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Abstract 24 

Toxoplasmic encephalitis is an AIDS-defining condition in HIV+ individuals. The decline of 25 

IFN-γ-producing CD4+ T cells in AIDS is a major contributing factor in reactivation of 26 

quiescent Toxoplasma gondii to an actively replicating stage of infection. Hence, it is important 27 

to identify CD4-independent mechanisms to control acute T. gondii infection. Here we have 28 

investigated the targeted expansion and regulation of IFN-γ production by CD8+ T cells, DN T 29 

cells and NK cells in response to T. gondii infection using IL-2 complex (IL2C) pre-treatment 30 

in an acute in vivo mouse model. Our results show that expansion of CD8+ T cells, DN T cells 31 

and NK cell by S4B6 IL2C treatment increases survival rates of mice infected with T. gondii 32 

and this increased survival is dependent on both IL-12- and IL-18-driven IFN-γ production. 33 

Processing and secretion of IFN-γ-inducing, bioactive IL-18 is dependent on the sensing of 34 

active parasite invasion by multiple redundant inflammasome sensors in multiple hematopoietic 35 

cell types but independent from T. gondii-derived dense granule (GRA) proteins. Our results 36 

provide evidence for a protective role of IL2C-mediated expansion of CD8+ T cells, DN T cells 37 

and NK cells in murine toxoplasmosis and may represent a promising adjunct therapy for acute 38 

toxoplasmosis. 39 

 40 

  41 
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Author Summary 42 

A third of the world’s population is chronically infected with the parasite Toxoplasma gondii. 43 

In most cases the infection is asymptomatic, but in individuals suffering from AIDS, 44 

reactivation of brain and muscle cysts containing T. gondii is a significant cause of death. The 45 

gradual decline of CD4 T cells, the hallmark of AIDS, is believed to be a major contributing 46 

factor in reactivation of T. gondii infection and the development of acute disease. In this study, 47 

we show that targeted expansion of non-CD4 immune cell subsets can prevent severe disease 48 

and premature death via increased availability of interferon gamma-producing immune cells. 49 

We also demonstrate that the upstream signaling molecule interleukin-18 is required for the 50 

protective immune response by non-CD4 cells and show that the sensing of active parasite 51 

invasion by danger recognition molecules is crucial. Our findings reveal that targeted cell 52 

expansion may be a promising therapy in toxoplasmosis and suggests that the development of 53 

novel intervention strategies targeting danger recognition pathways may be useful against 54 

toxoplasmosis, particularly in the context of AIDS.  55 
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Introduction 56 

Toxoplasma gondii (T. gondii) is an obligate intracellular parasite of the phylum Apicomplexa 57 

[1]. It is estimated that one-third of the world’s population is infected with T. gondii. In most 58 

individuals, infection is asymptomatic and leads to chronic, life-long persistence of T. gondii-59 

containing cysts, primarily in brain and muscle tissue [2]. Active disease, also known as 60 

toxoplasmosis, usually occurs after reactivation of encysted parasites, and is often associated 61 

with immunosuppression. If untreated, toxoplasmosis may be fatal. Additionally, serious eye 62 

disease has been reported as a result of infection with T. gondii [3] and, if a primary infection 63 

occurs during pregnancy, abortion, stillbirth and fetal abnormalities can occur [2, 4]. Whereas 64 

an acute infection is generally mediated by the fast-replicating tachyzoite stage of the parasite, 65 

the persistent tissue cysts, characteristic of a chronic infection, contain slow-replicating 66 

bradyzoites. Currently, treatment of toxoplasmosis is limited to the acute disease and requires 67 

prolonged exposure to anti-toxoplasmosis drugs for the duration of the immunosuppression [5, 68 

6]. 69 

 70 

Containment of chronic T. gondii infection requires functional T-cell responses, in particular 71 

interferon gamma (IFN-γ)-producing CD4+ T cells [2, 7]. In the absence of CD4+ T cells, IFN-72 

γ, its receptor or downstream effector molecules, such as inducible nitric oxide synthase 73 

(iNOS), susceptibility and disease are severely exacerbated [8-11]. Accordingly, co-infection 74 

with human immunodeficiency virus (HIV), which impairs CD4+ T cells during its 75 

reproduction, is one of the major reactivation factors. In fact, toxoplasmic encephalitis 76 

accompanied by low numbers of CD4+ T cells is considered to be an AIDS-defining condition 77 

in HIV+ individuals [12].  78 

 79 

In addition to antigen-specific CD4+ T cells [11], innate immune cells, such as NK cells and 80 

neutrophils also contribute significantly to the production of host-protective IFN-γ [13, 14]. In 81 
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particular, the recognition of T. gondii-derived profilin via Toll-like receptor (TLR)-11, which 82 

drives myeloid differentiation primary-response protein 88 (MyD88)-dependent IL-12 83 

secretion by dendritic cells, is considered a crucial upstream pathway of protective IFN-γ 84 

secretion [15, 16]. Mice deficient in MyD88 or IL-12 are also extremely susceptible to T. gondii 85 

infection [17, 18]. Furthermore, elegant studies by Hunter and colleagues showed that T cell-86 

intrinsic ablation of MyD88 also impacts severely on the control of the parasite [19]. These 87 

findings indicate that, in addition to IL-12, cytokine-driven IFN-γ secretion in response to T. 88 

gondii also depends on IL-18, an IL-1 family cytokine originally known as IFN-γ-inducing 89 

factor, which requires cell-intrinsic MyD88 signaling [20, 21]. IL-18 is particularly important 90 

for the rapid production of IFN-γ by cells of the immune system, in particular NK cells, CD8+ 91 

memory T cells and double negative (DN) γδ T cells [22]. 92 

 93 

Secretion of bioactive IL-18 requires proteolytic cleavage from its biologically inactive 94 

precursor, pro-IL-18, through caspase-1 [23], which in turn depends on the upstream assembly 95 

and activation of inflammasomes through the engagement of cytosolic pattern recognition 96 

receptors (PRRs) [23]. Intriguingly, not only deficiencies in caspase-1 and IL-18 [24, 25] have 97 

been implicated in impaired immunity to T. gondii, but also deficiencies in the inflammasome 98 

sensors NLRP1 and NLRP3 [24, 26]. These results point to an important host-protective role 99 

for the caspase1  IL-18  IFN-γ axis and suggest that strategies aimed at targeting cytosolic 100 

PRRs as adjunct immunotherapy [27] could serve as a means of inducing IL-18-mediated IFN-101 

γ production to control infections with T. gondii. Consistent with this hypothesis, we and others 102 

have recently demonstrated, in models of experimental Listeria monocytogenes, 103 

Mycobacterium tuberculosis and Salmonella enterica infection, that rapid, IL-18-driven IFN-γ 104 

secretion orchestrates host innate immunity and impacts on the magnitude of the recall response 105 

after vaccination [28-30].  106 

 107 
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Given that control of acute toxoplasmosis depends on a delicate balance between limiting 108 

immunopathology and maintaining parasite killing, in the present study, we interrogated the 109 

mechanistic regulation of IL-18-driven IFN-γ production in vivo.  We discovered that bioactive 110 

IL-18 is dependent on the sensing of active parasite invasion by multiple redundant 111 

inflammasome sensors in multiple non-CD4 hematopoietic cell types, leading to the hypothesis 112 

that enhancement of this innate response could be harnessed to prevent disease resulting from 113 

infection with T. gondii. We therefore investigated if treatment with S4B6-containing IL2C, an 114 

IL2 complex that can boost NK and CD8+ T cell numbers [31], could prevent acute lethal 115 

toxoplasmosis.  116 

 117 

RESULTS 118 

Toxoplasma-driven IFN-γ secretion by non-CD4 immune cells following oral infection 119 

with brain cysts or intravenous (i.v.) infection with tachyzoites  120 

Given that control of acute toxoplasmosis critically depends on IFN-γ [7] and non-CD4 immune 121 

cell types, such as CD8+ T cells, DN T cells and NK cells, are prime IFN-γ producers, we 122 

wanted to delineate the mechanistic requirements of IFN-γ production by these cell types in 123 

response to T. gondii. We furthermore wanted to explore whether responses were similar after 124 

oral infection (a common natural route of infection), i.v. infection with tachyzoites (modelling 125 

blood transfusion, a rare but significant – for the individual – route of infection [32]) and the 126 

often used purely experimental i.p. route of infection with tachyzoites.  127 

 128 

We first inoculated naïve B6 mice with 10, 40 or 100 T. gondii ME49 cysts and assessed IFN-129 

