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Analysis of miniaturization effects and channel
selection strategies for EEG sensor networks with

application to auditory attention detection
Abhijith Mundanad Narayanan, Alexander Bertrand

Abstract—Objective: Concealable, miniaturized
electroencephalo-graphy (‘mini-EEG’) recording devices
are crucial enablers towards long-term ambulatory EEG
monitoring. However, the resulting miniaturization limits the
inter-electrode distance and the scalp area that can be covered
by a single device. The concept of wireless EEG sensor networks
(WESNs) attempts to overcome this limitation by placing a
multitude of these mini-EEG devices at various scalp locations.
We investigate whether optimizing the WESN topology can
compensate for miniaturization effects in an auditory attention
detection (AAD) paradigm. Methods: Starting from standard
full-cap high-density EEG data, we emulate several candidate
mini-EEG sensor nodes which locally collect EEG data with
embedded electrodes separated by short distances. We propose a
greedy group-utility based channel selection strategy to select a
subset of these candidate nodes, to form a WESN. We compare
the AAD performance of this WESN with the performance
obtained using long-distance EEG recordings. Results: The
AAD performance using short-distance EEG measurements is
comparable to using an equal number of long-distance EEG
measurements if in both cases the optimal electrode positions
are selected. A significant increase in performance was found
when using nodes with three electrodes over nodes with two
electrodes. Conclusion: When the nodes are optimally placed,
WESNs do not significantly suffer from EEG miniaturization
effects in the case of AAD. Significance: WESN-like platforms
allow to achieve similar AAD performance as with long-distance
EEG recordings, while adhering to the stringent miniaturization
constraints for ambulatory EEG. Their applicability in an
AAD task is important for the design of neuro-steered auditory
prostheses.

Index Terms—Auditory attention detection, brain-computer in-
terface, channel selection, EEG processing, EEG sensor networks

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive neu-
rorecording technique, which has the potential to be used
for 24/7 neuromonitoring in daily life, e.g., in the context of
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neural prostheses, brain-computer interfaces, or for improved
diagnosis of brain disorders [2]–[17]. Although existing mo-
bile wireless EEG headsets are a useful tool for short-term
experiments, they are still too heavy, bulky and obtrusive,
for long-term EEG-monitoring in daily life. However, we
are now witnessing a wave of new miniature EEG sensor
devices containing small electrodes embedded in them, which
we refer to as mini-EEG devices. These mini-EEG devices
are concealable and light-weight, and come in various forms.
Among these forms, some can be concealed behind the ear [5],
[11], [12], placed in the ear [6], [7], [15], [18], attached to the
skin as a stick-on tattoo [4] or inserted under the skin [3]. The
research towards novel concealable mini-EEG devices is still
highly active, with regular emergence of new innovative form
factors.

However, due to their miniaturization, these mini-EEG
devices have the drawback that only a few EEG channels
can be recorded within a small area. Therefore, to capture
more spatial information, one could use a multitude of such
devices and wirelessly connect them in a sensor network-like
architecture, referred to as a wireless EEG sensor network
(WESN) [13], [19]. The EEG measured in such a WESN
will consist of local short-distance measurements made by
multiple mini-EEG devices or ‘nodes’, which consist of at
least two electrodes. This is unlike EEG recordings made by
traditional headsets where electrodes are typically referenced
to a common reference electrode or an average reference
signal. In this paper, we carry out a comprehensive study
on the effect of short-distance measurements recorded by the
nodes of a WESN and we propose a method to find the optimal
scalp locations to place those nodes. The nodes of this WESN
are emulated by re-referencing standard cap-EEG electrodes
to nearby electrodes.

In this work, we consider the application of auditory
attention detection (AAD) to explore the impact of these
short-distance measurements. Several studies have success-
fully demonstrated that it is possible to estimate the attended
speech envelope from EEG [8], [16], [20]–[24], thereby detect-
ing which speaker a subject is attending to in a multi-speaker
listening environment (the so-called ‘cocktail party’ problem).
It is believed that in the future these AAD systems can be
used for the cognitive control of auditory prostheses, such
as hearing aids and cochlear implants [23], [24]. Therefore,
AAD is an application that could benefit hugely from chronic
neuromonitoring using a WESN-like platform.

We compare the AAD performance between the short-
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distance EEG measurements acquired by single-channel (two-
electrode) mini-EEG nodes and two different long-distance
EEG measurement configurations. In the first long-distance
configuration, EEG measurements were obtained from elec-
trodes with respect to a common reference electrode (Cz). In
the second configuration, EEG measurements were obtained
with the freedom to choose any electrode-reference pair. The
comparison between short and long-distance configurations
was carried out after selecting the best subset of channels
in each case, which equates to choosing the most relevant
positions on the scalp. To this end, we use a greedy utility-
based sensor subset selection method [25], [26] to find these
optimal locations on the scalp. We verify the suitability
of this method in the channel selection problem for AAD
by comparing it to two other methods in literature, viz. a
decoder magnitude-based method [20] and the group-LASSO
(least absolute shrinkage and selection operator) based channel
selection method which was used in [1]. We determine the
optimal locations on the scalp in both a subject-dependent
and subject-independent scenario. In the current work, we
demonstrate that, when placed on these optimal locations,
the short-distance EEG measurements acquired by a multitude
of single-channel mini-EEG nodes do not significantly affect
the AAD performance compared to both long-distance EEG
measurement configurations. In addition, we also investigate
the effect of adding a third electrode to each node used in the
above experiments, to study the impact of having an additional
channel. We show that this additional channel in each node,
increases the AAD performance significantly, but only if the
decoding weights can adapt to the individual subject. We also
show that the optimal locations for both single-channel and
two-channel nodes correspond to the temporal lobe regions
associated with the auditory cortex, as reported in other
experiments on EEG channel selection for AAD [20].

