latexit><latexit sha1_base64="JYZftvFx5BkcP1zx3sL7kv1txsc=">AAAB+3icbVBNS8NAFHzxs9avaI9eFotQLyURQb0VvXisYG2hDWWz3bRLd5O4uxFCrH/FiwcVr/4Rb/4bN20O2jqwMMy8x5sdP+ZMacf5tpaWV1bX1ksb5c2t7Z1de2//TkWJJLRFIh7Jjo8V5SykLc00p51YUix8Ttv++Cr32w9UKhaFtzqNqSfwMGQBI1gbqW9X4lqAHlFPYD2SIlP0fnLct6tO3ZkCLRK3IFUo0OzbX71BRBJBQ004VqrrOrH2Miw1I5xOyr1E0RiTMR7SrqEhFlR52TT8BB0ZZYCCSJoXajRVf29kWCiVCt9M5iHVvJeL/3ndRAfnXsbCONE0JLNDQcKRjlDeBBowSYnmqSGYSGayIjLCEhNt+iqbEtz5Ly+S1kn9ou7enFYbl0UbJTiAQ6iBC2fQgGtoQgsIpPAMr/BmPVkv1rv1MRtdsoqdCvyB9fkDj4mURg==</latexit><latexit sha1_base64="JYZftvFx5BkcP1zx3sL7kv1txsc=">AAAB+3icbVBNS8NAFHzxs9avaI9eFotQLyURQb0VvXisYG2hDWWz3bRLd5O4uxFCrH/FiwcVr/4Rb/4bN20O2jqwMMy8x5sdP+ZMacf5tpaWV1bX1ksb5c2t7Z1de2//TkWJJLRFIh7Jjo8V5SykLc00p51YUix8Ttv++Cr32w9UKhaFtzqNqSfwMGQBI1gbqW9X4lqAHlFPYD2SIlP0fnLct6tO3ZkCLRK3IFUo0OzbX71BRBJBQ004VqrrOrH2Miw1I5xOyr1E0RiTMR7SrqEhFlR52TT8BB0ZZYCCSJoXajRVf29kWCiVCt9M5iHVvJeL/3ndRAfnXsbCONE0JLNDQcKRjlDeBBowSYnmqSGYSGayIjLCEhNt+iqbEtz5Ly+S1kn9ou7enFYbl0UbJTiAQ6iBC2fQgGtoQgsIpPAMr/BmPVkv1rv1MRtdsoqdCvyB9fkDj4mURg==</latexit><latexit sha1_base64="JYZftvFx5BkcP1zx3sL7kv1txsc=">AAAB+3icbVBNS8NAFHzxs9avaI9eFotQLyURQb0VvXisYG2hDWWz3bRLd5O4uxFCrH/FiwcVr/4Rb/4bN20O2jqwMMy8x5sdP+ZMacf5tpaWV1bX1ksb5c2t7Z1de2//TkWJJLRFIh7Jjo8V5SykLc00p51YUix8Ttv++Cr32w9UKhaFtzqNqSfwMGQBI1gbqW9X4lqAHlFPYD2SIlP0fnLct6tO3ZkCLRK3IFUo0OzbX71BRBJBQ004VqrrOrH2Miw1I5xOyr1E0RiTMR7SrqEhFlR52TT8BB0ZZYCCSJoXajRVf29kWCiVCt9M5iHVvJeL/3ndRAfnXsbCONE0JLNDQcKRjlDeBBowSYnmqSGYSGayIjLCEhNt+iqbEtz5Ly+S1kn9ou7enFYbl0UbJTiAQ6iBC2fQgGtoQgsIpPAMr/BmPVkv1rv1MRtdsoqdCvyB9fkDj4mURg==</latexit>

