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Abstract 

In simple probabilistic instrumental-learning tasks, humans learn to seek reward and to avoid 

punishment equally well. Despite this remarkable symmetry in choice accuracy between gain and loss 

contexts, two recent effects of  valence have been independently documented in reinforcement 

learning. First, decisions in a loss-context are slower, which is consistent with the Pavlovian-

instrumental transfer hypothesis. Second, the loss context decreases individuals’ confidence in their 

choices. Whether these two effects are two facets of  a single process or two independent effects of  

valence is still unknown. Here, across five experiments, we assessed the relative merit of  the two 

hypotheses. Our results show that, in loss-contexts, the decrease in confidence in one’s choices can be 

robustly observed in the absence of  the response time bias. This suggests that the effects of  valence 

on motor and metacognitive responses, although concomitant in most cases, are dissociable. Jointly, 

these results highlight new important constraints that should be incorporated in mechanistic models 

of  decision-making that integrate choice, reaction times and confidence.  
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Introduction 

In simple probabilistic instrumental-learning tasks, humans can learn to seek reward and to avoid 

punishment equally-well (Fontanesi, Lebreton, & Palminteri, 2018; Guitart-Masip et al., 2012; 

Palminteri, Khamassi, Joffily, & Coricelli, 2015; Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006). 

This is not only robustly demonstrated in experimental data, but also nicely explained by context-

dependent reinforcement-learning models (Fontanesi et al., 2018; Palminteri et al., 2015). Yet, on top 

of  this remarkable symmetry in choice accuracy between gain and loss contexts, two recent effects of  

valence have been uncovered in reinforcement learning.  

First, learning from punishment decreases individuals’ confidence in their choices (Lebreton, Bacily, 

Palminteri, & Engelmann, 2018). Confidence judgment is a metacognitive operation defined as the 

subjective estimation of  the probability of  being correct (Fleming & Daw, 2017; Pouget, Drugowitsch, 

& Kepecs, 2016; Yeung & Summerfield, 2012). Second, learning from punishment increases 

individuals’ response times (RT), slowing down the motor execution of  the choice (Fontanesi et al., 

2018). This robust phenomenon is consistent with Pavlovian-Instrumental Transfer (PIT) hypothesis, 

which posit that desirable contexts favor motor execution and approach behavior while undesirable 

contexts hinder them (Boureau & Dayan, 2011; Guitart-Masip et al., 2012). 

Yet, whether these two concurrent effects of  valence on response times and confidence are two facets 

of  a single process or arise from two independent processes is still unknown. Previous research has 

yielded conflicting results that generated two opposing hypotheses: the single process hypothesis and 

the two-independent processes hypothesis. On the one hand, the two independent processes 

hypothesis is supported by numerous studies documenting behavioral and neural dissociations 

between perceptual, cognitive or motor operations, and confidence or metacognitive judgments 

(Fleming, Huijgen, & Dolan, 2012; Miele, Wager, Mitchell, & Metcalfe, 2011; Qiu et al., 2018). Likewise, 

brain lesions and stimulation protocols have been shown to disrupt confidence ratings and 

metacognitive abilities without impairing cognitive or motor functions (Fleming et al., 2015; Fleming, 

Ryu, Golfinos, & Blackmon, 2014; Rounis, Maniscalco, Rothwell, Passingham, & Lau, 2010) - although 

see also (Bor, Schwartzman, Barrett, & Seth, 2017).  

On the other hand, the single process hypothesis is supported by the known links between confidence 

and RT in human decision making, both in perceptual (Geller & Whitman, 1973; Vickers, Smith, Burt, 

& Brown, 1985) and value-based tasks (De Martino, Fleming, Garrett, & Dolan, 2013; Folke, Jacobsen, 

Fleming, & Martino, 2016; Lebreton, Abitbol, Daunizeau, & Pessiglione, 2015). This coupling is 

notably embedded in many sequential-sampling models accounting for decisions, response times and 
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confidence (De Martino et al., 2013; Moran, Teodorescu, & Usher, 2015; Pleskac & Busemeyer, 2010; 

Ratcliff  & Starns, 2009, 2013; van den Berg et al., 2016; Yu, Pleskac, & Zeigenfuse, 2015). Beyond a 

simple mechanistic association, it has recently been proposed that we might learn to use our own RT 

as a proxy for stimulus strength and certainty judgment, and this proposed causal link from RT to 

confidence has received some support at the experimental level (Desender, Opstal, & Bussche, 2017; 

Kiani, Corthell, & Shadlen, 2014). This last interpretation could imply that our previously reported 

effects of  valence on confidence are no more than a spurious consequence of  the effect of  valence 

on RT (Lebreton et al., 2018): it is indeed possible that participants simply observed that they were 

slower in the loss context, and used this information to infer lower confidence judgments in these 

contexts.  

 

Here, we aimed to address this issue. Using two published datasets and original data collected from 

three new experiments, we tested whether the effects of  valence on RT and confidence are two facets 

of  a single process or two independent effects. In the new experiments, we manipulated in several 

ways the timing of  the option-action mapping, such that individuals could make a decision about 

which stimulus to choose, but had to wait for the stimulus-action-mapping to initiate a motor response. 

We show that this greatly decreased the RT-confidence correlations, and, in our last experiment, 

remove the effect of  valence on RT altogether. We reasoned that if  the valence-induced bias on 

confidence disappears in the absence of  the valence-induced slowing of  response times, it has to be 

characterized as a secondary metacognitive bias (because it would then be dependent on the RT slowing). 

On the contrary, if  the valence-induced bias on confidence persists in the absence of  the valence-

induced slowing of  RT, it has to be characterized as a primary metacognitive bias (because it would 

then be independent on the RT slowing). 