In the sequel, we will consistently use the following termi-
nology:

• Channel: A channel is an EEG signal that originates from
a single electrode pair over which the scalp potential
is measured. Every channel has a one-to-one correspon-
dence with a pair of electrodes. We will generally make
abstraction of the ambiguity in polarity, as we work with
data-driven methods which are not affected by the latter.

• Node: A node represents a group of (at least two) closely
spaced EEG electrodes such as included in a wireless
mini-EEG sensor device, emulated here as a group of
nearby cap-EEG electrodes. One of these electrodes is
treated as a reference electrode, which forms pairs with
all the other electrodes in the node. As such, a node with
N electrodes will contain N − 1 EEG channels. In this
paper, we discuss single-channel and two-channel nodes
which consist of two and three electrodes respectively.

The paper is organized as follows. In Section II, first the
EEG data collection and AAD algorithm based on a least-
squares (LS) estimation is explained followed by the details
on the WESN emulation. This section also describes the
channel selection strategies that are used in our comparison.
In Section III, we show results on the AAD performance in

a WESN setting and benchmark it against other recording
settings with long-distance reference electrodes. Here, we also
show the impact and possible benefits of adding an extra
channel to each EEG node. Discussions on the results are given
in Section IV and conclusions are drawn in Section V.

II. METHODS

A. Experiment Data Collection

This paper reports experiments carried out using the data
set described in [22]. The data set contains 16 subjects
who listened to two simultaneous speakers coming from two
distinct spatial locations, and were asked to attend to only one
of them while ignoring the other. Half of the speech stimuli
were presented to the subjects dichotically, while the other half
was presented using head-related transfer functions to simulate
a realistic acoustic scenario. The side of attention (left or
right) was evenly split over the different trials to avoid decoder
bias [27]. During the entire experiment, 64-channel EEG was
recorded using a BioSemi ActiveTwo system resulting in 72
minutes of EEG data per subject. The electrodes were placed
on the head according to international 10-20 standards and
data was recorded with a common reference montage, with
the Cz electrode used as the reference.

B. Auditory Attention Detection

In this subsection the basic AAD procedure that is used in
this paper is reviewed. In [8] it was shown that AAD can be
achieved by a least-squares (LS) based reconstruction of the
attended speaker’s speech envelope using multi-channel EEG
recordings. Assuming the EEG data is split into Q trials of
equal length, the goal is to detect for each trial to whom of
the two speaker the subject was attending.

First, a linear spatio-temporal decoder ŵ that estimates the
attended speech envelope from the C-channel EEG data is
obtained by solving the following LS optimization problem:

ŵ = argmin
w

1

2
||Aw − sa||22 (1)

where sa is a vector containing the attended speech envelope
samples (which is assumed to be known during a training
phase) and A is a matrix containing M copies of the C EEG
channels in its columns (i.e., M ·C columns in total), in which
a delay of j − 1 samples is added to the j-th copy of each
channel. We selected M = 5 in all of our experiments. The
solution of Eq. (1) is given by

ŵ =
(
ATA

)−1
AT sa (2)

which can be written on a per-trial basis as

ŵ =

(
Q∑
q=1

AT
q Aq

)−1( Q∑
q=1

AT
q sa,q

)
(3)

where Aq and sa,q are the submatrices of A and sa corre-
sponding to trial q.
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The experiments reported in this paper are based on trials
of length 60s. To exclude over-fitting effects in the valida-
tion procedure, we use a subject-specific leave-one-out cross-
validation where each trial is used once as a test trial, while
all the other trials are then used to train a decoder for the
specific trial under test. In [8] the cross-validation is carried
out by computing Eq. (1) over the data of individual trials,
after which the resulting per-trial decoders are averaged across
trials, except for the test trial k. Here, we use a modification
to the above method as proposed in [22], which constructs
the decoder ŵk to decode trial k by including the data from
all the trials except trial k to construct the matrix A and the
vector sa:

ŵk =

 Q∑
q=1,q 6=k

AT
q Aq

−1 Q∑
q=1,q 6=k

AT
q sa,q

 . (4)

This procedure reduces or eliminates the need for regular-
ization if sufficient data is available in the training set, or
equivalently, if the number of rows in A is large enough [22].

Once the decoder ŵk is obtained, an estimate of the
attended speech envelope in trial k is constructed using:

ŝa = Akŵk. (5)

The attended speech envelope reconstruction is followed by
the Pearson correlation coefficient computation between the
reconstructed envelope ŝa and the two speakers’ speech en-
velopes. Therefore two correlation coefficients, ra and ru
are calculated for each trial, where ra is the correlation
between the reconstructed speech envelope ŝa and the attended
speech envelope and ru is the correlation between ŝa and the
unattended speech envelope. A trial is correctly decoded if
ra > ru and the percentage of trials successfully decoded is
used as the AAD performance parameter.