γ production by viable splenic CD3+CD4+, CD3+CD8+, CD3+CD4–CD8– (DN) T cells and CD3–130 

NKp46+ cells 1 day and 5 days after inoculation. Whereas no IFN-γ production was observed 131 

1 day after inoculation, a significant increase in IFN-γ-secreting cells was detected at 5 days 132 

after inoculation in spleen, MLN and PP (Fig 1A, B and S1A, B Fig). Up to 10% of CD8+ T 133 
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cells and DN T Cells and up to 50% of all NK cells stained IFN-γ+, particularly following 134 

inoculation with 40 and 100 cysts. Because these mice had never been exposed to apicomplexan 135 

parasites before, these results ruled out antigen-specific responses.  136 

 137 

We also investigated if rapid IFN-γ production could be induced by inoculation with tachyzoites 138 

via the i.v. and i.p. routes using a short-term in vivo exposure model in which naïve B6 mice 139 

were exposed to T. gondii tachyzoites for a maximum of 72 hours. When mice were injected 140 

i.v. or i.p. with 105 tachyzoites, no significant IFN-γ production could be seen in either spleen, 141 

MLN or PP within 72 hours (S1E Fig). However, i.v. or i.p.  inoculation with 107 tachyzoites 142 

led to secretion of IFN-γ by CD3+CD8+, CD3+CD4–CD8– (DN) T cells and CD3–NKp46+ cells 143 

in spleen, MLN and PP as early as 2-24 hours after inoculation (Fig 1C, D and S1C, D Fig), 144 

mirroring the results seen 5 days after a cyst inoculation (Fig 1B). Importantly, at 24 hours after 145 

tachyzoite inoculation, levels of other acute inflammatory mediators, such as IL-6, TNFα and 146 

IL-10, were almost indistinguishable from naïve mice (Fig 1E-G). These results indicate that 147 

mice were still controlling the infection and that parasite dissemination and subsequent acute 148 

cytokine responses were not yet impacting on protective IFN-γ responses 24 hours after i.v. 149 

infection.  150 

 151 

Furthermore, these results show that i.v., i.p. tachyzoite infections and oral brain cyst infections 152 

induce almost identical acute immune responses. Toxoplasma gondii cyst production in mice is 153 

a slow and laborious process. In addition, it is difficult to quantify the number of bradyzoites 154 

within brain cysts used for oral infection and, moreover, dissemination patterns following oral 155 

infection are erratic in individual mice [33]. Therefore, we subsequently focused on IFN-γ 156 

secretion by splenic NK cells 24 hours after i.v. injection of tachyzoites as our primary readout 157 

for further dissection of the underlying mechanistic requirements. 158 

 159 
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Rapid IFN-γ secretion in response to T. gondii requires IL-12 & IL-18  160 

Whereas the role of IL-12 in IFN-γ secretion is well established for T. gondii [2], rapid 161 

production of IFN-γ in response to other intracellular pathogens, such as S. enterica, L. 162 

monocytogenes and M. tuberculosis has also been linked to the upstream effects of IL-18 [28, 163 

29]. To interrogate whether or not, and how early, IFN-γ secretion in response to T. gondii also 164 

requires IL-18, we exposed naïve B6 mice to T. gondii ME49 tachyzoites and treated the 165 

animals with neutralizing monoclonal antibodies (mAb) to IL-12, IL-18 or IL-12 and IL-18 166 

immediately after inoculation. At 24 hours after exposure, IFN-γ secretion by NK cells in the 167 

spleen was assessed directly ex vivo. Neutralization of IL-12 and IL-18 significantly reduced 168 

IFN-γ production, with IL-12 contributing approximately 50% and IL-18 approximately 30-169 

40% of the response (Fig 2A). The significant reduction of rapid IFN-γ production in Il18–/– 170 

mice, and the almost complete absence of rapid IFN-γ production in anti-IL-12-treated Il18–/– 171 

mice, further confirmed a direct correlation between IL-12, IL-18 and IFN-γ secretion (Fig 2C, 172 

D). Consistently, where IL-12 levels in the serum of infected mice peaked at approximately 2 173 

hours after inoculation, the levels of IL-18 mirrored those of IFN-γ for up to 72 hours (Fig 2B). 174 

Furthermore, treatment with anti-IL-12 and/or anti-IL-18 also reduced concentrations of IFN-175 

γ, IL-12 and IL-18 in the serum of infected mice in an additive manner (Fig 2D-F). These results 176 

suggest a hierarchical relationship in which a primary IL-12-driven IFN-γ response is followed 177 

by an IL-18-dominant IFN-γ response. We concluded that innate IFN-γ secretion by CD8+ T 178 

cells, DN T cells and NK cells in response to T. gondii is driven by the secretion of IL-12 and 179 

IL-18. 180 

 181 

IL-18-driven IFN-γ secretion to T. gondii depends on multiple redundant inflammasomes  182 

Given that the molecular mechanisms that lead to T. gondii-mediated IL-12 secretion are well 183 

characterized, we focused our attention on the host signaling pathways required for IL-18-184 

driven IFN-γ production, using a panel of genetically modified mouse strains. Secretion of 185 
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bioactive IL-18 depends on the enzymatic cleavage of pro-IL-18 by caspase-1 [23]. Activation 186 

of caspase-1 involves the sensing of danger molecules or stress signals via upstream cytosolic 187 

PRRs, so called inflammasomes, a process that can be enhanced and controlled via TRIF-188 

dependent caspase-11 activation. Caspase1/11–/– double KO mice produced significantly less 189 

IFN-γ following injection with T. gondii ME49 tachyzoites compared with B6 mice, and this 190 

response could be almost completely prevented by additional anti-IL-12 treatment (Fig 3A). As 191 

expected, Caspase1/11–/– mice did not secrete significant levels of IL-18 following T. gondii 192 

inoculation (Fig 3B), indicating that the remaining IFN-γ response in Caspase1/11–/– mice is 193 

driven by IL-12. Surprisingly, when we tested mice deficient in the upstream NLR family pyrin 194 

domain-containing proteins 1 and 3 (NLRP1 and NLRP3), NLR molecules that had been 195 

implicated previously in recognition of T. gondii [24], both knockout strains secreted 196 

indistinguishable amounts of IL-18 compared with B6 mice (Fig 3B). This data suggested a 197 

redundant role for NLRP1 and NLRP3. However, even double knockout and heterozygous 198 

Nlrp1±/-Nlrp3±/- mice secreted high levels of IL-18 and IFN-γ after exposure to T. gondii ME49 199 

tachyzoites (Fig 3A, B), suggesting that additional PRR molecules must be involved in sensing 200 

of T. gondii invasion in vivo.  Taken together these results indicate that rapid IFN-γ secretion 201 

in vivo in response to T. gondii depends on the inflammasome  caspase-1  IL-18 axis, and 202 

that T. gondii activates at least three different inflammasomes in vivo. 203 

 204 

Toxoplasma gondii activates inflammasomes in multiple cell types. 205 

To further investigate the role of cytosolic PRRs in sensing T. gondii invasion, and to potentially 206 

target inflammasome activation for preventive or therapeutic intervention strategies, we next 207 

tried to identify the T. gondii-sensing cell type in vivo. To do this, we made use of a red 208 

fluorescent protein (RFP) tagged T. gondii ME49 (T. gondii ME49-RFP) strain to track parasite 209 

uptake by different immune cell subsets in the spleen. Twenty-four hours after tachyzoite 210 

injection, T. gondii ME49-RFP also induced rapid IFN-γ secretion by splenic CD3+CD4+, 211 
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CD3+CD8+, CD3+CD4–CD8– (DN) T cells and CD3–NKp46+ cells (Fig 4A) and high levels of 212 

serum IL-18 (Fig 4B), similar to wild-type T. gondii ME49 (see Figs. 1 and 2). Approximately 213 