 

In all experiments, we observed a very robust effect of  valence on confidence, even in the absence of  

the valence-induced slowing and in the absence of  a significant association between RT and 

confidence. Our results suggest that valence effects on RT and confidence judgments are dissociable, 

and therefore, that there is a genuine effect of  valence on confidence that causes a primary 

metacognitive bias. This raises important questions regarding the mechanistic models of  decision, 

response times and confidence, and the effects of  context valence on decision-making. 
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 Methods 

 

Subjects 

All studies were approved by the local Ethics Committee of  the Center for Research in Experimental 

Economics and political Decision-making (CREED), at the University of  Amsterdam. All subjects 

gave informed consent prior to partaking in the study. The subjects were recruited from the 

laboratory's participant database (www.creedexperiment.nl). A total of  90 subjects took part in this 

set of  5 separate experiments (see Table 1). They were compensated with a combination of  a show-

up fee (5€), and additional gains and/or losses depending on their performance during the learning 

task: experiment 1 had an exchange rate of  1 (in-game euros = payout); experiments 2-5 had an 

exchange rate of  0.3 (in game euros = 0.3 payout euros). In addition, in experiments 2-5, three trials 

(one per session) were randomly selected for a potential 5 euros bonus each, attributed based on the 

confidence incentivization scheme (see below). 

 

Learning tasks – General 

In this study, we iteratively designed five experiments, aiming at investigating the impact of  context 

valence and information on choice accuracy, confidence and response times, in a reinforcement-

learning task. All experiments were adapted from the same basic experimental paradigm (see also 

Figure 1): participants repeatedly faced pairs of  abstract symbols probabilistically associated with 

monetary outcomes (gains or losses), and they had to learn to choose the most advantageous symbol 

of  each pair (also referred to as context), by trial and error. Two main factors were orthogonally 

manipulated (Palminteri et al., 2015): valence (i.e. some contexts only provide gains, and others losses) 

and information (some contexts provide information about the outcome associated with both chosen 

and unchosen options –complete information- while others only provided information about the 

chosen option –partial information). In addition, at each trial, participants reported their confidence 

in their choice on a graded scale as the subjective probability of  having made a correct choice (see 

Figure 1). In all experiments but one (Exp. 2-5) those confidence judgments were elicited in an 

incentive-compatible way (Ducharme & Donnell, 1973; Lebreton et al., 2018; Schlag, Tremewan, & 

van der Weele, 2015). 

Results from experiment 1 and 2 were previously reported in (Lebreton et al., 2018): briefly, we found 

that participants exhibit the same level of  choice accuracy in gain and loss contexts, but are less 
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confident in loss contexts. In addition, they appeared to be slower to execute their choices in loss 

contexts. Here, in order to evaluate the interdependence between the effects of  valence on RT and 

confidence, we successively designed three additional tasks (Figure 1.C-E). In those tasks, we 

modified the response setting to blur the effects of  valence on RT, with the goal to assess the effects 

of  valence on confidence in the absence of  an effect on RT.  

 

Learning tasks - Details 

All tasks were implemented using MatlabR2015a® (MathWorks) and the COGENT toolbox 

(http://www.vislab.ucl.ac.uk/cogent.php). In all experiments, the main learning task was adapted from 

a probabilistic instrumental learning task used in a previous study (Palminteri et al., 2015). Invited 

participants were first provided with written instructions, which were reformulated orally if  necessary. 

They were explained that the aim of  the task was to maximize their payoff  and that gain seeking and 

loss avoidance were equally important. In each of  the three learning session, participants repeatedly 

faced four pairs of  cues - taken from Agathodaimon alphabet. The four cue pairs corresponded to 

four conditions, and were presented 24 times in a pseudo-randomized and unpredictable manner to 

the subject (intermixed design). Of  the four conditions, two corresponded to reward conditions, and 

two to loss conditions. Within each pair, and depending on the condition, the two cues of  a pair were 

associated with two possible outcomes (1€/0€ for the gain and -1€/0€ for the loss conditions in Exp. 

1; 1€/0.1€ for the gain and -1€/-0.1€ for the loss conditions in Exp. 2-5) with reciprocal (but 

independent) probabilities (75%/25% and 25%/75%) - see (Lebreton et al., 2018) for a detailed 

rationale. 

Experiments 1 and 2 were very similar (Figure 1.A-B): at each trial, participants first viewed a central 

fixation cross (500-1500ms). Then, the two cues of  a pair were presented on each side of  this central 

cross. Note that the side in which a given cue of  a pair was presented (left or right of  a central fixation 

cross) was pseudo-randomized, such as a given cue was presented an equal number of  times on the 

left and the right of  the screen. Subjects were required to select between the two cues by pressing the 

left or right arrow on the computer keyboard, within a 3000ms time window. After the choice window, 

a red pointer appeared below the selected cue for 500ms. Subsequently, participants were asked to 

indicate how confident they were in their choice. In Experiment 1, confidence ratings were simply 

given on a rating scale without any additional incentivization. To perform this rating, they could move 

a cursor –which appeared at a random position- to the left or to the right using the left and right 

arrows, and validate their final answer with the spacebar. This rating step was self-paced. Finally, an 
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outcome screen displayed the outcome associated with the selected cue, accompanied with the 

outcome of  the unselected cue if  the pair was associated with a complete-feedback condition.  