p̃(f |hi)
<latexit sha1_base64="Hhu6xi5dXQq1N0mDfNKDUDNP3nE=">AAAB+nicbVBNS8NAEJ3Ur1q/Yj16WSxCvZREBPVW9OKxgrGFNoTNZtMu3XywuxFLzF/x4kHFq7/Em//GbZuDtj4YeLw3w8w8P+VMKsv6Niorq2vrG9XN2tb2zu6euV+/l0kmCHVIwhPR87GknMXUUUxx2ksFxZHPadcfX0/97gMVkiXxnZqk1I3wMGYhI1hpyTPrA8V4QPO0aIboCY08duKZDatlzYCWiV2SBpToeObXIEhIFtFYEY6l7NtWqtwcC8UIp0VtkEmaYjLGQ9rXNMYRlW4+u71Ax1oJUJgIXbFCM/X3RI4jKSeRrzsjrEZy0ZuK/3n9TIUXbs7iNFM0JvNFYcaRStA0CBQwQYniE00wEUzfisgIC0yUjqumQ7AXX14mzmnrsmXfnjXaV2UaVTiEI2iCDefQhhvogAMEHuEZXuHNKIwX4934mLdWjHLmAP7A+PwBkEqTrA==</latexit><latexit sha1_base64="Hhu6xi5dXQq1N0mDfNKDUDNP3nE=">AAAB+nicbVBNS8NAEJ3Ur1q/Yj16WSxCvZREBPVW9OKxgrGFNoTNZtMu3XywuxFLzF/x4kHFq7/Em//GbZuDtj4YeLw3w8w8P+VMKsv6Niorq2vrG9XN2tb2zu6euV+/l0kmCHVIwhPR87GknMXUUUxx2ksFxZHPadcfX0/97gMVkiXxnZqk1I3wMGYhI1hpyTPrA8V4QPO0aIboCY08duKZDatlzYCWiV2SBpToeObXIEhIFtFYEY6l7NtWqtwcC8UIp0VtkEmaYjLGQ9rXNMYRlW4+u71Ax1oJUJgIXbFCM/X3RI4jKSeRrzsjrEZy0ZuK/3n9TIUXbs7iNFM0JvNFYcaRStA0CBQwQYniE00wEUzfisgIC0yUjqumQ7AXX14mzmnrsmXfnjXaV2UaVTiEI2iCDefQhhvogAMEHuEZXuHNKIwX4934mLdWjHLmAP7A+PwBkEqTrA==</latexit><latexit sha1_base64="Hhu6xi5dXQq1N0mDfNKDUDNP3nE=">AAAB+nicbVBNS8NAEJ3Ur1q/Yj16WSxCvZREBPVW9OKxgrGFNoTNZtMu3XywuxFLzF/x4kHFq7/Em//GbZuDtj4YeLw3w8w8P+VMKsv6Niorq2vrG9XN2tb2zu6euV+/l0kmCHVIwhPR87GknMXUUUxx2ksFxZHPadcfX0/97gMVkiXxnZqk1I3wMGYhI1hpyTPrA8V4QPO0aIboCY08duKZDatlzYCWiV2SBpToeObXIEhIFtFYEY6l7NtWqtwcC8UIp0VtkEmaYjLGQ9rXNMYRlW4+u71Ax1oJUJgIXbFCM/X3RI4jKSeRrzsjrEZy0ZuK/3n9TIUXbs7iNFM0JvNFYcaRStA0CBQwQYniE00wEUzfisgIC0yUjqumQ7AXX14mzmnrsmXfnjXaV2UaVTiEI2iCDefQhhvogAMEHuEZXuHNKIwX4934mLdWjHLmAP7A+PwBkEqTrA==</latexit><latexit sha1_base64="Hhu6xi5dXQq1N0mDfNKDUDNP3nE=">AAAB+nicbVBNS8NAEJ3Ur1q/Yj16WSxCvZREBPVW9OKxgrGFNoTNZtMu3XywuxFLzF/x4kHFq7/Em//GbZuDtj4YeLw3w8w8P+VMKsv6Niorq2vrG9XN2tb2zu6euV+/l0kmCHVIwhPR87GknMXUUUxx2ksFxZHPadcfX0/97gMVkiXxnZqk1I3wMGYhI1hpyTPrA8V4QPO0aIboCY08duKZDatlzYCWiV2SBpToeObXIEhIFtFYEY6l7NtWqtwcC8UIp0VtkEmaYjLGQ9rXNMYRlW4+u71Ax1oJUJgIXbFCM/X3RI4jKSeRrzsjrEZy0ZuK/3n9TIUXbs7iNFM0JvNFYcaRStA0CBQwQYniE00wEUzfisgIC0yUjqumQ7AXX14mzmnrsmXfnjXaV2UaVTiEI2iCDefQhhvogAMEHuEZXuHNKIwX4934mLdWjHLmAP7A+PwBkEqTrA==</latexit>