C. WESN Emulation

The aim of this paper is to understand the effect of using
short inter-electrode distances between the electrodes in order
to emulate a WESN with the different nodes representing
different mini-EEG devices. This emulation is achieved by
re-referencing 64 cap-EEG channels towards nearby reference
electrodes generating a set of candidate node locations and
orientations.

First, we emulated a WESN in which each node consists
of two electrodes separated by a short distance. Since each
node then corresponds to a single electrode-pair, we refer to
them as single-channel nodes. These nodes are selected from
a set of candidate nodes created by pairing each electrode of
the 64-electrode cap with each of its nearby electrodes that
are at a distance of at most 5 cm. The distance was selected
to ensure that a large number of candidate node locations and
orientations are generated but at the same time the electrodes
of each node have a reasonably short distance between them to
emulate a miniaturized EEG-sensor node. Using this criteria,
a set of P = 209 candidate single-channel node locations and
orientations were generated from the original 64 electrodes

with an average inter-electrode distance of 3.7 cm. We will
refer this set as S1ch. It is noted that P > 64, hence these P
EEG channels form a redundant (linearly independent) set.

Second, we emulated a WESN with nodes containing three
electrodes with one of them acting as a reference electrode,
resulting in two EEG channels per node. In [17], it was shown
for behind-the-ear electrodes that a smaller angle between
two electrode pairs leads to a higher correlation between the
recorded signals at both pairs. Therefore, we ensured that the
two corresponding electrode pairs in the three-electrode node
have a near-orthogonal orientation, based on the following
procedure. For each electrode k = 1, ..., 64, we again select
all the electrodes that are within 5 cm distance of electrode
k, forming a set of candidate electrode pairs denoted by
Pk. For each electrode pair p ∈ Pk, we select all the pairs
q ∈ Pk\{p} for which the angle between pair p and pair q
is between 60 and 120 degrees in the 3-D coordinate space.
All these combined pairs {p, q} form a new set Ck containing
all candidate 2-channel nodes which have electrode k as the
reference, where the duplicates are removed. The total pool
∪kCk contains P = 203 candidate 2-channel nodes. This set
of 2-channel nodes will be referred as S2ch. Note that P refers
to the number of nodes, and since each node can have more
than one channel, the total number of channels is larger or
equal to P . Let the total number of EEG channels across all
candidate nodes be P ′ (channels that belong to multiple nodes
are also counted more than once). For S1ch, P ′ = P and for
S2ch, P ′ = 2P .

D. Long-distance EEG measurement benchmark

To study the impact of short-distance EEG measurements,
we created two long-distance benchmark EEG measurement
sets. First is the original EEG measurement where each
electrode is referenced to the Cz electrode. We refer to this
set as the ‘Orig (Cz-ref)’ set of EEG measurements. However,
although the Orig (Cz-ref) case allows recordings over larger
distances than the emulated WESN, it may also be penalized
in the sense that each of the N selected channels should use
the same reference electrode, thereby reducing the choice of
the orientation of the electrode pair. Therefore, we created a
second benchmark set consisting of all possible electrode-pairs
from the original EEG data without any constraints on the
distance. This creates a total of P = 2016 candidate pairs. We
refer to this set as the ‘Any-Pair’ set of EEG measurements.

E. Decoder magnitude-based (DMB) node selection

To construct a WESN, the main objective is to select the N
best nodes from P node candidates (we will consider the case
of single-channel nodes (S1ch) in Section III-B1 and the case
of two-channel nodes (S2ch) in Section III-B2). To this end,
we replace A in Eq. (1), with AP which now contains the
P ′ EEG channels across all P candidate nodes. Note that the
same channel can appear multiple times in AP if that channel
is included in more than one node. Therefore the optimization
problem in Eq. (1) changes to:

min
w

1

2
||APw − sa||22. (6)
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where w is now a (P ′ ·M)-dimensional vector variable. It is
noted that the matrix AP is rank deficient as P ′ > 64, i.e.,
there are many linear dependencies between the channels of
different nodes in the candidate sets S1ch and S2ch, which
means that there are infinitely many solutions for Eq. (6).
This problem is typically solved by selecting the solution with
minimal l2-norm, which is known to be beneficial to reduce
overfitting effects [26]. The minimum-norm solution of Eq. (6)
is given by

ŵ = A†P sa (7)

where A†P denotes the Moore-Penrose pseudo-inverse of AP ,
which can be computed as

A†P = VΣ†UT ,

where
AP = UΣVT

is the singular value decomposition of AP , and where Σ† is
formed by taking the reciprocal of each non-zero element on
the diagonal of Σ, and then transposing the matrix [28].

In [20] and [29], an iterative channel selection heuristic
was used for EEG-based AAD, in which the channel with the
lowest corresponding entry in the decoder ŵ was removed in
each iteration. We will refer to this channel selection method
as the decoder magnitude-based (DMB) method, which is here
applied to the minimum-norm solution given in Eq. (7).