 

In experiment 3, we dissociated the option display and motor response: symbols were first presented 

on a vertical axis (2s), during this period, participants could choose their preferred symbol, but were 

uncertain about which button to press to select their preferred symbol. This uncertainty was resolved 

in the next task phase, in which two horizontal cues indicated which of  the left vs right response 

button could be used to select the top vs bottom symbol (Figure 1.C). In addition, we imposed a time 

limit on the response selection (<1s), to incentivize participants to make their decision during the 

symbol presentation, and allow only an execution of  a choice that was already made during the 

response mapping screen. In Experiment 4, we added a mask (empty screen 0.5-1s) between the 

symbol presentation and the response mapping (Figure 1.D). This further strengthened the 

encouragement to make a decision during the symbol presentation to reduce task load, because they 

would then only have to retain the information about the selected location (top vs bottom) during the 

mask period. Finally, in Experiment 5, we introduced a jitter (variable time duration; 2-3s) at the 

symbol presentation screen (Figure 1.E) to further discourage temporal expectations and motor 

preparedness during the decision period. In all experiments, response time is defined as the time 

between the onset of  the screen conveying the response mapping (Symbol for Exp. 1-2; Choice for 

Exp. 3-5; see Figure 1), and the key press by the participant. 

 

 

Matching probability and incentivization 

In Experiment 2-5, participant’s reports of  confidence were incentivized via a matching probability 

procedure that is based on the Becker-DeGroot-Marshak (BDM) auction (Becker, DeGroot, & 

Marschak, 1964) Specifically, participants were asked to report as their confidence judgment their 

estimated probability (p) of  having selected the symbol with the higher average value, (i.e. the symbol 

offering a 75% chance of  gain (G75) in the gain conditions, and the symbol offering a 25% chance 

of  loss (L25) in the loss conditions) on a scale between 50% and 100%. A random mechanism, which 

draws a number (r) in the interval [0.5 1], is then implemented to select whether the subject will be 

paid an additional bonus of  5 euros as follows: If  p ≥ r, the selection of  the correct symbol will lead 

to a bonus payment; if  p < r, a lottery will determine whether an additional bonus is won. This lottery 

offers a payout of  5 euros with probability r and 0 with probability 1-r. This procedure has been shown 
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to incentivize participants to truthfully report their true confidence regardless of  risk preferences 

(Hollard, Massoni, & Vergnaud, 2015; Karni, 2009).  

Participants were trained on this lottery mechanism and informed that up to 15 euros could be won 

and added to their final payment via the MP mechanism applied on one randomly chosen trial at the 

end of  each learning session (3×5 euros). Therefore, the MP mechanism screens (Figure 3.A) were 

not displayed during the learning sessions. 

 

Transfer task 

All subjects also performed a Transfer task (Lebreton et al., 2018; Palminteri et al., 2015). Data from 

this additional task is not relevant for our main question of  interest and is therefore not analyzed in 

the present manuscript. 

 

Variables 

In all experiments, response time is defined as the time between the onset of  the screen conveying the 

response mapping (Symbol for Exp. 1-2; Choice for Exp. 3-5; see Figure 1), and the key press by the 

participant. 

Confidence ratings in Exp. 1 were transformed form their original scale (0-10) to a probability scale, 

(50-100 %), using a simple linear mapping: confidence = (50 + 5 × rating)/100; 

 

Statistics 

All statistical analyses were performed using Matlab R2015a. All reported p-values correspond to two-

sided tests. T-tests refer to a one sample t-test when comparing experimental data to a reference value 

(e.g. chance: 0.5), and paired t-tests when comparing experimental data from different conditions. 

 

Generalized linear mixed-effect (glme) models include a full subject-level random-effects structure 

(intercepts and slopes for all predictor variables). The models were estimated using Matlab’s fitglme 

function, which maximize the maximum pseudo-likelihood of  observed data under the model 

(Matlab’s default option). Choice accuracy was modelled using a binomial response function 

distribution (logistic regression), whereas confidence judgments and response times were modelled 

using a Normal response function distribution (linear regression). 

For instance, the linear mixed-effect models for choice accuracy can be written in Wilkinson-Rogers 

notation as:  
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Choice_accuracy ~ 1 + Val. + Inf. + Val. * Inf. + Fix. + Stim. + Mask. + Sess. + (1 + Val. + Inf. + 

Val. * Inf. + Fix. + Stim. + Mask. + Sess. |Subject), 

With Val: valence; Inf: information; Fix.: fixation duration (only available in Experiments 4-5); Stim.; 

stimulus display duration (only available in Experiment 5); Mask: Mask duration (only available in 

Experiments 4-5); Sess: session number. 

Note that Val. and Inf. are coded as 0/1, but that the interaction term Val*Inf  was computed with 

Val. and Inf. coded as -1/1 and then rescaled to 0/1. 
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Results 

First, we evaluated the effects of  our manipulation of  the display and response settings across the 

experiments on average levels of  choice accuracy and confidence ratings using multiple independent 

one-way ANOVAs. We found no effect of  the experiments on the average levels of  choice accuracy 

and confidence ratings (accuracy: F(4,85) = 0.98, P = 0.423, η2= 0.04; confidence: F(4,85) = 0.36, P 

= 0.833, η2= 0.02), indicating that learning behavior is comparable across all experiments (Table 1). 

Unsurprisingly, we found a strong effect of  the experiments on the average RT (RT: F(4,85) = 105.83, 

P = 3.53×10-32, η2= 0.83), validating our decision-response decoupling and time pressure 

manipulations.  

Next, we analyzed the effects of  our experimental manipulation (valence and information) on the 

observed behavioral variables (choice accuracy, confidence, RT), using repeated measure ANOVAs in 

each individual study (Figure 2; Table 2). The parallel analyses of  choice accuracy and confidence 

ratings replicated the results reported in (Lebreton et al., 2018): individuals were more accurate in 

complete information contexts (main effect of  information on accuracy, Exp. 2, 3 & 5: Ps< 0.05; Exp. 

1 & 4: Ps < 0.1). In addition, although accuracy was similar in gain and loss contexts (main effect of  

valence on accuracy, Exp. 1-5: all Ps > 0.3), individuals were less confident in loss contexts (Main 

effect of  valence on confidence, Exp. 1-5: all Ps < 0.01). These effects were mitigated when more 

information was available (interaction valence × information on confidence: Exp. 1, 4 & 5: Ps < 0.05; 

Exp. 2: P < 0.1). 