h27
<latexit sha1_base64="qcKy2R4hZjNMphimele019cJRIQ=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewSE/BG9OIRExdIYEO6pQuVbrtpuyZkw3/w4kGNV3+QN/+NBfag4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTtpapItQnkkvVDbGmnAnqG2Y47SaK4jjktBNObud+54kqzaR4MNOEBjEeCRYxgo2V2uNBVqvPBuWKW3UXQOvEy0kFcrQG5a/+UJI0psIQjrXueW5iggwrwwins1I/1TTBZIJHtGepwDHVQba4doYurDJEkVS2hEEL9fdEhmOtp3FoO2NsxnrVm4v/eb3URI0gYyJJDRVkuShKOTISzV9HQ6YoMXxqCSaK2VsRGWOFibEBlWwI3urL68SvVa+r3v1VpXmTp1GEMziHS/CgDk24gxb4QOARnuEV3hzpvDjvzseyteDkM6fwB87nD5/vjrI=</latexit><latexit sha1_base64="qcKy2R4hZjNMphimele019cJRIQ=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewSE/BG9OIRExdIYEO6pQuVbrtpuyZkw3/w4kGNV3+QN/+NBfag4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTtpapItQnkkvVDbGmnAnqG2Y47SaK4jjktBNObud+54kqzaR4MNOEBjEeCRYxgo2V2uNBVqvPBuWKW3UXQOvEy0kFcrQG5a/+UJI0psIQjrXueW5iggwrwwins1I/1TTBZIJHtGepwDHVQba4doYurDJEkVS2hEEL9fdEhmOtp3FoO2NsxnrVm4v/eb3URI0gYyJJDRVkuShKOTISzV9HQ6YoMXxqCSaK2VsRGWOFibEBlWwI3urL68SvVa+r3v1VpXmTp1GEMziHS/CgDk24gxb4QOARnuEV3hzpvDjvzseyteDkM6fwB87nD5/vjrI=</latexit><latexit sha1_base64="qcKy2R4hZjNMphimele019cJRIQ=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewSE/BG9OIRExdIYEO6pQuVbrtpuyZkw3/w4kGNV3+QN/+NBfag4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTtpapItQnkkvVDbGmnAnqG2Y47SaK4jjktBNObud+54kqzaR4MNOEBjEeCRYxgo2V2uNBVqvPBuWKW3UXQOvEy0kFcrQG5a/+UJI0psIQjrXueW5iggwrwwins1I/1TTBZIJHtGepwDHVQba4doYurDJEkVS2hEEL9fdEhmOtp3FoO2NsxnrVm4v/eb3URI0gYyJJDRVkuShKOTISzV9HQ6YoMXxqCSaK2VsRGWOFibEBlWwI3urL68SvVa+r3v1VpXmTp1GEMziHS/CgDk24gxb4QOARnuEV3hzpvDjvzseyteDkM6fwB87nD5/vjrI=</latexit><latexit sha1_base64="qcKy2R4hZjNMphimele019cJRIQ=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewSE/BG9OIRExdIYEO6pQuVbrtpuyZkw3/w4kGNV3+QN/+NBfag4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTtpapItQnkkvVDbGmnAnqG2Y47SaK4jjktBNObud+54kqzaR4MNOEBjEeCRYxgo2V2uNBVqvPBuWKW3UXQOvEy0kFcrQG5a/+UJI0psIQjrXueW5iggwrwwins1I/1TTBZIJHtGepwDHVQba4doYurDJEkVS2hEEL9fdEhmOtp3FoO2NsxnrVm4v/eb3URI0gYyJJDRVkuShKOTISzV9HQ6YoMXxqCSaK2VsRGWOFibEBlWwI3urL68SvVa+r3v1VpXmTp1GEMziHS/CgDk24gxb4QOARnuEV3hzpvDjvzseyteDkM6fwB87nD5/vjrI=</latexit>

h32
<latexit sha1_base64="VP/aLWFVScRxg6REBBdCgiNrZ3s=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewiiXojevGIiQsksCHd0oVKt920XROy4T948aDGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g7HtzO//USVZlI8mElCgxgPBYsYwcZKrVE/u6hN++WKW3XnQKvEy0kFcjT75a/eQJI0psIQjrXuem5iggwrwwin01Iv1TTBZIyHtGupwDHVQTa/dorOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/ed3URFdBxkSSGirIYlGUcmQkmr2OBkxRYvjEEkwUs7ciMsIKE2MDKtkQvOWXV4lfq15Xvft6pXGTp1GEEziFc/DgEhpwB03wgcAjPMMrvDnSeXHenY9Fa8HJZ47hD5zPH5ngjq4=</latexit><latexit sha1_base64="VP/aLWFVScRxg6REBBdCgiNrZ3s=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewiiXojevGIiQsksCHd0oVKt920XROy4T948aDGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g7HtzO//USVZlI8mElCgxgPBYsYwcZKrVE/u6hN++WKW3XnQKvEy0kFcjT75a/eQJI0psIQjrXuem5iggwrwwin01Iv1TTBZIyHtGupwDHVQTa/dorOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/ed3URFdBxkSSGirIYlGUcmQkmr2OBkxRYvjEEkwUs7ciMsIKE2MDKtkQvOWXV4lfq15Xvft6pXGTp1GEEziFc/DgEhpwB03wgcAjPMMrvDnSeXHenY9Fa8HJZ47hD5zPH5ngjq4=</latexit><latexit sha1_base64="VP/aLWFVScRxg6REBBdCgiNrZ3s=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewiiXojevGIiQsksCHd0oVKt920XROy4T948aDGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g7HtzO//USVZlI8mElCgxgPBYsYwcZKrVE/u6hN++WKW3XnQKvEy0kFcjT75a/eQJI0psIQjrXuem5iggwrwwin01Iv1TTBZIyHtGupwDHVQTa/dorOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/ed3URFdBxkSSGirIYlGUcmQkmr2OBkxRYvjEEkwUs7ciMsIKE2MDKtkQvOWXV4lfq15Xvft6pXGTp1GEEziFc/DgEhpwB03wgcAjPMMrvDnSeXHenY9Fa8HJZ47hD5zPH5ngjq4=</latexit><latexit sha1_base64="VP/aLWFVScRxg6REBBdCgiNrZ3s=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewiiXojevGIiQsksCHd0oVKt920XROy4T948aDGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g7HtzO//USVZlI8mElCgxgPBYsYwcZKrVE/u6hN++WKW3XnQKvEy0kFcjT75a/eQJI0psIQjrXuem5iggwrwwin01Iv1TTBZIyHtGupwDHVQTa/dorOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/ed3URFdBxkSSGirIYlGUcmQkmr2OBkxRYvjEEkwUs7ciMsIKE2MDKtkQvOWXV4lfq15Xvft6pXGTp1GEEziFc/DgEhpwB03wgcAjPMMrvDnSeXHenY9Fa8HJZ47hD5zPH5ngjq4=</latexit>