0.5% of all splenocytes contained T. gondii ME49-RFP in vivo 24 hours after inoculation (Fig 214 

4C). Sorted RFP+ cells secreted significantly more IL-18 ex vivo compared to RFP- cells (Fig 215 

4D), and further surface phenotyping revealed that T. gondii ME49-RFP was primarily 216 

contained in monocytes, neutrophils and CD8α+ dendritic cells (Fig 4E, F). Splenic MHC-217 

II+CD11c+ DCs, CD11b+Ly6G+ neutrophils and CD11b+Ly6C+ monocytes each comprised 218 

approximately 20-30% of all RFP-containing cells after i.v. tachyzoite injection. Only very few 219 

T cells, B cells and macrophages appeared to harbor parasites (Fig 4E, F). To investigate if cell 220 

types that contained T. gondii ME49-RFP parasites also activated inflammasomes, we 221 

performed intracellular staining for the inflammasome adaptor molecule apoptosis-associated 222 

speck-like protein containing a carboxy-terminal CARD (ASC), and measured the activation of 223 

caspase-1 with a fluorescent inhibitor that only binds to activated caspase-1 (FLICA FAM-224 

YVAD-FMK) [29]. Consistent with the uptake of T. gondii ME49-RFP by different cell types, 225 

T. gondii ME49-RFP parasite-harboring neutrophils, monocytes and DCs also expressed higher 226 

levels of ASC and FAM-YVAD compared with RFP- cells and FMO controls (Fig 4G). 227 

Collectively, these results indicate that T. gondii infection activates multiple redundant 228 

inflammasomes in multiple different hematopoietic cell-types in vivo. 229 

 230 

IL-18-driven IFN-γ secretion to T. gondii depends on parasite invasion but is independent 231 

of secreted GRA proteins 232 

Next, we assessed if rapid IFN-γ secretion in response to T. gondii required active parasite 233 

invasion or could be induced by soluble factors. To this end, naïve B6 mice were injected with 234 

either live, heat-killed or sonicated T. gondii ME49 tachyzoites. Only inoculation with live 235 

parasites induced IFN-γ secretion and increased serum IL-18 levels (Fig 5A, B). To exclude 236 

the possibility that heat inactivation and sonication destroyed soluble factors that could 237 
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potentially drive this response, we also injected naïve B6 mice with HFF cell debris, which had 238 

been re-suspended in the T. gondii ME49 culture supernatant. This treatment also failed to 239 

induce IFN-γ and IL-18 secretion (Fig 5A, B). These results indicated that active parasite 240 

invasion is required to initiate an IFN-γ response, suggesting that T. gondii virulence factors 241 

may play a critical role. Evidence from studies that have investigated the mechanistic 242 

framework of how intracellular bacterial pathogens activate inflammasomes in vivo, suggests 243 

that secreted effector molecules and/or distinct structural proteins are critically required [34]. 244 

Apicomplexan parasites also secrete effector molecules with distinct host-modulatory 245 

properties [35]. In particular, dense granule (GRA) proteins have been shown to play important 246 

roles in the maintenance of the parasitophorous vacuole (PCV), for the intracellular lifestyle 247 

and to exert host-modulatory functions [36].  We further probed the parasite-derived factors 248 

that might drive early, IL-18-dependent IFN-γ secretion by exposing naïve B6 mice to a panel 249 

of T. gondii strains to test if GRA proteins are required for IL-18-driven IFN-γ secretion. Hence, 250 

we infected mice with a mutant strain of T. gondii ME49 that lacks ASP5, a critical requirement 251 

for secretion of GRA proteins [37], as well as strains lacking GRA20 or GRA23, two proteins 252 

that contain the PEXEL motif required for PCV exit. No significant difference in the levels of 253 

serum IL-18 and NK cell-produced IFN-γ was observed 24 and 48 hours after inoculation with 254 

T. gondii ME49 ASP5-deficient tachyzoites compared with inoculation of a wildtype T. gondii 255 

ME49 (Fig 5C, D), suggesting that ASP5-driven GRA export is dispensable for inflammasome 256 

activation. Similarly, inoculation with GRA20-deficient or GRA23-deficient parasites did not 257 

significantly reduce IFN-γ secretion in the absence of IL-12 (S2A Fig).  We also tested another 258 

Type II T. gondii strain, DEG (T. gondii DEG), which had been implicated in reduced IL-1β 259 

secretion following in vitro infection of macrophages [24] but, similar to inoculation with T. 260 

gondii ME49 ASP5-deficient parasites, inoculation with T. gondii DEG did not lead to reduced 261 

levels of serum IL-18 and NK cell-produced IFN-γ in this model (Fig 5C, D). At 48 hours after 262 

tachyzoite inoculation, the levels of serum IL-18 were even significantly higher compared with 263 
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inoculation of T. gondii ME49 (Fig 5D). These data indicate that ASP5-dependent secretion of 264 

GRA proteins does not affect IL-18-driven IFN-γ secretion and highlights the diverging 265 

mechanisms that underlie in vitro IL-1β and in vivo IL-18 secretion in response to T. gondii.  266 

 267 

IL2C treatment expands IL-18-responsive IFN-γ-secreting cell subsets 268 

Collectively, the results presented so-far raise the prospect that, if the ability of non-CD4 cells 269 

to invoke inflammasome-dependent, IL18-driven production of IFN-γ can be enhanced, it may 270 

be possible to control acute toxoplasmosis in AIDS. Hence, we investigated if targeted 271 

expansion of non-CD4 cells with IL2C treatment can achieve this. First, naïve mice were treated 272 

i.p. with IL2C complex on four consecutive days (Fig 6A) and, 24 hours after the last IL2C 273 

injection, immune cell expansion was assessed by flow cytometry relative to untreated animals. 274 

As reported previously [38], IL2C treatment led to a significant expansion of memory CD8+ T 275 

cells, NK cells and DN T cells in spleen and MLN (Fig 6B, C) and to a minor increase in the 276 

Peyer’s Patches (PP) (Fig 6D).To further assess if IL2C-expanded and non-expanded CD8+ T 277 

cells, DN T cells and NK cells responded similarly to T. gondii infection, IL2C-treated and 278 

untreated mice were infected with 107 ME49 tachyzoites for 24 hours (Fig 6A). The percentage 279 

of CD8+ T cells, DN T cells and NK cells producing IFN-γ was almost indistinguishable 280 

between IL2C-treated and untreated mice (Fig 6E; data for CD8+ T cells and DN T cells not 281 

shown). The number of IFN-γ+ NK cells (Fig 6F), IFN-γ+ CD8+ T cells and IFN-γ+ DN T cells 282 

(S3A Fig) increased 3-30 fold following IL2C treatment. Similarly, IL2C pretreatment 283 

significantly increased systemic IFN-γ levels in the serum after i.v. infection (Fig 6G), but as 284 

expected did not lead to a significant change in the levels of upstream serum IL-18 (S3b Fig). 285 

We also assessed the expression of IL18R and IL12R on the surface of IFN-γ+ and IFN-γ- cells. 286 

IFN-γ+ NK cells (data for CD8+ T cells and DN T cells not shown) expressed significant higher 287 

levels of IL18R and IL12R compared to IFN-γ- NK cells (Fig 6H, I). Taken together, these 288 

results show that IL2C-expanded cells respond identically to non-expanded cells and that IL2C 289 
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treatment numerically expands IFN-γ producing cells that maintain a higher IL18R level 290 

expression compared to IFN-γ- cells.  291 

 292 

IL2C pre-treatment protects mice from acute lethal toxoplasmosis independently of TReg 293 

expansion and parasite burden 294 

To definitively assess if IL2C-mediated expansion of IL-18-responsive IFN-γ-secreting non-295 