We also replicated the results reported in (Fontanesi et al., 2018): despite our efforts to cancel valence 

effects on RTs in experiments 3 and 4, we still observed that participants were slower in loss contexts 

in experiments 1-4 (Main effect of  valence on RT: all Ps<0.01). Yet, our results show that in 

Experiment 5, we were successful in cancelling the effects of  valance on RT (main effect of  valence 

on RT: F(1,17) = 1.97, P=0.178, η2= 0.001). Despite this significantly reduced effect of  valence on 

RT, we still observed effects on confidence (main effect of  valence on confidence in Exp. 5: F(1,17) 

= 16.71, P<0.001, η2= 0.15). 

We also computed, at the session level (participants underwent 3 separate learning sessions per 

experiment), the correlations between RT and confidence ratings. When averaged at the individual 

level and tested at the population level (one sample t-test), this measure of  the linear relationship 

between RT and confidence was very significant in all experiments, except in experiment 5 (Table 1). 
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This indicates that our last design succeeded in fully decorrelating RTs and confidence. This might 

provide important hints for future studies where such a decorrelation might be required by design (e.g. 

for functional neuroimaging). 

Overall, this first set of  results robustly end jointly replicated the effects of  valence and information 

on confidence, choice accuracy and RTs reported separately in (Lebreton et al., 2018) and (Fontanesi 

et al., 2018) in two new experiments (Exp. 3-4). In addition, in a fifth experiment, (Exp. 5) we 

successfully canceled the effects of  valence on RTs, and thereby any correlation between RT and 

confidence at the session level, but still observed a robust effect of  valence on confidence. This 

suggests that the effects of  valence on motor vs metacognitive responses, although concomitant in 

general, are partly dissociable. 

While this result was accomplished via careful and iterative updating of  the experimental design, it is 

worth noting that this main result mostly relies on a non-significant test in one out of  five experiments 

(absence of  effect of  valence on RTs in experiment 5). In the following paragraphs, we therefore aim 

to provide additional confirmatory evidence in favor of  our main hypothesis, namely that the valence 

effect on confidence exists in the absence of  a valence effect on RT, using inter-individual differences. 

We assessed the link between individual slowing down (RT in gain – loss) and individual confidence-

bias (confidence in gain-loss) in our full sample and in each individual study using linear regressions 

(see methods for details). In those regressions, the coefficients for the intercept and slope quantify 

two different but equally important signals: First, the y-intercept represents a theoretical individual 

who exhibits no effect of  valence on RT (RT in gain – loss = 0, Figure 3A): an intercept significantly 

different from 0 therefore indicates that a significant effect of  valence on confidence can be observed 

in the absence of  an effect on RT. Second, the slope quantifies how the effect of  valence on 

confidence linearly depends on the effect on RTs. Both at the population level (i.e. combining data 

from all five experiments) and in each individual study, the intercepts of  those regressions were 

estimated to be significantly positive (all Ps <0.05; Figure 3.A-B; Table 3). This indicates that, despite 

Exp. 5 being the only experimental setting where the manipulations of  display and response modalities 

successfully cancelled the effects of  valence on RT, all five experiments provide evidence for the 

relative independence of  the effects of  valence on RT and confidence. Note that at the population 

level, the slope of  the regression was also significantly negative (β = -0.02 ± 0.01 , t(88) = -3.32, P = 

0.001), indicating that the more participants were slowed down by loss context, the less confident they 

were in their response. This was not consistently replicated at the experiment level (Table 3), probably 
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because our manipulation gradually eliminated/removed all meaningful difference in RT between the 

experimental conditions. 

In order to give a comprehensive overview of  the triple dissociation between performance, confidence 

and RT, and to quantify the effects of  the different available predictors on these behavioral measures, 

we also ran generalized linear mixed-effect regressions. Independent variables included not only 

valence, information and their interaction, but also the different available timings (e.g. duration of  the 

stimulus or mask display) and a linear trend accounting for the session effects (see methods for details). 

These sensitive trial-by-trial analyses replicated the main ANOVA results reported above regarding 

the effects of  valence and information on performance, confidence and RT (Figure 4; Tables 4-6). 

They notably confirmed that no effect of  valence can be detected on RT or performance in 

experiment 5 (P = 0.349 and P = 0.620) while a robust effect is observed on confidence (P = 0.002). 

Finally, we also found that the duration of  the symbol presentation (Exp. 5) and of  the mask (Exp. 4-

5) impact RT (both Ps < 0.001) without altering performance or confidence (all P > 0.3).  
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Discussion 

 

The present work investigated the relationship between two main recent findings reported 

independently: in simple probabilistic reinforcement-learning tasks, learning to avoid punishment 

increased participants’ response time (RT) and decreased their confidence in their choices, without 

affecting their actual performance (Fontanesi et al., 2018; Lebreton et al., 2018). The valence-induced 

bias on RT is consistent with – and currently interpreted as – an expression of  Pavlovian-Instrumental 

Transfer (Boureau & Dayan, 2011; Guitart-Masip et al., 2012), whereas the valence-induced decrease 

in confidence is viewed as a value-confidence interaction potentially generated by mechanisms such 

as affect-as-information (Lebreton et al., 2018; Schwarz & Clore, 1983). 