Fig 3. Our FIND model works by feeding Amino Acid sequences through increasingly
wide convolutions (1, 4, 8, 16) yielding a final receptive field of 26. hi is multiplied by
two fully connected layers to produce an attention weight and a prediction over the
labels. The solid and dashed lines indicate example receptive fields for h27 and h32.

s ∈ Rl×h for a sequence of length l. Each element is then passed through a single linear 181

layer to produce an attention (αi = si ·A where A ∈ Rh×1) and prediction logits 182

(pi = si × P where P ∈ Rh×L for L labels). α is then normalized via softmax to 183

produce a distribution over all li so the global sequence logits are simply computed as 184

p̂ =
∑

i αi � pi, yielding a prediction vector p̂ ∈ R1×L, which is again normalized to 185

form a distribution over the labels. 186

By normalizing attention across the entire sequence, the model is forced to choose a 187

small set of sequences from which to make its prediction. This provides us with 188

interpretable sequences to analyze. Finally, the convolution allows for efficient parallel 189

analysis of every subsequence. All models were implemented in PyTorch,3 optimized 190

with Adam [33], BatchNorm [34], and using a hidden dimension of n = 256 which was 191

chosen based on the validation set performance. All code and data are available on 192

GitHub for reproducibility and extension at https://github.com/ybisk/FIND. The 193

code is also available in a Jupyter notebook for easy execution. 194

Building a database for each enzyme superfamily 195

Most of the families for heme-copper oxygen reductase superfamily were previously 196

defined in [15]. The previously undefined families of NOR were designated in the same 197

way, creating phylogenetic trees and separating out enzyme sequences belonging to 198

monophyletic clades within the tree. Once the families were defined,4 a query sequence 199

for each of the families was used to search the NCBI non-redundant protein sequence 200

database using Biopython’s Entrez module and the BLAST tool to identify hits. 201

Accession numbers for the hits were retrieved using the SeqIO module and then protein 202

sequences were retrieved, again using Entrez to connect to the NCBI database. Bit 203

Score and e-value cut-offs could not be identified to entirely separate the sequences 204

according to families. Therefore, the sequences were then manually curated and labelled 205

as belonging to their respective families. When enough sequences were not identified in 206

the NCBI database, sequences were retrieved from metagenomes on JGI’s IMG server. 207

All accession numbers are provided in Supplementary information. A similar method 208

3http://pytorch.org
4Hemp, Murali manuscript in preparation
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was used for building a database for cytochrome bd -type oxygen reductases and 209

nitrogenases. However, no metagenome sequences were included for nitrogenases. The 210

nitrogenases database also included unpublished sequences from a private database.5 211

Analysis of “predictor” sequence features learned by the model 212

The model was forced to choose small sections of a query sequence to classify a given 213

protein as belonging to one of the different HCO families. The extracted sequence 214

feature was then retrieved and represented using a reference crystal structure or model 215

in the following way. An (MSA) was generated using the query sequence that the model 216

has just classified, and a set of previously curated set of HCO sequences belonging to 217

the output class. The extracted feature was searched against the MSA to locate the 218

corresponding location in the sequence of the reference structure. The “predictor” 219

sequences were then mapped using different colors onto the reference structure using 220

Chimera. [35] 221

Generation of structural models 222

Crystal structures for previously characterized enzymes within the HCO superfamily 223

were used to display the sequence features predicted by the learning algorithm. When a 224

crystal structure was not available, models of the HCO family were generated using the 225

i-TASSER structural modelling server. [36] Reference sequences used for generating a 226

model and the quality of the model itself are found in Table S2. The models 227

themselves are available on Github https://github.com/ybisk/FIND. 228

A Hidden Markov Model classifier for heme-copper oxygen 229

reductases 230

Using the same test set as that defined for learning the classification model, we created 231