CD4 cell subsets can prevent lethal toxoplasmosis in mice, we used the well-established oral 296 

inoculation model with T. gondii ME49 bradyzoite-containing brain cysts. As above, naïve B6 297 

mice were treated i.p. with IL2C for four consecutive days (Fig 7A). IL2C treatment was 298 

accompanied by a weight loss from which mice recovered within a few days (data not shown). 299 

Forty-eight hours after the last IL2C treatment, mice were inoculated orally with 10 or 40 T. 300 

gondii ME49 cysts and were assessed for weight loss and survival over 60 days. All mice that 301 

had been inoculated with 40 cysts and 87% of mice that had been inoculated with 10 cysts, but 302 

had not received IL2C injections, succumbed within 14 days after inoculation (Fig 7B, C). In 303 

contrast, IL2C pre-treatment extended survival in mice that had been inoculated with 40 cysts 304 

up to 36 days, and approximately 40% of mice that had been inoculated with 10 cysts survived 305 

until day 60 (Fig 7B, C).  306 

 307 

Importantly, depletion of NK cells, CD8+ T cells, Thy1.2+ cells (expressed on all T cells and 308 

immature NK cells [39]) or IFN-γ from mice that had been treated with IL2C for four days and 309 

had been inoculated with 10 T. gondii ME49 cysts with neutralizing antibodies reversed IL2C-310 

mediated increase in survival (Fig 7D, E), indicating that IL2C-mediated cell expansion directly 311 

correlated with increased survival. Similarly, neutralization of IL-18, IL-12 or IFN-γ, reversed 312 

the protective phenotype (Fig 7D, F). All mice that were not treated with IL2C succumbed to 313 

the infection by day 16, with a median survival of 11 days (Fig 7F). Whilst 67% of IL2C-treated 314 

mice that received control rat IgG survived until day 60, the median survival for mice treated 315 
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with anti-IFN-γ was 10.5 days, 13 days for mice treated with anti-IL-12 and 14 days for mice 316 

treated with anti-IL-18 (Fig 7F). All mice that survived until day 60 were assessed for T. gondii 317 

brain cysts. Mice contained 100 - 200 cysts per brain (data not shown), indicating that all mice 318 

were infected and that survival was not due to a failure of the infection to establish. Taken 319 

together, these results further substantiate the proposal that IL2C pre-treatment protects mice 320 

from lethal toxoplasmosis via IL-12- and IL-18-driven IFN-γ secretion. 321 

 322 

To assess if IL2C pre-treatment also impacts on measurable disease parameters other than 323 

survival, we also analyzed parasite burden and immunopathology at 2, 4 and 9 days following 324 

oral cyst infection. Due to the low infectious dose of 10 cysts, only minimal changes in 325 

immunopathology were observed at 2 and 4 days after infection in all groups (data not shown). 326 

At 9 days after infection, IL2C pre-treated mice displayed significantly reduced gross pathology 327 

of gut and liver (Fig 7G, H) in the absence of any effect on parasite burden (Fig 7I). TReg 328 

numbers in MLN and lamina propria (LP) were not increased after IL2C injections (Fig 7J, K, 329 

L) suggesting a role for IL2C pre-treatment independent of the previously reported TReg 330 

expansion with JES6-1A12-containing IL2C [40, 41].  Collectively, these results demonstrate 331 

a protective role of IL2C pre-treatment in acute lethal murine toxoplasmosis.   332 

 333 

DISCUSSION  334 

Non-CD4 cells, such as  CD8+ T cells, DN T cells and NK cells, have been implicated in early 335 

control of severe infections with intracellular pathogens, including T. gondii, M. tuberculosis 336 

and Salmonella [2, 29]. Our study provides a comprehensive mechanistic framework for how 337 

T. gondii activates IFN-γ secretion by protective CD8+ T cells, DN T cells and NK cells. In 338 

particular, we demonstrate that IL-18-driven IFN-γ secretion in vivo requires the activation of 339 

at least three different inflammasomes; because only Caspase1/11-/- mice but not Nlrp1-/-, 340 

Nlrp3-/- and Nlrp1±/-Nlrp3±/- mice were devoid of circulating IL-18 after T. gondii infection, a 341 
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third sensor must exist in addition to NLRP1 and NLRP3 [24, 42]. Furthermore, we show that 342 

inflammasome activation occurred in CD8α+ DCs, inflammatory monocytes and neutrophils, 343 

cell types that have also been implicated in IL-12 secretion in response to T. gondii [2]. These 344 

results imply a high level of redundancy in the cell type that senses T. gondii infection as well 345 

as in the host inflammasome signaling pathway. This is in contrast to the often very specific 346 

recognition of viral and bacterial infections by one particular inflammasome in a distinct cell 347 

type [28, 29, 43-46]. It is likely that this divergence highlights the evolutionary complexity of 348 

parasites and suggests that more highly evolved organisms have developed a more complex 349 

inflammasome-dependent interplay with their hosts. In line with this hypothesis, it was shown 350 

recently in vitro that T. gondii also activates the NLRC4 and AIM2 inflammasomes in human 351 

fetal small epithelial cells [47], as well as the expression of NLRP6, NLRP8 and NLRP13 in 352 

THP-1 macrophages [48]. Due to the diverse expression of different internalization receptors 353 

and the abundance of inflammasome components, various myeloid cells seem to be endowed 354 

with unique abilities to interact with T. gondii. In this context the characterization of the 355 

myeloid cell populations which produce IL-18 may foster innovative strategies for T. gondii 356 

interventions.  357 

 358 

Toxoplasma gondii appears to activate both NLRP1 and NLRP3 [24], yet the specificity of this 359 

activation remains elusive. While the activation of NLRP3 in response to T. gondii appears to 360 

be influenced by P2X7 receptor-dependent potassium efflux and the induction of reactive 361 

oxygen species [47, 49-51], the exact mechanisms of how T. gondii activates multiple 362 

inflammasomes remain enigmatic. In this context it is also interesting to note that in vitro 363 

infection of mouse macrophages and human monocytes with T. gondii only leads to the 364 

secretion of IL-1β, but not IL-18 [24, 52]. In contrast, in vivo infection in mice leads to 365 

significant secretion of IL-18 but not IL-1β [24]. It has even been suggested that in vitro 366 

infection of human neutrophils leads to evasion of NLRP3 activation and IL-1β secretion [53]. 367 
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Furthermore, in vitro activation of inflammasomes differs between T. gondii strains, and is 368 

predominantly induced by Type II parasites [24]. These findings suggest that T. gondii has 369 

evolved sophisticated diverging effector mechanisms to manipulate inflammasome biology in 370 

different host cell subsets, and suggest that secreted effector molecules and/or distinct structural 371 

proteins may underlie inflammasome activation. It is, therefore, interesting that Nlrp1±/-Nlrp3±/- 372 

mice did not show reduced IL-18 secretion after infection with T. gondii. It is important to note 373 

that in mice the Nlrp1 locus is on the same chromosome as the Nlrp3 gene, meaning that the 374 

generation of rare double knockout offspring relies on recombination rather than inheritance. It 375 

will therefore be important to further investigate the role of Nlrp1 and 3 with alternative 376 

methods, such as CRISPR/Cas9 and/or chemical inhibition. 377 

 378 

Our study has ruled out ASP5-dependent GRA proteins [54], the most abundant family of T. 379 

gondii-derived effector molecules [35], as the primary activator of inflammasomes. GRA 380 

molecules influence several host cell pathways [55] and are required for the transport of small 381 

molecules across the parasitophorous vacuole [56]. These results do not exclude GRA proteins 382 

that don’t depend on ASP5 for export, and further studies will have to investigate the role of 383 

ASP5-independent GRA proteins as well as rhoptry proteins and other surface structures in 384 

driving this process. In particular, the recently described MYR1 protein export system [57-59] 385 

may be valuable in answering if secreted effector molecules are at all required to initiate 386 

inflammasome activation. 387 

 388 

It is tempting to speculate that the overall purpose of activating multiple inflammasomes in 389 

multiple cell types is to drive an inflammatory host response that mediates the progression of 390 