One of  the motivations behind this new line of  studies was to rule out a potential alternative 

explanation of  the observed decrease in confidence: that participants can derive confidence estimates 

from changes in RT. Indeed, because it has been suggested that humans can infer confidence levels 

from observing their own response times (Desender et al., 2017; Kiani et al., 2014), the valence-

induced bias on confidence - currently replicated in 7 independent experiments (Lebreton et al., 2018; 

Lebreton et al., 2018)-  could be spuriously driven by a Pavlovian-Instrumental Transfer mechanism 

operating at the level of  motor initiation (Boureau & Dayan, 2011; Guitart-Masip et al., 2012). As 

such, valence-induced confidence biases would then merely reflect a secondary effect of  valence 

mediated by reaction time slowing and not a primary bias on metacognition. Crucially, this possibility 

is not ruled out by previous studies, where effects of  affective states on confidence judgments in 

perceptual or cognitive tasks typically lacked control over RT (Giardini, Coricelli, Joffily, & Sirigu, 2008; 

Koellinger & Treffers, 2015; Massoni, 2014) –but see (Lebreton et al., 2018). On a more general scope, 

this new line of  studies also aimed at providing new data to inform models of  RT, confidence and 

decision. 

 

Over five experiments, the first noticeable result is that we systematically replicated previous 

instrumental learning results using the same paradigm with very consistent effect sizes (Palminteri et 

al., 2015; Palminteri, Kilford, Coricelli, & Blakemore, 2016): participants learn equally well to seek 

reward and avoid punishment, and learning performance benefits from complete information (i.e. 

feedback about the counterfactual outcome). The reliability of  the results extended beyond choice 

behaviour as confidence and RT are respectively lower and slower in punishment contexts, as 

previously reported (Fontanesi et al., 2018; Lebreton et al., 2018). The second important result is that 
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we observed a significant valence effect on confidence with dramatically reduced (Exp. 3 and 4) or 

absent (Exp. 5) valence effects on RT. This is a clear indication that the lower confidence observed in 

the loss-avoidance context is dissociable from the Pavlovian-instrumental transfer bias typically 

observed in similar contexts and thus represent a primary meta-cognitive bias. This was confirmed by 

additional evidence from inter-individual difference analyses, which suggest that in all five experiments, 

a theoretical subject exhibiting no valence-induced bias in RT would still exhibit a valence-induced 

bias in confidence. 

Overall, these last results replicate the confidence bias induced by the context value recently reported 

in perceptual tasks (Lebreton et al., 2018). In this study, while the incentive determining the context 

value was displayed after participants made their choice - thereby preventing any context-value effect 

on RT-, context value still robustly biased confidence. Considering these converging pieces of  

evidence, we claim that it is even more unlikely that valence-induced bias on confidence reported in 

human reinforcement-learning (Lebreton et al., 2018) is a simple consequence of  a Pavlovian-

Instrumental Transfer mechanism operating at the level of  motor initiation (Boureau & Dayan, 2011; 

Guitart-Masip et al., 2012). Note that findings from a recent study (Dotan, Meyniel, & Dehaene, 2018) 

also challenge the notion that humans infer confidence levels from observing their own response 

times (Desender et al., 2017; Kiani et al., 2014), and suggests that decision reaction times are a 

consequence rather than a cause of  the feeling of  confidence. It is worth noting that in most studies, 

decision-time (i.e. when participants reach a decision) and response times (when participants indicate 

their choice) are not experimentally dissociated and often indexed by the same measure (RTs). Here 

we experimentally delayed the mapping between decisions (in the symbol space) and motor 

implementation, which resulted in an effective control over response times. Future studies could 

investigate whether participants can keep track of  an internal measure of  decision time, which could 

influence confidence.  

 

Although confidence estimations are reported to be near-optimal in other learning and decision-

making contexts devoid of  affective components such as incentives, rewards or punishments – see e.g. 

(Meyniel, Schlunegger, & Dehaene, 2015; Sanders, Hangya, & Kepecs, 2016) – we suspect that the 

valence-induced confidence biases would generalize above and beyond our investigations in perceptual 

decision-making and reinforcement learning (Lebreton et al., 2018; Lebreton et al., 2018). If  this 

general influence of  affective components on metacognitive judgments of  confidence is confirmed, 

the manipulations of  context value (valence) could prove useful to dissociate and investigate important 
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components of  decision-making and metacognitive judgments, such as objective uncertainty and 

subjective confidence (Bang & Fleming, 2018). As a step in this direction, our results actually represent 

a triple dissociation between choice accuracy, confidence and RT: three measures that, under the 

general umbrella of  ‘performance’, are often used inter-changeably. Above and beyond the effects of  

valence and information  – which have been independently reported to dissociate confidence and 

choice accuracy (Lebreton et al., 2018) and choice accuracy and reaction times (Fontanesi et al., 2018) 

–, the present GLME regressions (Figure 4) revealed that increasing the duration of  stimulus and 

mask presentations decreases RT, but has no impact on confidence or choice accuracy. This indicates 

that the combination of  experimental manipulations used in Exp. 5 to blur the effects of  valence on 

RT did not obliterate all informative variance in this behavioral output. In other words, RTs still 

capture important features of  the decision process.  

 

On a more general scope, experimental manipulations allowing triple dissociations between 

performance, confidence and RTs might be informative to refine decision models concurrently 

accounting for those three outputs, most of  which derive from the sequential sampling framework 

and are variants of  decision diffusion models (De Martino et al., 2013; Fontanesi et al., 2018, 2018; 

Kepecs, Uchida, Zariwala, & Mainen, 2008; Pleskac & Busemeyer, 2010; Vickers, 1970; Yu et al., 2015; 

Zylberberg, Fetsch, & Shadlen, 2016).  Ultimately, they could also prove helpful to disentangle which 

variable can account for  – or might confound – various physiological response (Urai, Braun, & 

Donner, 2017). 