MSAs for each of the families identified within the HCO superfamily. These MSAs were 232

used to create a HMM profile for each protein family, using the HMMbuild function in 233

the HMMer module [5]. A file with a set of query sequences was then searched against 234

each of the HCO-family HMM profiles, using the hmmscan function. The family against 235

which the query sequence achieved the highest domain-based Bit Score was taken to be 236

its label. Classification accuracy was then determined using the standard parameters of 237

precision, recall and the harmonic mean, F1. 238

Results and Discussion 239

Our model was evaluated for its ability to classify a protein belonging to one of three 240

test superfamilies - cytochrome bd -type oxygen reductases, nitrogenases and 241

heme-copper oxygen reductases. Its accuracy at performing the above task was 242

compared to that of a Hidden-Markov based classification tool, using standard 243

evaluation paramaters. Thereafter, the sequence features used by a model for the HCO 244

family members were validated using prior biochemical literature on the subject. The 245

validated model was used to classify and characterize enzymes from the families that 246

have not been experimentally tested. 247

5communication from Victoria Orphan and Connor Skennerton
6Pr = tp/(tp + fp), Re = tp/(tp + fn), F1= 2.Pr.Re/(Pr + Re), where tp, tn, fp and fn are true

positives, true negatives, false positives and false negatives respectively.
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Table 3. Protein classification accuracy achieved using a convolution neural network in
comparison to a Hidden Markov Model-based classifier. Classification accuracy is
evaluated using – Precision (Pr), Recall (Re) and Harmonic mean (F1).6

(a) HCOs

CNN HMM
HCO Pr Re F1 Pr Re F1

A 1.00 1.00 1.00 1.00 1.00 1.00
B 0.98 1.00 0.99 0.99 1.00 0.99
C 1.00 1.00 1.00 1.00 1.00 1.00
D 0.95 1.00 0.97 1.00 1.00 1.00
E 0.83 1.00 0.91 1.00 1.00 1.00

F† 0.80 1.00 0.89 1.00 1.00 1.00

G† 0.67 1.00 0.80 1.00 1.00 1.00

H† 1.00 1.00 1.00 0.89 1.00 0.94

I† 1.00 0.71 0.83 0.75 1.00 0.86

J† 1.00 1.00 1.00 1.00 1.00 1.00

K† 0.00 0.00 0.00 1.00 1.00 1.00
bNOR 1.00 1.00 1.00 1.00 1.00 1.00
cNOR 0.85 1.00 0.92 1.00 1.00 1.00
eNOR 0.96 1.00 0.98 1.00 1.00 1.00
gNOR 1.00 0.88 0.93 1.00 1.00 1.00

nNOR† 1.00 0.56 0.71 1.00 0.33 0.50
qNOR 0.99 0.95 0.97 1.00 1.00 1.00
sNOR 0.92 1.00 0.96 1.00 1.00 1.00

Acc 99.14% 99.96%

†Families with <10 sequences.

(b) Nitrogenases

CNN HMM
Family Pr Re F1 Pr Re F1

nifDI 1.00 1.00 1.00 1.0 1.0 1.0
nifDII 0.96 1.00 0.98 1.0 1.0 1.0
Anf 1.00 1.00 1.00 1.0 1.0 1.0
nifD ANME 1.00 0.25 0.40 1.0 1.0 1.0
VnfD 0.60 1.00 0.75 1.0 1.0 1.0

Acc 96.8% 100%

(c) Cytochrome bd-type oxygen
reductases

CNN HMM
Family Pr Re F1 Pr Re F1

A 1.00 1.00 1.00 1.0 1.0 1.0
B 1.00 1.00 1.00 1.0 1.0 1.0
C 1.00 1.00 1.00 1.0 1.0 1.0
E1 0.99 1.00 1.00 1.0 1.0 1.0
E2 1.00 1.00 1.00 1.0 1.0 1.0
E3 1.00 0.90 0.95 1.0 1.0 1.0
E4 1.00 1.00 1.00 1.0 1.0 1.0

Acc 99.6% 100%

Comparison of classification accuracy - CNNs and Hidden 248

Markov Models 249

In all three test cases, the CNNs performed classification with an accuracy greater than 250

96%.7(Table 3) This was comparable to the classification accuracy achieved by an 251

HMM-based classifier that we designed. Impressively, the CNN achieves a high level of 252

classification accuracy for the relatively small data set of nitrogenases, though the 253

HMM classifier achieves perfect accuracy in that case. It is conceivable that 254

HMM-based classifiers are more accurate for smaller, more homogenous data sets as 255

there is less variation across a domain in such datasets. This might present a case of 256

over-fitting the data, which is less likely in the case of CNNs which model all of the 257