T. gondii into the chronic cyst phase, while at the same time preventing activation of parasite- 391 

killing mechanisms. Toxoplasma can invade and replicate in virtually all nucleated cell types 392 

of warm-blooded animals. From an evolutionary perspective, it is not surprising that the arms 393 
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race between the host and the parasite has led to the evolution of numerous strategies to activate 394 

the immune system (from the parasite’s perspective) and to sense the invasion (from the host’s 395 

perspective). The fundamental differences between the habitats and the composition of the 396 

immune system of susceptible warm-blooded host species may require T. gondii to activate as 397 

many different inflammasome sensors as possible. It is well established that T. gondii requires 398 

a pro-inflammatory, IFN-γ-dominated immune response to form cysts [7]. Because 399 

transmission is critical for the parasite’s survival and completion of the life cycle, it is 400 

maladaptive for T. gondii to kill its host. This may explain why IFN-γ neutralization is fatal, 401 

because IFN-γ deficiency favors tachyzoite replication and prevents cyst formation. 402 

Furthermore, these findings may also explain why T. gondii cysts reactivate after HIV co-403 

infection in humans; HIV destroys CD4+ T cells, a prime IFN-γ producer. Hence, we reasoned 404 

that a viable adjunct therapy in T. gondii/ HIV co-infection might be achieved by boosting IFN-405 

γ-producing CD8+ T cells, DN T cells and NK cells to prevent acute toxoplasmosis.  406 

 407 

The development, maturation and maintenance of IL-18 responsive NK cells, CD8+ memory T 408 

cells and DN T cells relies on IL-2 and IL-15 [60-65]. While the role of IL-15 in immunity to 409 

T. gondii remains controversial [66, 67], IL-2 deficient mice are highly susceptible to T. gondii 410 

infection  [68], and administration of recombinant IL-2 enhances survival of Toxoplasma-411 

infected mice [69, 70]. The activity of these cytokines is mediated through trans-presentation, 412 

a mechanism by which the cytokine is presented to the cytokine receptor complex beta and 413 

common γ chains in the context of cell-bound high-affinity alpha (α) chains of the cytokine 414 

receptor [71, 72]. Consequently, complexing IL-2 with anti-IL-2 (IL2C) or IL-15 with IL-415 

15RαFc (IL15C) significantly enhances the biological activity of these cytokines in vivo [31, 416 

73]. Importantly, the binding site of the anti-IL2 clone used in the IL2C determines whether a 417 

preferential expansion of regulatory T cells (TReg; anti-IL-2 clone JES6-1A12) or CD8+ T cell, 418 

NK cells and DN T cells occurs (anti-IL-2 clone S4B6) [31, 74]. 419 
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 420 

Using JES6-1A12-containing IL2C, Akbar et al. [41] showed that selective expansion of TReg 421 

cells in Type I T. gondii RH-infected animals improved control of the parasite. It was also 422 

demonstrated that TReg expansion with JES6-1A12-containing IL2C can overcome the 423 

competition for bioavailable IL-2 by regulatory and effector T cells, leading to reduced 424 

immunopathology and morbidity during acute Type II T. gondii ME49 infection [40]. These 425 

studies are in line with other reports showing a collapse of TReg cells during acute T. gondii 426 

infection due to IL-2 starvation and an overall protective role of TRegs in acute T. gondii-427 

mediated immunopathogenesis [75-78]. In contrast to JES6-1A12-containing IL2C, S4B6-428 

containing IL2C has been shown to boost NK cell and memory CD8+ T cell numbers in mice 429 

and to enhance their cytolytic capacity against viral infections, malaria [79] and cancer cells 430 

[71, 80-82]. Short-term exposure of naïve mice to IL2C containing S4B6 has also been shown 431 

to enhance resistance and immunity against Listeria monocytogenes infection [83]. Our study 432 

is the first to show a protective effect of S4B6-containing IL2C pre-treatment in toxoplasmosis 433 

and our results suggest that IL2C pre-treatment can protect mice from lethal toxoplasmosis via 434 

distinct mechanisms, depending on the IL-2 mAb clone used to prepare the cytokine complex. 435 

Thus, JES6-1A12-contaning IL2C seems to compensate for the limited bioavailability of IL-2 436 

for Treg survival during acute T. gondii infection, leading to reduced immunopathology, 437 

whereas S4B6-containing IL2C, whilst also reducing pathology without affecting parasite 438 

burden, does so in a Treg-independent manner. Thus, S4B6-containing IL2C seems to favor 439 

survival and expansion of IL-18-driven IFN-γ secretion, possibly driving parasites towards 440 

stage conversion and cyst formation. It is, hence, tempting to speculate that both types of 441 

complex could have a synergistic effect if applied together.  442 

 443 

Cytokine complex-mediated immunotherapy has not only attracted attention in models of 444 

infectious diseases but also in the cancer field [84]. IL2C treatment reduces viral load in a mouse 445 
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model of gamma-herpesvirus infection [85] and impacts positively on mouse melanoma [86] 446 

and BCL1 leukemia [87]. More recently, IL2C treatment has also been tested successfully in 447 

cancer models in combination with immune checkpoint blockade [88]. IL-15/IL-15Rα-Fc 448 

complexes (IL15C) have also been shown to expand CD8+ T cell, DN T cell and NK cell 449 

populations, and to protect mice against cerebral malaria via the induction of IL-10-producing 450 

NK cells [79]. Whether IL15C would also be protective in our model of lethal toxoplasmosis 451 

remains to be investigated. Taken together, these results suggest that cytokine complex 452 

treatment may be a more broadly applicable adjunct therapy in infectious diseases, but also 453 

highlight that the protective mechanisms may differ between different pathogens and cytokine 454 

complex types used. To our knowledge, no data are available yet on any clinical use of IL2C 455 

and IL15C in humans. It will be important to consider the hyper-inflammatory response that 456 

can be attributed to IL2C and IL15C treatment and, hence, careful consideration should be taken 457 

before using cytokine complexes clinically in the context of toxoplasmosis.  458 

 459 

In summary, here we delineate the mechanistic framework of how IFN-γ is produced by non-460 

CD4 cell types in vivo in response to T. gondii, including a crucial role for parasite viability, 461 

active invasion and inflammasome-dependent IL-18 secretion. We demonstrate that in vivo 462 

inflammasome activation in response to T. gondii occurs in multiple myeloid cell types and 463 

involves at least three different redundant inflammasomes. Additionally, our study excludes T. 464 

gondii-derived, ASP5-dependent, dense granule proteins as the main activators of 465 

inflammasomes in vivo. The observation that both IL-12 and IL-18 neutralization reverses the 466 

host protective role of CD8+ T cells, DN T cells and NK cell-produced IFN-γ during T. gondii 467 

infection highlights the redundancy and functional interchangeability of both cytokines during 468 

T. gondii infection. This combination of observations led us to the hypothesis that enhancement 469 

of inflammasome-dependent, IL18-driven production of IFN-γ by non-CD4 cells may be a 470 

route to control acute toxoplasmosis in AIDS. Consequently, we provide compelling evidence 471 
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for a protective role of IL2C pre-treatment in lethal toxoplasmosis. We demonstrate that IL2C-472 

mediated expansion of CD8+ T cells, NK cells and DN T cells protects mice against acute 473 

disease and death in an IFN-γ-dependent manner. Hence, we conclude that inducing immune 474 

responses that lead to the expansion of CD8+ T cells, DN T cells and NK cells in combination 475 

with inflammasome-dependent, IL-18-driven IFN-γ secretion could be a crucial feature of 476 

improved toxoplasmosis intervention strategies, particularly in the context of HIV co-infection. 477 

 478 

Materials and Methods 479 

Mice 480 

C57BL/6J and Arc(S) mice were purchased from the Animal Resource Center (Perth, 481 

Australia). Knockout mice (Caspase1/11–/–, Nlrp1-/-, Nlrp3–/– and Il18-/-) were bred and 482 

maintained at the Australian Institute of Tropical Health and Medicine, James Cook University, 483 