 

In summary, the present study replicates the existence of  a context-value bias on confidence 

judgments in human reinforcement-learning (Lebreton et al., 2018), and rules out interpretations 

based on response times. This bias appears to generalize over a variety of  tasks (Jönsson, Olsson, & 

Olsson, 2005; Koellinger & Treffers, 2015; Lebreton et al., 2018; Massoni, 2014), and could be driven 

by an affect-as-information process generating a value-confidence interaction (Lebreton et al., 2015; 

Schwarz & Clore, 1983). Similarly to what happened in the field of  economics, we expect that models 

which best describe confidence formation in humans will not only benefit from strong normative 

roots (Drugowitsch, 2016; Hangya, Sanders, & Kepecs, 2016; Pouget et al., 2016) but also from 

systematic investigations of  biases observed in confidence judgments (Kahneman & Tversky, 2000). 
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Figures 

 

Figure 1. Experimental paradigms 

(A-E) Behavioral tasks for Experiments 1-5. Successive screens displayed in one trial are shown from 
left to right with durations in ms. All tasks are based on the same principle: after a fixation cross, 
participants are presented with a couple of  abstract symbols displayed on a computer screen and have 
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to choose between them. They are thereafter asked to report their confidence in their choice on a 
numerical scale. Outcome associated with the chosen symbol is revealed, sometimes paired with the 
outcome associated with the unchosen symbol -depending on the condition. Tasks specificities are as 
follow: (A) Experiment 1: symbols are displayed on the left and right sides of  the screen. Confidence 
is reported on a 0-10 Likert scale non-incentivized. (B) Experiment 2: similar to experiment, except 
that confidence is reported on a 50-100% rating scale and incentivized. (C) Experiment 3: similar to 
Experiment 2, except that options are displayed on a vertical axis. Besides, the response mapping (how 
the left vs right arrow map to the upper vs lower symbol) is only presented after the symbol display, 
and the response has to be given within one second of  the response mapping screen onset. (D) 
Experiment 4: similar to experiment 3, except that a short empty screen is used as a mask, between 
the symbol display and the response mapping. (E) Experiment 5: similar to experiment 4, except that 
a jitter is introduced in the symbol presentation. (F) Experiment 1 payoff  matrix. (G) Experiments 
2-5 payoff  matrix..  
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Figure 2. Behavioral results. Effects of  the main manipulations (left: valence; middle: information; 
right: interaction) on the behavior (top: choice accuracy; middle: confidence; bottom: response times). 
Analyses are independently performed in the five different experiments with repeated-measure 
ANOVAs. With-filled dots represent individual data points. Diamonds and error-bars represent 
sample mean ± SEM.  
~ P<0.1; * P<0.05; ** P<0.01; *** P<0.001  
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Figure 3. Assessing the link between the effects of  valence on confidence and response times. 
(A) Inter-individual correlations between the effects of  valence on confidence (Y-axis) and response 
times (X-axis). Dots represent data points from individual participants. Thick lines represent the mean 
± 95%CI of  the effects of  valence on confidence (vertical lines) and response times (horizontal lines). 
Experiments are indicated by the dot edge and line color. The black shaded area represents the 95%CI 
or the inter-individual linear regression. Note that potential outliers did not bias the regression, given 
that simple and robust regressions gave similar results. (B) Inter-individual regressions of  the valence-
induced RT slowing on valence-induced confidence difference, in the different experiments. Top: 
estimated intercepts of  the regressions. Bottom: estimated slopes of  the regressions. Diamonds and 
error-bars represent the estimated regression coefficients (β) and their standard error.  
* P<0.05; ** P<0.01; *** P<0.001  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/593368doi: bioRxiv preprint 

https://doi.org/10.1101/593368
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

 

Figure 4. Generalized linear mixed-effects models. Estimated standardized regression coefficients 
(t-values) from generalized linear mixed-effects (GLME) models, fitted in the different experiments. 
Top: logistic GLME with choice accuracy as the dependent variable. Middle: linear GLME with 
confidence as the dependent variable. Bottom: linear GLME with RT as the dependent variable;  
Shaded area represent area where coefficients are not significantly different from 0 (abs(t-value)< 1.95; 
p>0.05).  
~ P<0.1; * P<0.05; ** P<0.01; *** P<0.001  
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 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 

Gender  
M/F 

8/10 8/10 10/8 10/8 6/12 

Age  

mean ± STD 
24.6 ± 8.5 24.6 ± 4.3 22.72 ± 3.24 23.84 ± 4.12 20.61 ± 1.77 

Performance 

mean ± SEM 
76.50 ± 2.38 77.04 ± 1.69 80.00 ± 2.82 75.33 ± 2.34 73.40 ± 2.83 

Confidence 

mean ± SEM 
79.19 ± 1.49 81.11 ± 1.58 78.78 ± 2.61 78.35 ± 2.24 78.09 ± 1.75 

Correlation(conf, perf) 

mean ± SEM 
t(17)  

(P-val) 

-0.39 (0.12) 
-3.41  

(0.003)** 

-0.67 (0.06) 
-11.13 

(<0.001)*** 

-0.23 (0.10) 
-2.27  

(0.036)* 

-0.25 (0.07) 
-3.55  

(0.003)** 

-0.05 (0.07) 
-0.72  

(0.482) 

 
Table 1. Demographics and behavior. 
The correlation between confidence and performance was performed at the session level using 
Pearson’s R, then averaged at the individual level. Reported statistics correspond to a random-effect 
analysis (one sample t-test) performed at the population level. 
STD: standard deviation. SEM: standard error of  the mean. T: Student t-value.  
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   Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 

P
e
rf

o
rm

a
n

c
e
 

val. 
F(1,17),  [η2] 

(P-val.) 
1.04, [0.01] 

(0.323) 
0.00, [0.00] 

(0.971) 
0.40, [0.00] 

(0.538) 
0.01, [0.00] 

(0.912) 
0.33, [0.00] 

(0.571) 

inf. 
F(1,17),  [η2] 

 (P-val.) 
4.28, [0.04] 
(0.054)~ 

18.64, [0.15] 
(0.001)*** 

5.56, [0.04] 
(0.031)* 

3.26, [0.06] 
(0.089)~ 

10.17, [0.07] 
(0.005)** 

val×inf 
F(1,17),  [η2] 

 (P-val.) 
1.06, [0.01] 

(0.319) 
0.77, [0.01] 

(0.393) 
0.06, [0.00] 

(0.816) 
4.36, [0.04] 
(0.052)~ 

1.04, [0.01] 
(0.326) 

C
o

n
fi

d
e
n

c
e
 val. 