HCO sequences at the same time. In the cytochrome bd -type oxygen reductases, both 258

the HMM and CNN perform classification with greater than 99% accuracy. 259

Interestingly, HMM and CNNs are more accurate for different families within the large 260

superfamilies. In HCO classification for example, the CNN predicts the H and nNOR 261

families more accurately than the HMM, while the HMM is more precise when 262

predicting several families, especially F and G. There are two fundamental difference 263

between these approaches - the CNN uses smaller sections of sequences to make a 264

prediction of function while the HMM uses whole domain similarity, and the CNN 265

models all sequences simultaneously while the HMM uses pairwise comparisons. It is 266

possible that our CNN model performs well where unique features, comparable to the 267

length of our receptive field are easy to identify, while the HMMs may identify a more 268

7Models achieve >90% accuracy with in the first 10 epochs, but may not capture all families until
100. We stopped all runs at a 100 as the learning rate begins to converge to zero
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dispersed combination of sequence features. In the HCO superfamily, it is apparent that 269

unique features are formed through evolutionary diversification and are conserved. 270

Correspondingly, our model is able to easily classify members within the HCO family. 271

The performance of the model on the HCO superfamily, particularly with families 272

with small data sets is impressive. Previously, an HMM-based classifier was created for 273

the HCO superfamily but, it does not incorporate as much phylogenetic diversity of this 274

superfamily as we present here [37]. Therefore, we built an updated model for this task, 275

which performs the task with >99 % accuracy. It is interesting to note that 276

classification by both CNN and HMM is least accurate in the case of the I family of 277

O2-reductases and nNOR, which is consistent with these being a more complicated task 278

for both algorithms that we used. Further, it appears that the false positives for the 279

I-family is often the G-family, which is corroborated by their close phylogenetic 280

relationship (Figure 1). This is also true for nNOR and sNOR, which are closely 281

related. Sequence analysis of subunits II from these enzymes also suggest that they have 282

recently diverged, with respect to their evolutionary history. It is intriguing that even 283

when we force the model to make predictions using smaller regions of the amino acid 284

sequence, it is sensitive to close phylogenetic relationships. Our feature extraction 285

method allows us to get a tangible understanding to the physical nature of these close 286

evolutionary relationships, i.e what features are common to close evolutionary partners 287

and which features vary between distant ones. 288

Predictor sequences obtained using attention mechanism 289

One of the primary goals in this work is to identify inherent patterns within protein 290

sequences that may not be easy to identify without prior knowledge and biochemical 291

intuition. In accordance with that goal, we forced our classification algorithm to identify 292

parts of the protein sequence that are most conserved within a given family of enzymes. 293

The algorithm identifies these sections of protein sequences, or sequence features, by 294

preferentially weighting those that are correlated with the correct functional or 295

structural label. We validate these “predictor” sequence features against prior 296

knowledge of the known HCO families, and then characterize the novel sequence 297

features within the new families. 298

Validation of the model using extensively characterized HCO families 299

The classification model correctly identifies several features from the known HCO 300

families - A, B, C, cNOR and qNOR (Figure 4, Table S1). From the A-family, the 301

most often extracted feature is in the active site (present in Helix 6), including either 302

the conserved glutamate or tyrosine and serine, which are the amino acids from which 303

protons are loaded onto the oxygen molecule as it is reduced at the active site (Figure 304

4). One of these two variants is always present in the A-family and only in this family. 305

The C-family “predictor” sequence most often identified is the tyrosine belonging to the 306

histidine-tyrosine crosslinked cofactor, which is located on a different helix (Helix 7), 307

than in the rest of the O2-reductases where it is found in Helix 6(Figure 4). In the 308

B-family, the model derives motifs corresponding to its active site and a tyrosine that is 309

conserved in the proton channel (Figure 4). In the cNOR family, one often identified 310

feature is around Helix 10, including a conserved threonine residue suggested to line a 311

proton channel leading from the periplasm to the active site [19]. (Figure 4C.). In 312

both C and cNOR, a conserved arginine which is involved in stabilizing the active site 313

heme is present. cNOR has a glutamate in place of the tyrosine from the cross-linked 314

cofactor present in the O2-reductases. All the sequence features derived were consistent 315

with previous experimental results. In fact, the identified locations agree well with those 316
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Fig 4. Sequence features revealed by classification algorithm. Sequence features were
mapped onto crystal structures of HCO enzymes that are well characterized. The PDB
codes for A, B, C, cNOR, qNOR family crystal structures used are 2gsm, 1xme, 3mk7,
3wfb, 3ayf respectively

listed in Table 1, indicating that the model is extracting parts of a given enzyme’s 317

sequence that correlate with meaningful aspects of its function. 318

Identification of sequence characteristics unique to previously 319

uncharacterized HCO families 320

After validating the model, we used the model to extract sequence features from the 321

remaining families which have not been well characterized. Characteristics unique to 322

each family were uncovered, indicative of their adaptation to a unique environment and 323

role. Among the more striking sequence traits was recognized in the J family, which has 324

two tyrosines replacing histidines which are typically ligands to the active site heme and 325

high-spin heme. (Figure 5) This is likely to have an effect on the midpoint potential of 326

the heme; the anionic nature of tyrosine as a ligand is likely to lower the midpoint 327

potential of the heme. [38] Also interesting are residues corresponding to a proton 328

channel in the nNOR family in a structurally analogous location to that of the B family. 329