Cairns and Townsville, Australia. Double knockout mice (Nlrp1-/-Nlrp3-/-) mice were bred by 484 

sequentially crossing Nlrp1-/- [89] and Nlrp3-/- mice. Genotyping was performed using the 485 

following primer pairs: Nlrp3-F 5’-GCTCAGGACATACGTCTGGA-3’; Nlrp3-R 5’-486 

TGAGGTCCACATCTTCAAGG-3’; Nlrp3-R2 5’-TTGTAGTTGCCGTCGTCGTCCTT-3’; 487 

Nlrp1 WT: Nalp1aF 5’-TGGAAGGAAGGCAAGCTTTA-3’; Nalp1aR 5’-488 

ACCCAGGGAACTTCACACAG-3’; Nlrp1 mutant: Nalp1aF 5’-489 

TTTAGAGCTTGACGGGGAAA-3’; Nalp1aR 5’-GGAAGGACTTCCCACCCTAA-3’.   The 490 

following mice were used for experiments: Nlrp1-/-Nlrp3-/-, Nlrp1+/-Nlrp3-/- and Nlrp1-/-Nlrp3+/-491 

. For infection experiments, all mice were sex- and age-matched, and kept in our BSL 2 animal 492 

facility under specific pathogen-free (SPF) conditions.  493 

 494 

Parasites 495 

Type II T. gondii strains ME49, ME49-RFP, ME49 GRA20-deficient, ME49 GRA23-deficient, 496 

ME49 ASP5-deficient and DEG (ATCC, ATC50855) were maintained by continuous passage 497 
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in human foreskin fibroblasts (HFF; ATCC, ATCSCRC1041) in DMEM supplemented with 498 

10% FCS, penicillin, streptomycin and L-glutamine at 37°C and 5% CO2. Parasites were 499 

harvested from recently lysed cell monolayers, passed through a 26G needle and a 3 µm TSTP 500 

IsoporeTM membrane filter and concentrated by centrifugation at 500g for 10 minutes. The 501 

pellet of tachyzoites was re-suspended in sterile PBS. Parasites were counted using a Neubauer 502 

hemocytometer and diluted to the required infectious dose in sterile PBS.  503 

 504 

Generation of T. gondii ME49 Gra20 and Gra23 knockouts 505 

We employed a CRISPR/Cas9 approach to insert frameshifts within the first 20 nt of the start 506 

of the coding sequence of gra20 and gra23 in T. gondii Me49 with consequential disruption of 507 

the final translated proteins. Inverse PCR was used to exchange the sgRNA of UPRT with the 508 

sgRNA for GRA20 with Ph-sgRNA_TgGRA20mutF (5’-509 

ATGCATAGCCGGAACTGCGTGTTTTAGAGCTAGAAATAGC-3’) and Ph-genCas9mutR 510 

(5’-AACTTGACATCCCCATTTAC-3’) to yield plasmid pCAS9sgGRA20. Similarly, inverse 511 

PCR was used to exchange the sgRNA of UPRT with the sgRNA for GRA23 with Ph-512 

sgRNA_TgGRA23mutF (5’- 513 

GCAGCGCGTGCGGGAAGCAGGTTTTAGAGCTAGAAATAGC-3’) and Ph-514 

genCas9mutR (5’-AACTTGACATCCCCATTTAC-3’) to yield plasmid pCAS9sgGRA23. 515 

Transfection of T. gondii Me49 was carried out as described previously [90]. Twenty-four hours 516 

post-transfection, transiently transfected GFP+ parasites were purified by flow cytometry as 517 

previously described [91]  and individual GRA20 and GRA23 KO clones were further purified 518 

using two rounds of limiting dilution cloning. Sanger sequencing of PCR products was used to 519 

confirm disruption of the gra20 and gra23 ORFs. 520 

 521 

Infections 522 
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To isolate T. gondii ME49 bradyzoite containing cysts, the brains of chronically infected Arc(S) 523 

mice (injected i.p. with 500 tachyzoites of T. gondii ME49 >8 weeks prior) were removed, 524 

homogenized in sterile PBS, and subjected to centrifugation in a discontinuous Percoll gradient. 525 

Cysts were counted using a Neubauer hemocytometer and diluted in sterile PBS. For 526 

experiments, B6 mice were inoculated with 10, 40 or 100 cysts by oral inoculation. For 527 

mechanistic studies, B6 mice were injected i.v. in the lateral tail vein with 107 tachyzoites of T. 528 

gondii ME49, mutant strains on the T. gondii ME49 background or the Type II strain T. gondii 529 

DEG in a volume of 200 µl. For heat inactivation, T. gondii ME49 tachyzoites were grown as 530 

described above, enumerated, and washed twice with PBS before incubation at 62º C in a water 531 

bath for 1 hour. Effective killing was verified by addition of heat-killed parasites to a HFF cell 532 

monolayer. 533 

 534 

Isolation of leukocytes 535 

Spleens, mesenteric lymph nodes and Peyer’s Patches were extracted and mechanically 536 

disrupted by pushing cells through a 70 µm cell strainer. Subsequently, red-cell depleted, 537 

single-cell suspensions were prepared as described elsewhere [39]. Lamina propria cells were 538 

isolated from the ileum as published previously with minor modifications [92]. 539 

 540 

Scoring of pathology 541 

Gross pathology of ileum and liver was scored visually using a scoring system adapted from 542 

Melgar et al. [93]. For the ileum, the consistency of the intestinal contents, the degree of 543 

swelling and amount of angiogenesis were assessed. This system is based on an ascending scale 544 

of severity, for each parameter, as follows: 0 (no abnormality); 1 (minimal); 2 (moderate); or 3 545 

(severe). For the liver, the colour and appearance of the organ were assessed on an ascending 546 

scale of severity from 0 (normal colour and appearance); 1 (blotchy appearance with some areas 547 

exhibiting change in colour); 2 (entire organ pale in colour); or 3 (entire organ pale in colour 548 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 29, 2019. ; https://doi.org/10.1101/593574doi: bioRxiv preprint 

https://doi.org/10.1101/593574
http://creativecommons.org/licenses/by/4.0/


23 
 

with visible signs of necrosis). Scores for each parameter were added together to give a total 549 

score for each animal.  550 

 551 

Parasite burden 552 

Parasite burden was measured in the whole spleen of individual mice using a microtitre dilution 553 

method adapted from Buffet et al. [94] It was necessary to determine parasite burden in the 554 

spleen rather than the intestine because it was impossible to harvest immune cells for analysis 555 

from the intestine and determine parasite burden in the same animal; however, we have 556 

demonstrated previously that the parasite burden in the spleen accurately mirrors that in the 557 

intestine [50]. Briefly, prior to the experiment, 96 well plates were seeded with HFF cells and 558 

allowed to become confluent. One row was allocated per mouse and each mouse was done in 559 

duplicate. Spleens were removed and single-cell suspensions were made by passing through a 560 

70-µm cell strainer. Cells were pelleted at 1500g, and then resuspended in RPMI 1640 561 

containing 5% FCS at a concentration of 1×107 cells/ml. Two hundred microliters of spleen cell 562 

suspension was added to the first well of a 96-well plate and then serially diluted 1/2 across the 563 

plate. Plates were incubated at 37°C in 5% CO2 for 7 days before wells were examined for the 564 

presence of parasites. A score of parasite burden was allocated based on the last column in 565 

which parasites were visible.  566 

 567 

Flow cytometry 568 

To assess expression of surface antigens and IFN-γ secretion, viable, red blood cell-depleted 569 

single-cell suspensions were stained with monoclonal antibodies (all from BD Pharmingen) 570 

against CD4 (clone GK1.5), CD8α (clone 53-6.7), CD3 (clone 145-2C11), NKp46 (clone 571 

29A1.4), CD44 (clone 1M7), CD90.1 (clone 30-H12), CD11b (clone M1/70), CD11c (clone 572 

HL3), MHC-II (clone M5/114), CD11b ( clone M1/70), Ly6G (clone 1A8), Ly6C (clone AL-573 

21), CD19 (clone 1D3), F4/80 (clone BM8), or IFN-γ detection antibody (Miltenyi Biotec, 574 
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Germany). After washing the cells, samples were analyzed using a FACSCantoII or 575 