F(1,17),  [η2] 
 (P-val.) 

33.11, [0.27] 
(<0.001)*** 

15.43, [0.19] 
(0.001)*** 

12.18, [0.03] 
(0.003)*** 

19.14, [0.07] 
(<0.001)*** 

16.71, [0.15] 
(<0.001)*** 

inf. 
F(1,17),  [η2] 

 (P-val.) 
2.00, [0.00] 

(0.175) 
4.92, [0.02] 

(0.040)* 
2.28, [0.02] 

(0.149) 
3.21, [0.01] 
(0.091)~ 

11.07, [0.01] 
(0.004)** 

val×inf 
F(1,17),  [η2] 

 (P-val.) 
7.58, [0.02] 

(0.014)* 
4.25, [0.01] 
(0.055)~ 

1.61, [0.01] 
(0.222) 

4.46, [0.01] 
(0.050)~ 

7.87, [0.02] 
(0.012)* 

R
T

 

val. 
F(1,17),  [η2] 

 (P-val.) 
13.25, [0.03] 

(0.002)** 
13.15, [0.08] 

(0.002)** 
12.47, [0.01] 

(0.003)** 
11.23, [0.01] 

(0.004)** 
1.97, [0.00] 

(0.178) 

inf. 
F(1,17),  [η2] 

 (P-val.) 
0.12, [0.00] 

(0.733) 
7.64, [0.01] 

(0.013)* 
1.82, [0.00] 

(0.195) 
0.31, [0.00] 

(0.586) 
0.09, [0.00] 

(0.766) 

val×inf 
F(1,17),  [η2] 

 (P-val.) 
4.94, [0.01] 

(0.040)* 
0.36, [0.00] 

(0.558) 
1.32, [0.00] 

(0.266) 
2.32, [0.00] 

(0.146) 
0.70, [0.00] 

(0.414) 

Table 2. Repeated measure ANOVAs. 
val: valence; inf: information;  
SEM: standard error of  the mean 
~ P<0.1; * P<0.05; ** P<0.01; *** P<0.001  
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Table 3. Estimated coefficients from inter-individual robust regressions. 
For each individual, we estimated the net effect of  valence on RT and confidence, by computing the 

averaged difference of  these behavioral measures in the gain versus loss contexts. For analyses 

restricted to single experiment, we used robust regressions to decrease the vulnerability of  our 

estimates in the relatively small samples (n=18). For the combined analysis (n=90), simple and robust 

regressions gave similar results, and we only report here the results of  the simple regression. 

β: estimated regression coefficient. SE: estimated standard error of  the regression coefficient. 

~ P<0.1; * P<0.05; ** P<0.01; *** P<0.001  

  Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 All 

Intercept 

β ± SE 
t-val 

(P-val) 

8.02 ± 2.15 
3.72 

(0.002)** 

2.94 ± 1.29 
2.27 

(0.037)* 

2.16 ± 0.95 
2.27 

(0.038)* 

3.54 ± 1.37 
2.58 

(0.020)* 

6.76 ± 1.81 
3.73 

(0.002)** 

5.58 ± 0.78 
7.19 

(<0.001)*** 

Slope 

β ± SE 
t-val 

(P-val) 

-0.003 ± 0.009 
-0.27 

(0.793) 

-0.03 ± 0.01 
-3.55 

(0.003)** 

-0.02 ± 0.04 
-0.46 

(0.662) 

-0.06 ± 0.06 
-0.97 
(0.35) 

0.17 ± 0.18 
0.81 

(0.368) 

-0.02 ± 0.01 
-3.32 

(0.001)** 
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 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 

Val. 

β ± SE 
t-val 

(P-val) 

0.40 ± 0.21 
1.86 

(0.063)~ 

0.08 ± 0.18 
0.32 

(0.748) 

0.16 ± 0.27 
0.58 

(0.561) 

0.15 ± 0.19 
0.78 

(0.43) 

-0.08 ± 0.17 
-0.50 

(0.620) 

Inf. 

β ± SE 
t-val 

(P-val) 

0.31 ± 0.18 
1.74 

(0.081)~ 

0.72 ± 0.16 
4.59 

(<.001)*** 

0.52 ± 0.22 
2.40 

(0.016)* 

0.63 ± 0.30 
2.10 

(0.036)* 

0.51 ± 0.18 
2.92 

(0.004)** 

Val xInf 

β ± SE 
t-val 

(P-val) 

0.10 ± 0.20 
0.47 

(0.638) 

0.20 ± 0.21 
0.92 

(0.356) 

0.16 ± 0.19 
0.83 

(0.405) 

0.36 ± 0.23 
1.56 

(0.118) 

0.04 ± 0.18 
0.23 

(0.814) 

Fix (s) 

β ± SE 
t-val 

(P-val) 
- - - 

0.18 ± 0.35 
-0.51 

(0.611) 

-0.28 ± 0.28 
-0.99 

(0.322) 

Stim (s) 

β ± SE 
t-val 

(P-val) 
- - - - 

0.03 ± 0.07 
0.37 

(0.713) 

Mask (s) 

β ± SE 
t-val 

(P-val) 
- - - 

0.14 ± 0.29 
-0.47 

(0.637) 

0.17 ± 0.28 
0.57 

(0.567) 

Sess. 

