New Results
Modeling longitudinal imaging biomarkers with parametric Bayesian multi-task learning
View ORCID ProfileLeon M. Aksman, Marzia A. Scelsi, Andre F. Marquand, Daniel C. Alexander, Sebastien Ourselin, Andre Altmann, for ADNI
doi: https://doi.org/10.1101/593459
Leon M. Aksman
1Centre for Medical Image Computing, University College London, London, UK
Marzia A. Scelsi
1Centre for Medical Image Computing, University College London, London, UK
Andre F. Marquand
2Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
Daniel C. Alexander
1Centre for Medical Image Computing, University College London, London, UK
Sebastien Ourselin
1Centre for Medical Image Computing, University College London, London, UK
3Dementia Research Centre, Institute of Neurology, University College London, London, UK
Andre Altmann
1Centre for Medical Image Computing, University College London, London, UK
Posted March 31, 2019.
Modeling longitudinal imaging biomarkers with parametric Bayesian multi-task learning
Leon M. Aksman, Marzia A. Scelsi, Andre F. Marquand, Daniel C. Alexander, Sebastien Ourselin, Andre Altmann, for ADNI
bioRxiv 593459; doi: https://doi.org/10.1101/593459
Subject Area
Subject Areas
- Biochemistry (13396)
- Bioengineering (10205)
- Bioinformatics (32619)
- Biophysics (16796)
- Cancer Biology (13872)
- Cell Biology (19703)
- Clinical Trials (138)
- Developmental Biology (10649)
- Ecology (15762)
- Epidemiology (2067)
- Evolutionary Biology (20068)
- Genetics (13251)
- Genomics (18394)
- Immunology (13494)
- Microbiology (31585)
- Molecular Biology (13173)
- Neuroscience (68824)
- Paleontology (511)
- Pathology (2135)
- Pharmacology and Toxicology (3685)
- Physiology (5747)
- Plant Biology (11804)
- Synthetic Biology (3313)
- Systems Biology (8050)
- Zoology (1819)