FortessaX20 analyzers (BD Biosciences, CA). Propidium iodide (2 μg/ml) was added to 576 

exclude dead cells. 577 

 578 

Assessment of ex vivo IFN-γ secretion  579 

Ex vivo IFN-γ secretion by distinct lymphocyte subsets was assessed as described previously 580 

[29]. Briefly, mice were injected i.v., i.p., or p.o. with different doses of T. gondii ME49 cysts 581 

or tachyzoites (as described in figure legends). At different time points after injection of 582 

parasites (as described in figure legends), organs were removed aseptically, single cell 583 

suspensions were prepared and red blood cells were lysed. Cells (106) were stained with the 584 

‘Mouse IFN-γ secretion assay detection kit’ (Miltenyi Biotec, Germany) according to the 585 

manufacturer’s instructions and IFN-γ secretion was analyzed by flow cytometry. 586 

 587 

Detection of in vivo inflammasome activation by flow cytometry 588 

Detection of apoptosis-associated speck-like protein containing a caspase recruitment domain 589 

(ASC) assembly was performed as described previously [95]. Briefly, mice were injected with 590 

107 T. gondii ME49-RFP tachyzoites and euthanased 24 hours later. Cells were stained for 591 

surface molecules, fixed, permeabilized and stained with rabbit anti-ASC antibody (Santa Cruz 592 

Biotechnology) for 45 min at room temperature. Subsequently, a secondary anti-rabbit 593 

Alexa488 antibody (Life Technologies) was added for 45 min at room temperature. A FMO 594 

control without anti-goat Alexa488 was included. 595 

 596 

Detection of active caspase-1 by flow cytometry was performed using the carboxyfluorescein 597 

FLICA kit (FAM-YVAD-FMK, Immunochemistry Techniques, Bloomington, MN). B6 mice 598 

were injected with 107 T. gondii ME49-RFP tachyzoites and 23 hours later FAM-YVAD-FMK 599 

(diluted in DMSO and PBS) was injected intravenously. Splenic cells were analyzed by FACS 600 
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1 hour later as described above (24 hours after T. gondii ME49-RFP injection). Mice that 601 

received T. gondii ME49-RFP but no FAM-YVAD-FMK were used as FMO control. RFP+ 602 

cells were analyzed for expression of cell specific surface markers and positivity in green 603 

fluorescence. 604 

 605 

Multiplex and ELISA 606 

Blood for serum analysis was taken post mortem from the aorta abdominalis and collected in 607 

serum separator tubes (BD), left for 30 minutes at room temperature, followed by centrifugation 608 

at 12,000g for 3 min. Sera were stored at –20°C until analysis. Measurements were performed 609 

using CBA (BD Biosciences, CA) or ELISA (elisakit.com, Australia) according to 610 

manufacturers’ instructions. Samples were acquired on a FACSCantoII (BC Biosciences, CA) 611 

or a FLUOstar Omega ELISA Reader (BMG Labtech).  612 

 613 

IL-2/anti-IL-2 complex-mediated cell expansion 614 

IL-2/anti-IL-2 complexes (IL2C) were prepared as described previously [38]. Briefly, 1.5 µg 615 

of recombinant mouse IL-2 (Peprotech) and 10 µg of anti-IL-2 mAb (clone S4B6, Walter and 616 

Eliza Hall Institute [WEHI] antibody facility, Melbourne, Australia) were mixed, incubated at 617 

37°C for 30 min, and administered i.p. in a volume of 200 µl for four consecutive days. 618 

 619 

Antibody-mediated cell depletion and cytokine neutralization 620 

For cytokine neutralization and cell depletion, monoclonal antibodies against IL-12, IL-18, 621 

IFN-γ, CD8, NK1.1, Thy1.2 and rat IgG were purchased from the WEHI antibody facility or 622 

from BioXCell (NH, USA). A total of 200 µg of anti-IL-18 (clone YIGIF74-1G7; Cat. No.: 623 

BE0237), anti-IFN-γ (clone HB170-15), anti-IL12 (clone C17.8), anti-NK1.1 (clone PK136), 624 

anti-CD8 (clone 2.43), anti-Thy1.2 (clone 30H12) or control rat IgG were injected i.p. weekly 625 

in a volume of 200 µl. 626 
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 627 

Statistics 628 

Flow cytometry data were analyzed using FlowJo software (Treestar, CA) and statistical 629 

analysis was performed using GraphPad Prism, GraphPad software, San Diego, CA as indicated 630 

in individual figure legends. One-way analysis of variance (ANOVA) was followed by 631 

Dunnett’s multiple comparison test, and two-tailed Student’s t tests were used. A Log-rank 632 

(Mantel-Cox) test was used to compare significance for survival experiments. A P value of less 633 

than 0.05 was considered significant. 634 

 635 

Ethics Statement 636 

All experiments were approved and conducted according to Australian animal protection law 637 

and in accordance with requirements of the Animal Ethics Committee of James Cook 638 

University (A2138, A2324). Death was never used as an endpoint. 639 

 640 
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Figure Captions 980 

Figure 1: Toxoplasma-driven IFN-γ secretion by non-CD4 immune cells following oral 981 

infection with brain cysts or intravenous (i.v.) infection with tachyzoites.  (A, B) Percent of 982 

IFN-γ+ cells amongst total viable splenic CD3+CD4+, CD3+CD8+, CD3+CD4–CD8– (DN) T 983 

cells and CD3–NKp46+ cells 1 day (A) or 5 days (B) after B6 mice were inoculated orally with 984 

10, 40 or 100 T. gondii ME49 brain cysts. (C) Percent of IFN-γ+ cells amongst total viable 985 

splenic CD3+CD4+, CD3+CD8+, CD3+CD4–CD8– (DN) T cells and CD3–NKp46+ cells at 2-72 986 

hours after B6 mice were injected i.v. with 107 T. gondii ME49 tachyzoites. (D) Percent of IFN-987 

γ+ cells amongst total viable splenic CD3+CD4+, CD3+CD8+, CD3+CD4–CD8– (DN) T cells and 988 

CD3–NKp46+ cells at 24 hours after B6 mice were injected i.p. with 107 T. gondii ME49 989 

tachyzoites. (E-G) Serum concentrations of IL-6 (E), TNFα (F) and IL-10 (G) at 2-72 hours 990 

after B6 mice were injected i.v. with 107 T. gondii ME49 tachyzoites. Results are presented as 991 

pooled data means ± SEM from at least two pooled independent experiments (n = 5-10 mice 992 

per group). See also S1 Figure. 993 

 994 

Figure 2: Rapid IFN-γ production in response to T. gondii requires IL-12 and IL-18. 995 

Percent of IFN-γ+ cells amongst total viable CD3–NKp46+ cells in the spleen (A, C) and serum 996 

cytokine concentrations (D-F) 24 hours after B6 or Il18-/- mice were injected i.v. with 107 T. 997 

gondii ME49 tachyzoites. Some mice received an i.p. injection of 200 µg mAb against IL-18 998 

and/or IL-12 immediately after injection of T. gondii. (B) Serum concentrations of IL-18, IL-999 

12p70 and IFN-γ at various time points after i.v. injection of 107 T. gondii ME49 tachyzoites. 1000 

Some mice were additionally treated with mAb against IL-12 and/or IL-18 immediately after 1001 

injection of T. gondii ME49. Results are presented as individual data points (A, C, D-F) or as 1002 

means  ± SEM (B) of 4-15 mice per group from at least two pooled independent experiments. 1003 

Statistical analyses: One-way ANOVA followed by Dunnett’s multiple comparison test; 1004 
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significant differences are indicated by asterisks: * p<0.05; ** p<0.01; *** p<0.001; **** 1005 

p<0.0001. 1006 

 1007 

Figure 3: IL-18-driven IFN-γ secretion to T. gondii depends on multiple redundant 1008 

inflammasomes. (A, B) Percent of IFN-γ+ cells amongst total CD3–NKp46+ cells in the spleen 1009 