F. Greedy utility-based node selection

In general, the weights in an LS or a linear minimum
mean squared error (MMSE) decoder do not necessarily reflect
the importance of the corresponding channels to minimize
the squared error cost1 [26]. As such, the metric used in
the DMB node selection process does not truly capture the
contribution of each channel to the least squares envelope
reconstruction. Therefore, we propose the use of the so-called
‘utility’ metric instead to perform a greedy channel selection,
which we benchmark against the DMB method and another
commonly used variable selection algorithm known as LASSO
(see Section II-G).

For the sake of an easy exposition, we will first explain how
to use the utility metric to greedily select N columns of A
or AP . We will later explain how this can be extended to the
selection of nodes, i.e., at the granularity of pre-defined groups
of columns rather than individual columns. To select the subset
with the N ‘best’ columns of A, we use an iterative greedy
method based on the utility metric to eliminate columns one by
one. In the context of an LS problem like Eq. (1), the utility
of a column is defined as the increase in the squared error
when the column would be removed, and the decoder w would
be re-optimized for the remaining set of columns [25],[26].
Remarkably, the utility of each column can be monitored in
an efficient way without the explicit recomputation of the
optimal decoder for each column removal, which would imply

1For example, scaling a channel with a factor x will scale the corresponding
LS decoder weight with a factor 1/x, while the information provided by the
signal remains the same.

a strong computational burden. By defining the inverted auto-
correlation matrix

R−1 =

(
1

L
ATA

)−1
where L is the number of rows in A, the utility of the k-th
column can be computed as [25],[26]:

Uk = |wk|2/qk (8)

where qk is the k-th diagonal element of R−1, and wk is the
k-th decoder weight of ŵ as defined in Eq. (2). Note that R−1

is immediately available from the calculation of Eq. (2), hence
the utility of each column can be computed as a by-product
of the calculation of Eq. (2).

However, the matrix AP in Eq. (6) is rank deficient and
therefore contains redundant columns that are linear combina-
tions of the other columns. Therefore, removal of a redundant
column from AP will not lead to an increase in LS cost of
Eq. (6). As all columns in the initial set are redundant, all
columns would have zero utility by definition. Furthermore,
R−1 will not exist in this case as the matrix AP is rank
deficient. To overcome this problem, we use the definition
of utility generalized to a minimum l2-norm selection [26]
which eliminates the redundant column yielding the smallest
increase in the l2-norm of the decoder when that column were
to be removed and the decoder would be re-optimized. As
mentioned in Section II-E, minimizing the l2-norm of the
decoder reduces the risk for overfitting. This generalization is
achieved by first adding an l2-norm penalty to the cost function
that is minimized in Eq. (6):

min
w

1

2
||APw − sa||22 + λ||w||22 (9)

where 0 < λ << ε with ε equal to the smallest non-zero
squared singular value of AP . The minimizer of Eq. (9) is:

ŵ = R−1λ r = (R + λI)−1r (10)

where R = 1
LAT

PAP and r = 1
LAT

P sa, are referred to as
the autocorrelation matrix and cross-correlation vector respec-
tively. The utility Uk of the k-th column in AP based on
Eq. (9) is [26]:

Uk =
(
||AP−k

ŵ−k − sa||22 − ||AP ŵ − sa||22
)

+ λ
(
||ŵ−k||22 − ||ŵ||22

) (11)

where AP−k
denotes the matrix AP with the k-th column

removed and ŵ−k is the LS solution corresponding to AP−k
.

From Eq. (11), we see that, if the increase in LS cost is
non-zero (i.e., column k is linearly independent from the
other columns), then the first term dominates the second term,
yielding the original definition of utility. However, if column
k is linearly dependent, the first term vanishes and the second
term will dominate. In this case, the utility quantifies the
increase in l2-norm after removing the k-th column. Therefore,
by iteratively removing the column with the lowest utility Uk,
we greedily reduce the number of columns while keeping both
the squared error and the l2 norm small.

The greedy method of removing columns iteratively by
computing their utility using Eq. (11) requires considerable
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computation time since we need to recompute the optimal
decoder using Eq. (10) a number of times equal to the
remaining number of columns in each iteration. This has an
asymptotic computational complexity of O(P ′4) [26], which
is practically impossible for such large values of P ′ as those
targeted in our experiments. However, similar to Eq. (8), it
has been shown in [26] that Uk as defined in Eq. (11) again
can be efficiently computed using Eq. (8). where qk is now
the k-th diagonal element of R−1λ and wk is the k-th element
of ŵ as defined in Eq. (10). The use of Eq. (8) removes the
need of multiple re-computations of optimal decoders in every
iteration resulting in a reduction of computational complexity
by three orders of magnitude.