β ± SE 
t-val 

(P-val) 

0.34 ± 0.14 
2.40 

(0.016)* 

0.78 ± 0.15 
5.08 

(<0.001)*** 

0.58 ± 0.14 
4.17 

(<0.001)*** 

0.46 ± 0.15 
3.00 

(0.003)** 

0.30 ± 0.10 
2.89 

(0.004)** 

Table 4. Estimated coefficients from generalized linear mixed-effect models on performance 
β: estimated regression coefficient for fixed effects. SE: estimated standard error of  the regression 

coefficient. 

Val: valence; Inf: information; Fix.: fixation duration; Stim.; stimulus display duration; Sess: session 
number. 
~ P<0.1; * P<0.05; ** P<0.01; *** P<0.001  
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  Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 

Val. 
β ± SE 

t-val 
(P-val) 

8.85 ± 1.51 
5.86 

(<0.001)*** 

8.29 ± 2.05 
4.04 

(<0.001)*** 

4.23 ± 1.17 
3.59 

(<0.001)*** 

5.34 ± 1.19 
4.50 

(<0.001)*** 

7.19 ± 2.27 
3.16 

(0.002)** 

Inf. 
β ± SE 

t-val 
(P-val) 

0.76 ± 0.51 
1.49 

(0.135) 

2.75 ± 1.20 
2.28 

(0.022)* 

0.95 ± 0.61 
1.55 

(0.120) 

1.55 ± 0.85 
1.82 

(0.069)~ 

1.73 ± 0.51 
3.43 

(<0.001)*** 

Val xInf 
β ± SE 

t-val 
(P-val) 

-2.16 ± 0.76 
-2.85 

(0.004)** 

-1.38 ± 0.65 
-2.12 

(0.034)* 

-0.90 ± 0.69 
-1.31 

(0.192) 

-1.51 ± 0.72 
-2.10 

(0.036)* 

-2.36 ± 0.82 
-2.89 

(0.004)** 

Fix (s) 

β ± SE 
t-val 

(P-val) 
- - - 

-1.11 ± 1.40 
-0.79 

(0.428) 

0.49 ± 1.43 
0.34 

(0.734) 

Stim (s) 

β ± SE 
t-val 

(P-val) 
- - - - 

0.21 ± 0.39 
0.53 

(0.596) 

Mask (s) 

β ± SE 
t-val 

(P-val) 
- - - 

0.27 ± 1.48 
-0.18 

(0.854) 

-0.40 ± 1.32 
-0.30 

(0.761) 

Sess. 

β ± SE 
t-val 

(P-val) 

2.99 ± 0.98 
3.05 

(0.002)** 

2.84 ± 0.68 
4.19 

(<0.001)*** 

1.75 ± 0.73 
2.41 

(0.016)* 

1.96 ± 0.89 
2.23 

(0.026)* 

1.20 ± 0.80 
1.50 

(0.133) 

Table 5. Estimated coefficients from generalized linear mixed-effect models on confidence 
β: estimated regression coefficient for fixed effects. SE: estimated standard error of  the regression 

coefficient. 

Val: valence; Inf: information; Fix.: fixation duration; Stim.; stimulus display duration; Sess: session 
number. 
~ P<0.1; * P<0.05; ** P<0.01; *** P<0.001  
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Table 5. Estimated coefficients from generalized linear mixed-effect models on response 
times. 
β: estimated regression coefficient for fixed effects. SE: estimated standard error of  the regression 

coefficient. 

Val: valence; Inf: information; Fix.: fixation duration; Stim.; stimulus display duration; Sess: session 
number. 
~ P<0.1; * P<0.05; ** P<0.01; *** P<0.001 

  Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 

Val. 

β ± SE 
t-val 

(P-val) 

-151.12 ± 40.37 
-3.74 

(<0.001)*** 

-115.63 ± 30.96 
-3.73 

(<0.001)*** 

-15.31 ± 4.33 
-3.53 

(<0.001)*** 

-13.49 ± 4.97 
-2.71 

(0.007)** 

-3.23 ± 3.44 
-0.94 

(0.349) 

Inf. 

β ± SE 
t-val 

(P-val) 

-6.57 ± 19.58 
-0.34 

(0.737) 

-44.37 ± 15.75 
-2.82 

(0.005)** 

5.81 ± 4.13 
1.41 

(0.160) 

-2.81 ± 4.28 
-0.65 

(0513) 

-0.80 ± 3.78 
-0.21 

(0.832) 

Val xInf 

β ± SE 
t-val 

(P-val) 

65.58 ± 28.77 
2.28 

(0.023)* 

10.59 ± 18.88 
0.56 

(0575) 

3.75 ± 3.25 
1.15 

(0.249) 

3.67 ± 4.19 
0.88 

(0.381) 

-3.04 ± 3.85 
-0.79 

(0.430) 

Fix (s) 

β ± SE 
t-val 

(P-val) 
- - - 

-2.37 ± 16.13 
-0.15 

(0.883) 

18.56 ± 12.77 
1.45 

(0.146) 

Stim (s) 

β ± SE 
t-val 

(P-val) 
- - - - 

-12.18 ± 3.37 
-3.61 

(<0.001)*** 

Mask(s) 

β ± SE 
t-val 

(P-val) 
- - - 

-68.34 ± 16.35 
-4.18 

(<0.001)*** 

-54.20 ± 14.55 
-3.73 

(<0.001)*** 

Sess. 

β ± SE 
t-val 

(P-val) 

-152.43 ± 33.63 
-4.53 

(<0.001)*** 

-146.28 ± 26.13 
-5.60 

(<0.001)*** 

-26.93 ± 6.14 
-4.38 

(<0.001)*** 

-32.55 ± 9.51 
-3.42 

(<0.001)*** 

-27.22 ± 5.64 
-4.79 

(<0.001)*** 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/593368doi: bioRxiv preprint 

https://doi.org/10.1101/593368
http://creativecommons.org/licenses/by-nc-nd/4.0/