This would be physiologically significant, indicating that this enzyme could generate 330

proton motive force. A similar channel leading from the cytoplasm to the active site has 331

been shown in the electrogenic bNOR [26]. nNOR also appears to have a histidine to 332

methionine substitution for a ligand to the low-spin heme in the electron transfer 333
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Fig 5. Sequence features revealed by classification algorithm. Sequence features were
mapped onto homology models of HCO enzymes that are uncharacterized. The
structural model and quality parameters for each model used for each family is
identified in Table S2

pathway. A histidine to glutamate substitution as a heme ligand is uncovered in gNOR, 334

which would have a significant effect on the midpoint potential and spin state of the 335

heme. Finally, in K and eNOR, conserved residues around the O2/NO diffusion channel 336

are found. The full set of features is listed in Table S1 with corresponding amino acid 337

numbering for previously characterized HCOs. 338

By using these extracted features, it has thus been possible to gain insight into some 339

functional and structural characteristics of biochemically uncharacterized proteins. It is 340

interesting that most of the features that have been identified are part of 341

transmembrane helices. This is consistent with a majority of the catalytically important 342

residues in HCO enzymes being present in the membrane. 343

A brief analysis of the sequences extracted by the CNN from nitrogenases’ 344

classification indicates that active site features are used as the markers for classification. 345

This suggests that this method is as successful for smaller and cytoplasmic proteins. 346

Extraction of features from cytochrome bd identify locations near the electron donor 347

binding site, and certain periplasmic loops. A full description of features identified for 348

nitrogenases and cyt bd is beyond the scope of this work and will be presented 349

elsewhere. 350

A simplified model of functional diversification within the HCO 351

family members 352

Use of different model parameters to gain insight into different 353

protein features 354

The neural network model is built on several parameters - the size of the embedding 355

matrix, the number of convolutional layers and kernel size - that can be modified to 356
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Fig 6. Correlation of evolutionary history with sequence features identified in different
HCO families. A heatmap of extracted features as they are located within the conserved
subunit I, is correlated with the phylogenetic relationships identified in Figure 1.
Features from five different training runs were combined and mapped onto subunit I.

improve classification accuracy as well as extract different features from protein 357

sequences. The embedding matrix is used to encode each amino acid in a protein 358

sequence with a unique vector that, in a sense, quantifies the characteristics associated 359

with that amino acid. Modification of the the size of the embedding matrix used to code 360

for an input sequence can modify the complexity available to the model. Intuitively, this 361

would vary the model’s ability to perceive relationships between different amino acids, 362

for e.g., between polar residues or between acidic amino acid residues. Further, the 363

number of convolutional layers and kernel sizes varies the length of the receptive field, 364

or essentially the maximum length of sequence the model is capable of attending to 365

when using the attention mechanism. The attention mechanism is used to extract 366

sequence features, and the model seems capable of using as small a receptive field as 15 367

amino acids to accurately predict classes of protein families. Use of dilation in the 368

neural networks can increase this receptive field further and the most striking contrast 369

in the features learned by the model is perceived when combining dilation with the 370

number of layers used to encode complexity. Significantly, using weighting parameters 371
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to increase the importance of the rarer classes to the learning of the model, improves 372

classification accuracy. A careful examination of model parameters used to build a 373

neural network indicates that there is significance to the modified use of these 374

parameters. (Data present in Github https://github.com/ybisk/FIND) However, the 375

consistency in the features learned for the different classes using a weighted, 376

convolutional network with 256 parameters in the embedding matrix is the highest and 377

we used these parameters to generate the final model for the HCO classification. 378

Using the classification model learned by the neural network, we extracted the top 379

“predictors” or weights assigned to various parts of the sequence within HCO family 380

members. Simply, this provides us with sequence patterns or motifs correlated with a 381

given label. These patterns were plotted using a heat map to demonstrate the location 382

of identified sequence features within subunit I of the enzyme. We find that several of 383

these patterns correlate with the evolutionary history of the HCO family, as shown in 384

Figure 6. Comparison of the distribution of identified features within different families 385

demonstrates the differential functional adaptation of some of the families. For instance, 386

the regions identified as predictive in cNOR and qNOR center around helices 8, 9 and 387

10 where residues lining a proton channel for protons to enter the active site from the 388

periplasm are found. Conversely, A, B and C families of O2 reductases have a proton 389

channel leading from the cytoplasm to the active site. Sequence motifs found in the 390

C-family oxygen reductase are centered around the region between helices 1 and 2, 391

where a periplasmic loop exists that stabilizes heme b3 in the C-family [22]. Conserved 392

features are identified in cNOR from the same region. The above identified correlations 393

are significant because they correspond to the phylogenetic relationship between the 394