As mentioned in Section II-E, AP was constructed out of
the EEG data from P nodes and their M−1 delayed versions.
Hence, the utility of a node would not just be the utility of a
single column in AP but of a group of columns, viz. a node’s
channel(s) and its (their) delayed versions. To this end, we
use the extension towards group-utility described in [26] and
[30] which finds the utility of a group of columns. Consider,
without loss of generality (w.l.o.g.), that AP is formed using
the set S1ch. Assume also w.l.o.g. that the node for which
we calculate the utility, say node p, corresponds to the last
M columns of AP , the node’s channel as well as its M − 1
delayed versions. Define the block-partitioning of R−1λ :

R−1λ =

[
X Y

YT Q

]
(12)

where, Q is an M ×M matrix. Then, the group-utility of the
columns of AP corresponding to node p can be efficiently
computed as [26]:

Up = wT
p Q−1wp (13)

where wp contains the last M entries of ŵ. Note that Eq. (13)
reduces to the single-column utility of Eq. (8) if M = 1.
The computation of group-utility using Eq. (13) is much
faster than removing M columns of AP and recomputing
the optimal decoder. If the utility of all channels has to be
computed multiple times, e.g., in a greedy selection procedure
as described below, this allows to reduce the computation time
from a few hours to a few seconds on a laptop with Intel Core
i7-6820HQ clocked at 2.70GHz running Matlab R2015b.

To select N (out of P ) nodes, we greedily remove the
nodes with the lowest utility one by one as follows. First,
the group-utility of each node’s channels (and their M − 1
delayed copies) are computed using Eq. (13) followed by the
removal of the node with the least utility. After this removal,
Eq. (10) is recomputed for the remaining set of nodes, after
which the utility is again re-computed. This step is repeated
until N nodes are left.

Finally, it is noted that the utility-based and the DMB greedy
methods become equivalent in the case where the different
channels are uncorrelated and have equal variance, in which
case R−1λ reduces to a scaled identity matrix. However, this
is usually not the case in (high-density) EEG data.

G. Group-LASSO based node selection

Another candidate algorithm which we have included in our
channel selection benchmark is the commonly used LASSO-
based variable selection method. LASSO adds an l1 norm
penalty term to an LS regression problem like Eq. (6) to obtain
a sparse solution for ŵ, i.e. a vector with few non-zero entries
[31], where the non-zero entries in ŵ then correspond to the
selected columns. However, our objective is to select groups of
variables in ŵ that correspond to a particular node consisting
of a set of channels and their delayed versions. Yuan and Lin
[32] have proposed the group-LASSO (gLASSO) criterion to
solve the aforementioned problem. gLASSO is a modification
of LASSO for linear regression which introduces a sparse
selection of pre-defined groups of variables without imposing
sparsity within the individual groups. Applying the gLASSO
criterion, Eq. (6) is modified as:

ŵ = argmin
w

1

2
||APw − sa||22 + λ′

P∑
p=1

||wp||22 (14)

where w = [wT
1 wT

2 ..w
T
P ]
T , with wp the sub-vector of length

M of the decoder which contains the weights corresponding
to the channels of node p and their M − 1 delayed versions,
and where λ′ is a tuning parameter which controls the sparsity
of ŵ. Note that Eq. (14) has an l1-norm penalization across
groups (represented by the summation sign), whereas each
group is represented by the l2-norm over its coefficients. The
optimal set of N channels can be found by increasing the
parameter λ′ until the gLASSO procedure selects exactly N
channels.

H. Subject-dependent vs subject-independent (universal) node
selection

In our experiments, we performed a subject-dependent as
well as a subject-independent channel selection or node selec-
tion. In the subject-dependent selection, AP contains the P ′

EEG channels and their M − 1 delayed copies of subject i
where i = 1, 2, · · ·K and K is the total number of subjects
(K = 16 in this work). This results in a different decoder
per subject, and hence a different selection of channels per
subject. In the subject-independent selection, we use the data
from all subjects, resulting in the stacked matrix:

ÃP =


AP1

...
APi

...
APK

 .

Here, APi contains the P ′−channel EEG data and their
M − 1 delayed copies of subject i. By also replacing sa in
Eq. (6) with

s̃a =

sa
...

sa

 ,
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Fig. 1: Comparison of three channel selection methods on the Orig (Cz-ref) dataset for subject-dependent channel selection.
Median AAD decoding accuracies are plotted as bold lines; The boundaries of the shaded regions form the 25th and 75th
percentile accuracies. (a) For number of channels N ∈ {1, · · · , 62} (b) A zoomed plot focusing on N < 25.

we can solve Eq. (6) to find a universal decoder that fits the
data of all subjects.

Applying channel selection on this problem will then also
result in a subject-independent selection of the best node
locations. In the sequel, we will use the terms ‘universal
decoder’ and ‘universal node selection’ to refer to the subject-
independent decoding and subject-independent node selection,
respectively.

Note that, after making a universal node selection, we have
the option to either train a subject-dependent decoder or a
universal decoder on the selected nodes. Both will be analyzed
in the sequel, with leave-one-trial-out and leave-one-trial-and-
subject-out cross-validation, respectively. In both cases, the
prior node selection excludes the data from the subject under
test. However, due to excessively large computation times,
channel selection was not carried out in a leave-one-trial-
out basis (although the trial is excluded when testing AAD
performance).

III. RESULTS

A. Benchmark of channel selection methods

Before investigating the miniaturization effects, we verified
the suitability of the proposed utility-based greedy channel
selection method on the problem of channel selection for the
original EEG-cap data by comparing the proposed method
with the DMB method used in [20] and the gLASSO method
used in [1].

The three methods were used to select the N = 1, 2, 3...62
best (subject-dependent) channels on the original EEG data2.
The AAD performance was computed for the channels se-
lected for each value of N . The results are plotted in Fig.
1. When N > 25, the median AAD decoding accuracy
remains more or less equal to the accuracy obtained with all
channels, for all three channel selection methods. However,
for N < 20 the median utility-based channel selection

2Since the original 64 channel EEG data was rereferenced to the Cz
electrode, the total effective number of channels reduce to 63.

performance remains closer than the other methods to the
baseline performance. Fig. 1 (b), which zooms in on AAD
performances for N < 25, shows that the drop in performance
occurs only at N < 10 for the utility-based method, while, for
the DMB and gLASSO based method, this drop occurs earlier
at N = 15. In addition, for small values of N the utility-
based channel selection method is significantly better, than
both the other methods. This was confirmed by performing a
paired t-test and Wilcoxon signrank test between the decoding
accuracies of the utility-based and DMB method on the one
hand, and the utility-based and gLASSO method on the other
hand.

The p-values of the statistical tests are given in Table I (p-
values are not corrected for multiple comparisons). It can be

Utility vs gLASSO Utility vs DMB
N t-test Wilcoxon t-test Wilcoxon
4 0.04 0.06 0.04 0.04
5 0.03 0.002 0.01 0.01
6 0.003 0.005 0.06 0.06
7 0.003 0.002 0.1 0.12
8 0.001 < 0.001 0.04 0.06
9 0.001 0.003 0.02 0.03
10 0.007 0.004 0.01 0.01
11 0.02 0.02 0.08 0.09
12 0.005 0.003 0.01 0.01
13 0.001 0.001 0.15 0.13
14 0.004 0.001 0.03 0.04
15 0.025 0.01 0.08 0.08

TABLE I: Significance tests comparing channel selection
methods: p−values obtained using statistical tests comparing
utility-based method and both DMB and gLASSO methods
for 4 ≤ N ≤ 15.

observed from Table I, in the case of the utility-based method
compared to gLASSO, p-values are < 0.05 for 4 ≤ N ≤ 15
for both the tests. While comparing the utility-based method
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with DMB, in six out of the eleven values of N , p− values
are < 0.05. For N < 4 no significant differences were found.
From both Fig. 1 and Table I, a clear trend is observed that the
utility-based method outperforms the other methods for small
vales of N . Therefore, only the utility-based method is used
for the optimal node selection problem in the sequel in order
to reduce the exploration space.
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Fig. 2: Utility-based subject-dependent node selection: Perfor-
mance of the N best short-distance nodes from S1ch compared
with the N best Orig (Cz-ref) and Any-Pair channels. The
stars represent outliers which are greater than 1.5 times the
interquartile range away from the top or bottom of a box.

B. Short-distance node selection

1) Single-channel node selection: In the next experiment,
the effect of short-distance EEG measurements is investigated
by first applying the utility-based channel selection strategies
described in Section II-F to select N = 2, 3, ...8 single-channel
short-distance nodes from the set S1ch of all candidate node
positions/orientations. Note that the selection of a node in this
case corresponds to the selection of a single electrode pair.
The AAD performance using these selected nodes is compared
with the AAD performance when using the same number of
channels from two different long-distance EEG measurement
configurations described in Section II-D, viz. Orig (Cz-ref)
and Any-Pair.

Fig. 2 shows the result for a subject-dependent node selec-
tion. The distribution of the corresponding short-distance node
locations is shown in Fig. 3, with Fig. 3a plotting the locations
and configurations of the best N = 2, 4, 6, 8 nodes and Fig. 3b
showing the distribution of electrodes among the selected
nodes across all subjects. A paired t-test and a Wilcoxon
signed-rank test between the performances using the best
short-distance nodes and the best long-distance configurations
were carried out and the p-values were found to be > 0.5 for
all N in the Cz-ref case, and > 0.1 for all N (except N = 4)
in the ‘Any-Pair’ case. For N = 4, p = 0.04 in the Any-Pair
case.

The best universal single-channel node locations obtained
using the utility-based channel selection are shown in Fig. 4.
The AAD performance using the universal node selection is
compared between short-distance and long-distance recordings
in Fig. 5a for a subject-dependent decoder training and in
Fig. 5b for a universal decoder training. However, note that
in both cases the node selection was done in a subject-
independent fashion.

Both the t-test and Wilcoxon signed-rank test between
universal short-distance node selection and both Cz-ref and
Any-pair channel selections, followed by subject-dependent
decoding, yielded p-values > 0.3 for all values of N . When
followed by universal decoding, p-values were > 0.1 while
comparing short-distance nodes and both Cz-ref and Any-
pair channels for N = 4, 5, 6, 7, 8. Meanwhile, p-values were
< 0.05 for N = 3 when comparing with Cz-ref channels
and for N = 2, 3 when comparing with Any-ref channels.
For these few cases where p < 0.05, short-distance nodes
are in fact observed to outperform long-distance measurement
configurations (also visible in Fig. 5b).

A linear mixed effect model was used to model the rela-
tionship between the decoding accuracy using short-distance
nodes, the number of nodes and the three scenarios, viz.
subject-dependent node selection and decoding, universal node
selection followed by subject-dependent decoding and uni-
versal node selection followed by universal decoding. In the
model, subjects were considered as a random factor. The
results showed that the decoding accuracies increase signif-
icantly with the number of nodes in all the three scenarios
(p < 0.001).