C-family O2 reductase, and cNOR and qNOR. The close evolutionary relationship 395

between the C-family, cNOR and qNOR has been observed before [39] [25] and the 396

common structural features associated with these families appear to corroborate that. A 397

similar relationship is observed between K and eNOR which cluster closely together in 398

our HCO phylogenetic tree. Conserved residues such as threonine and tyrosine (in the 399

K-family), and a tyrosine in eNOR in the loop between Helices 3 and 4, likely affect the 400

O2 and NO diffusion pathway, which have been explored in the A, B and C-family [21]. 401

These features are suggestive of adaptations specific to substrate concentrations [40]. 402

Within the context of a multi-class classification model, we intuit that structural 403

differences between the families are weighted and extracted. This implies that the 404

model does not discover every feature conserved in a family but uncovers those 405

characteristics that are unique to each clade. A complete picture of each enzyme 406

family’s catalytic and structural characteristics may not be obtained from the model 407

but, it has the advantage of providing insight into the bigger picture of functional 408

diversification within the enzyme superfamily. This in turn is correlated with the nature 409

of catalytic machinery and structural features within a given family. In identifying 410

features that are significant enough to be conserved within a clade and yet, adaptable 411

within the larger superfamily, we discern what some of the constraints for evolution of 412

these proteins are and how they diverged through time. 413

Conclusion 414

Our FIND classification model has accurately classified members of three different 415

enzyme superfamilies - heme-copper oxygen reductases, nitrogenases and cytochrome 416

bd -type oxygen reductases. It performs this task with accuracy comparable to a 417

well-accepted classification technique based on Hidden Markov Models. In addition, our 418

model is able to automatically extract interesting, unique sequence features correlated 419

with the labels we imposed. This facet of our model allows us to infer biochemically and 420

structurally distinct features in protein sequences without extensive review of sequence 421
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alignments, which are typical of traditional methods. In this way, it is uniquely useful 422

for investigating large sets of uncharacterized proteins. Further, our model provides 423

insight into the evolutionary relationships of proteins within an enzyme superfamily, by 424

identifying some traits that are specific to each protein. The novel uncharacterized 425

members of heme-copper oxygen reductases that we have described and the unique 426

features we have identified in their protein sequences would be an interesting set of 427

targets for biochemical characterization. In our work, we have seen the promise of deep 428

learning methods; to classify proteins and to identify innate structural and functional 429

features associated with function, directly from primary sequence. In the future, these 430

methods can be used to tackle the heterogeneity in biological sequence data and 431

understand aspects of protein diversity and functional adaptation. 432
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Family Threading templates used C-score TM score

D 2yevA, 1occA, 1fftA, 3ag3A, 1ocrA 0.84 0.83±0.08
E 1m56A, 1occA, 2y69A, 2gsmA, 1fftA, 3ag3A 1.2 0.88±0.07
F 2yevA, 1occA, 1fftA, 3ag3A 0.03 0.72±0.11
G 1fftA, 1occA, 2yevA, 3ag3A 0.49 0.78±0.10
H 2yevA, 1occA, 3fyiA, 2gsmA, 1fftA -0.91 0.60±0.14
I 2yevA, 1occA, 1fftA, 3ag3A 0.11 0.73±0.11
J 1fftA, 3eh3A, 1m56, 2y69A, 2yev, 1ehkA 0.44 0.77±0.10
K 2yevA, 3eh3A, 1fftA, 3ag3A, 1ehkA 0.26 0.75±0.10
ENOR 2yevA, 3eh3A, 1fftA, 3ag3A 0.19 0.74±0.11
BNOR 2yevA, 3eh3A, 1fftA, 3ag3A, 1ehkA 0.5 0.78±0.10
SNOR 1fftA, 1occA, 3fyiA, 1m56, 3ag3A 1.03 0.85±0.08
NNOR 2yevA, 1occA, 2yevA, 1m56, 3ag3A 0.98 0.85±0.08
GNOR 1fftA, 1occA, 1ocrA, 1m56, 3ag3A 0.53 0.78±0.09

Table S2. Homology models made for uncharacterized HCOs on i-TASSER with their
quality scores

Fig S1. Work flow for the generation of a curated database of protein sequences with
labels. This database is then split into training, validation and test set to generate a
classification model using FIND
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Fig S2. Phylogenetic clustering of nitrogenases using the nifD subunit. Tree was
generated using PhyML. Clusters corresponding to nifDI, nifDII, AnfD, VnfD and
nifD-ANME were extracted and used to train FIND. Groups III and IV were not used
in our training sets because of the smaller number of sequences in those clusters.

Fig S3. Phylogenetic clustering of cytochrome bd -type oxygen reductases using subunit
I. This phylogenetic tree was generated using PhyML. Clusters corresponding to
E1,E2,E3,E4,B,A and C were extracted and used to train FIND.
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