2) Two-channel node selection: Next, we investigate the
effect of using 2-channel sensor nodes from the set S2ch

instead of single-channel sensor nodes from the set S1ch. The
corresponding AAD accuracy is illustrated in Fig. 6 (a) for
the subject-dependent node selection. A signed-rank Wilcoxon
test and a paired t-test between two-channel and single-channel
decoding accuracies resulted in p-values < 0.05 for all values
of N = 1, 2, · · · 8 for subject-dependent node selection. The
results for a universal node selection are shown in Fig. 6(b)
and Fig. 6(c) for a subject-dependent decoding and a universal
decoding, respectively. Both a signed-rank Wilcoxon test and a
paired t-test between two-channel and single-channel decoding
accuracies resulted in p-values < 0.05 for all values of N
while using a subject-dependent decoder. However while using
a universal decoder, the p-values were < 0.05 for only two
values of N .

The locations and orientations of the best N subject-
dependent two-channel nodes are shown in Fig. 7. Similar
to the earlier case of single-channel nodes, Fig. 8 shows
distribution of the electrodes present in the best N two-channel
nodes. The locations and orientations of universal two-channel
nodes are illustrated in Fig. 9. Note that some of the nodes
appear to have electrode pairs that apparently make angles
closer to 180 degrees than to 90 degrees. However, this is due
to the fact that the electrode positions are mapped from 3D
coordinates (on a head) to a 2D plane to visualize them in a
topoplot, thereby not preserving the angles.
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Fig. 3: (a) The locations of the best set of short-distance nodes for N = 2, 4, 6, 8. The gray-scale of a node indicates the
number of subjects which selected that node. (b) Electrodes which are required for the best N nodes: Colors of the electrodes
indicate the percentage of subjects having a particular electrode in its best N nodes. The size of the point representing an
electrode is also proportional to the number of times an electrode is present in the best N selected nodes.

N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

Fig. 4: Utility-based universal node selection: Locations of the best universal set of short-distance nodes for N = 2, 3, · · · 8.

IV. DISCUSSION

In Fig. 1, the advantage of the proposed greedy utility-
based channel selection over a DMB greedy channel selection
strategy [20], [29] and a gLASSO based method [1] was
verified, as explained in Section III-A. The figure illustrates
the AAD performance using DMB greedy channel selection to
be consistent with the results reported in [20] (on a different
dataset), where it was concluded that the performance begins
to drop significantly when number of channels are reduced
to 15 or lower. However, when using a utility-based channel
selection strategy, this drop in performance is observed only
when the number of channels is lower than 10. Moreover,
the figure shows that in general, the utility-based selection
selects fewer channels compared to the other two methods
to achieve a pre-defined accuracy. The AAD performances
using the EEG measurements from the best short-distance
nodes were compared to two different long-distance bench-
mark sets, viz. the Orig (Cz-ref) and Any-Pair channels as
described in Section II-D. The results in Fig. 2 suggest that
the performances using the best short-distance single-channel
nodes were similar to long-distance configurations. Firstly,
no significant differences between performance using the best

short-distance nodes and the best Cz-referenced channels were
found which can be inferred from the p-values of the statistical
tests detailed in Section III-B1. Secondly, comparing the
optimal short-distance measurements with the best Any-Pair
channels, no significant differences can be found for all but
one value of N . In principle, these results only imply that there
is not sufficient evidence to reject the null-hypothesis that the
performance is the same between all cases, which does not
necessarily mean that the null-hypothesis is true. However, all
but one p-value are far from the α = 0.05 significance level,
despite the relatively large number of subjects and number
of comparisons. As such, there are at least strong indications
that the impact of miniaturization is negligible if an equal
number of channels are used and if optimal node locations
are selected in both cases. This observation is encouraging
for the use of concealable and wireless mini-EEG devices and
WESNs, where short inter-electrode distances are unavoidable
to allow for a sufficient miniaturization of the devices.

In Fig. 3a, the nodes selected by the subjects for N =
2, 3, · · · 8 are predominantly located near the left and the right
temporal lobe, where also the auditory cortex is located. This
can also be observed in Fig. 3b, where the electrodes located
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Fig. 5: Utility-based universal selection of the N = 1, · · · , 8 best short-distance nodes from S1ch compared with the N best
Orig (Cz-ref) and Any-Pair channels: (a) AAD performance for a subject-dependent decoding. (b) AAD performance for a
universal decoding. The stars represent outliers which are greater than 1.5 times the interquartile range away from the top or
bottom of a box.

near the same regions are shown to be used most in the node
selection. A similar pattern has been reported in the literature
for long-distance recordings with a common reference [20].
The optimal universal single-channel node locations plotted
in Fig. 4 show a similar trend as the corresponding subject-
dependent locations, where also the majority of the nodes
are located in the area of the temporal lobe. Note that a
few of the nodes in this figure and Fig. 3a share electrodes.
In practice mini-EEG devices could instead be placed close
to each other with positions close to the selected ‘common’
electrode position on the scalp. If necessary, it can be avoided
to obtain a selection where some of the nodes share electrodes
by applying a restart procedure for such collisions as in
[1]. However, it was demonstrated in [1] that this does not
significantly affect AAD performance, while it can lead to
excessively long computation times.

Two different approaches were used to obtain the AAD
decoding accuracies with universal locations, which are shown
in Fig. 5a and Fig. 5b. The results again demonstrate that short-
distance nodes do not yield a significantly lower AAD perfor-
mance compared to using the same number of long-distance
EEG measurements. Indeed, no statistically significant im-
provement were found for long-distance configurations over
short-distance nodes with both a paired t-test and Wilcoxon
signed-rank test as detailed in Section III-B1. The Fig. 5b,
which plots decoding accuracies obtained using a universal de-
coder, also indicate that short-distance measurements deliver at
least the same performance as long-distance measurements. A
linear mixed effects modeling of the performance with respect
to the number of nodes, which is detailed in Section III-B1,
showed that there is a significant effect of the number of short-
distance nodes N on the decoding accuracies , i.e., increasing

the number of mini-EEG devices leads to an improvement in
AAD performance. For both subject-dependent and universal
node selection.

We also investigated the effect of adding a third electrode
in each node, yielding two EEG channels. Since both of these
channels are recorded by electrodes that are very close to
each other (within the same node), it is a-priori not obvious
whether the extra channel is useful or whether it is mostly
redundant. Fig. 6 suggests that, adding this additional channel
does have a clear benefit. In Fig. 6 (a), two-channel nodes can
be observed to perform better than the same number of single-
channel nodes in the case of subject-dependent node selection
and decoding. This observation can also be noted in Fig. 6
(b) for universal node selection followed by subject-dependent
decoding. The p-values of the statistical tests comparing the
two performances reported in Section III-B2 support this
observation in the two cases. These results show that even
at short inter-electrode distances, the extra channel can cause
significant improvement in performance despite the fact that
all three electrode are close to each other. This may be due to
the almost-orthogonal orientation of the two electrode pairs,
which provides two orthogonal axes (instead of only one) to
capture dipoles in all directions parallel to the plane spanned
by the electrode pair, as opposed to a single direction in the
case of 1-channel nodes. It should be noted that a dipole
orthogonal to the plane spanned by the electrode pair will
still not be captured, although it may be captured by another
node on a different scalp position that better aligns with this
orientation. In the case of a universal decoder (see Fig. 6
(c)), the beneficial effect of adding this extra channel to each
node is less clear, which implies that the extra orientation can
only be properly exploited by a subject-dependent decoder.
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Fig. 7: Utility-based two-channel nodes selection: Locations
and configurations of the best subject-dependent two-channel
nodes.

Statistical tests performed between the two cases do not
confirm a significant benefit for two-channel nodes in this
case. This could be explained by the fact that the relevant
dipole orientations may differ from subject to subject, such
that the extra degree of freedom added by the extra channel
to tune the decoder to particular dipole orientations cannot be
exploited by a universal decoder, as it cannot adapt its weights
to the individual subject.

The orientations of the best two-channel nodes and the
distribution of electrodes in these nodes are shown in Fig. 7
and Fig. 8 respectively for subject-dependent node selection.
Fig. 9 shows the location and orientations of universal node
selection. It should be noted here that the best two-channel
nodes are selected from a candidate set of two-channel nodes
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N = 6 N = 8
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% subjects 

requiring
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Fig. 8: Utility-based two-channel nodes selection: Electrodes
which are required for the best N nodes.

as explained in Section II-C and that they are not derived from
best single-channel nodes. Nevertheless, it can be observed
from Fig. 7, Fig. 8 and Fig. 9 that the best two-channel nodes
are again mostly located close to the auditory cortex within
the temporal lobe.

V. CONCLUSION

Miniaturized EEG (mini-EEG) sensor devices are becoming
increasingly prevalent in the field of neural signal processing
and pave the way towards chronic neuromonitoring appli-
cations. Hence, it is essential to understand the effects of
this miniaturization on EEG signal processing methods which
have been tested with traditional EEG equipment. In this
work, the effect of short-distance EEG measurements that arise
with miniaturization of EEG sensor devices was investigated
within the context of an AAD task, which may be used in
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Fig. 9: Utility-based selection of two-channel nodes: Locations and configurations of the best universal two-channel nodes.

future-generation neuro-steered auditory prostheses, e.g., for
the cognitive control of hearing aids or cochlear implants [23],
[24].

We have shown that short-distance referencing in a mini-
EEG device has little impact on AAD performance when
compared to the commonly used Cz-referencing and an any-
reference long-distance referencing configuration, provided
the electrodes of the mini-EEG devices are placed at ideal
locations. These results are encouraging for the use of multiple
mini-EEG devices as nodes in a WESN to perform chronic
neuromonitoring for AAD. We have also proposed a utility-
based greedy channel selection strategy for the (redundant)
channel selection problem in AAD, which outperforms two
other channel selection methods, and which was used to select
the ideal locations for placing mini-EEG devices. We have
found that these locations are close to the auditory cortex
within the temporal lobe, which is consistent with previous
results found in the literature. We have also shown that having
two-electrode pairs in a mini-EEG node results in a significant
improvement in AAD performance over single-channel nodes
even at short inter-electrode distances, but only when a subject-
dependent decoder can be trained, in order to exploit the
additional degree of freedom to capture relevant dipoles with
any orientation within each subject.
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