(A) and serum IL-18 concentrations (B) 24 hours after i.v. injection of 107 T. gondii ME49 1010 

tachyzoites into B6 mice and different mouse strains lacking either Caspase1/11, Nlrp1, Nlrp3 1011 

or Nlrp1 and Nlrp3. Results are presented as individual data points of 3-25 mice per group from 1012 

at least two pooled independent experiments. Statistical analyses: One-way ANOVA per strain 1013 

followed by Dunnett’s multiple comparison test; significant differences are indicated by 1014 

asterisks: * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001; n.s. not significant. 1015 

 1016 

Figure 4: T. gondii activates inflammasomes in multiple cell types. (A, B) Percent of IFN-1017 

γ+ cells amongst total viable splenic CD3+CD4+, CD3+CD8+, CD3+CD4–CD8– (DN) T cells and 1018 

CD3–NKp46+ cells (A) and serum IL-18 levels (B) in naïve mice 24 hours after i.v. injection of 1019 

107 T. gondii ME49-RFP tachyzoites. (C, E) Representative FACS plots showing total viable 1020 

splenic RFP+ cells (C) and gated RFP+ cells (E) 24 hours after i.v. injection of 107 T. gondii 1021 

ME49-RFP tachyzoites. (D) IL-18 levels in supernatant of sorted RFP+ and RFP- cells after 1022 

incubation at 37°C for 24 hours. (F) Enumeration of RFP+ cell types shown in d. (G) 1023 

Representative histograms of cell type-specific gated RFP+ and RFP- cells showing expression 1024 

levels of ASC (left panels) or FAM-YVAD (right panels) 24 hours after i.v. injection with 107 1025 

T. gondii ME49-RFP tachyzoites. FMO control for ASC panels are cells from infected animals 1026 

that did not get stained with anti-ASC-Alexa488 but all other antibodies. FMO control for 1027 

FAM-YVAD are cells from mice that were injected with T. gondii ME49-RFP but did not 1028 

receive an injection with FLICA FAM-YVAD. Results are presented as individual data points 1029 

(D, F), pooled data means ± SEM (A, B) and representative FACS plots (C, E) and histograms 1030 
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(G) of 6-9 mice from two or three pooled independent experiments. Statistical analyses: One-1031 

way ANOVA followed by Dunnett’s multiple comparison test (A) or Student’s t-test (B, D); 1032 

significant differences are indicated by asterisks: * p<0.05; ** p<0.01. 1033 

 1034 

Figure 5: IL-18 driven IFN-γ secretion to T. gondii depends on parasite invasion but is 1035 

independent of secreted GRA proteins. Percent of IFN-γ+ cells amongst total viable splenic 1036 

CD3–NKp46+ cells (A, C) and serum IL-18 levels (B, D) in naïve mice 24 and 48 hours after 1037 

i.v. injection of live 107 T. gondii ME49 (A-D), DEG (C, D) or ME49ΔASP5 tachyzoites (C, 1038 

D), heat-killed (A, B) or sonicated ME49 tachyzoites (A, B), or HFF debris with culture 1039 

supernatant (A, B). Results are presented as individual data points of 4-15 mice per group from 1040 

at least two pooled independent experiments. Statistical analyses: One-way ANOVA per time-1041 

point followed by Dunnett’s multiple comparison test; significant differences are indicated by 1042 

asterisks: *** p<0.001; n.s. not significant. See also S2 Figure. 1043 

 1044 

Figure 6: IL2C treatment expands IL-18-responsive IFN-γ-secreting cell subsets 1045 

(A-D) Naïve B6 mice were treated i.p. with IL2C on four consecutive days. One day after the 1046 

last administration, mice were euthanased and numbers of CD3+CD8+, CD3+CD4–CD8– (DN) 1047 

and CD3-NKp46+ cells in spleen (B), MLN (C) and PP (D) were assessed by FACS. (E, F) 1048 

Naïve B6 mice were treated i.p. with IL2C on four consecutive days. Two days after the last 1049 

IL2C treatment mice were injected i.v. with 107 T. gondii ME49 tachyzoites and proportions 1050 

(E) and total numbers (F) of viable splenic CD3–NKp46+ IFN-γ+ cells were enumerated 24 1051 

hours later. (G) IFN-γ serum concentrations 24 hours after mice were injected i.v. with 107 T. 1052 

gondii ME49 tachyzoites. (H, I) Expression of IL18R (H) and IL12R (I) on IFN-γ- (blue 1053 

histogram) and IFN-γ+ CD3–NKp46+ cells after i.v. infection with 107 T. gondii ME49 1054 

tachyzoites with (orange histogram) or without (red histogram) IL2C treatment. Results are 1055 

presented as pooled data means ± SEM with individual data points (G-I) from at least two 1056 
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pooled independent experiments with 5-6 mice per group (B-I) and as representative histograms 1057 

and individual data points of mean fluorescent intensity (H, I). Statistical analyses: One-way 1058 

ANOVA followed by Tuckey’s multiple comparison test (A-D); significant differences are 1059 

indicated by asterisks: * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001; n.s. not significant. 1060 

See also S3 Figure. 1061 

 1062 

Figure 7: IL2C pre-treatment protects mice from acute, lethal toxoplasmosis 1063 

independently of TReg expansion and parasite burden. (A-C) Naïve B6 mice were treated 1064 

i.p. with IL2C on four consecutive days or left untreated. Two days after the last IL2C treatment, 1065 

mice were inoculated orally with 10 or 40 T. gondii ME49 brain cysts and survival was assessed 1066 

over time. (D-F) Naïve B6 mice were treated i.p. with IL2C on four consecutive days. Two 1067 

days after the last IL2C treatment, mice were inoculated orally with 10 T. gondii ME49 brain 1068 

cysts. IL2C-treated animals received weekly i.p. injections with mAb against CD8, NK1.1, 1069 

Thy1.2, IFN-γ or control rIgG (E) or against IL-12, IL-18, IFN-γ (F). Survival was assessed 1070 

over time (B, C, E, F). Gross pathology of the intestine (G) and liver (H) was assessed 9 days 1071 

after infection with 10 T. gondii ME49 brain cysts. Parasite burden was assessed using 1072 

splenocytes (I). CD3+CD4+CD25+Foxp3+ regulatory T cells were enumerated in MLN and LP 1073 

at 2, 4 and 9 days after infection. Representative FACS plots from day 2 after infection (J) and 1074 

mean TReg numbers ± SEM in MLN (K) and LP (L) are shown. Results are presented as 1075 

individual data points (G-I), pooled data means (B, C, E, F, K, L) or representative FACS plots 1076 

(J) from two to three pooled independent experiments with 5-15 mice per group. Statistical 1077 

analyses: One-way ANOVA followed by Dunnett’s multiple comparison test (G-I, K, L) or 1078 

Log-rank (Mantel-Cox) test (B, C, E, F); significant differences are indicated by asterisks: * 1079 

p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001.  1080 

 1081 

 1082 
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S1 Figure: Low dose injection of T. gondii ME49 tachyzoites does not induce rapid IFN-γ 1083 

secretion. Percent of IFN-γ+ cells amongst total viable CD3+CD4+, CD3+CD8+, CD3+CD4–1084 

CD8– (DN) T cells and CD3–NKp46+ cells in three Payers Patches 1 day (A) or 5 days (B) after 1085 

B6 mice were inoculated orally with 10, 40 or 100 T. gondii ME49 brain cysts; 2-72 hours after 1086 

mice were injected i.v. with 107 T. gondii ME49 tachyzoites (C) or 24 hours after mice were 1087 

infected i.p. with 107 T. gondii ME49 tachyzoites (D). (E) Percent of IFN-γ+ cells amongst total 1088 

viable CD3+CD4+, CD3+CD8+, CD3+CD4–CD8– (DN) T cells and CD3–NKp46+ cells from 1089 

spleen, mesenteric lymph nodes or three Peyers Patches (PP) at 2-72 hours after B6 mice were 1090 

injected i.p. or i.v. with 105 T. gondii ME49 tachyzoites. Results are presented as individual 1091 

data points (E) or pooled data means (A-D) from two pooled independent experiments with 3-1092 

10 mice per group. 1093 

 1094 

S2 Figure: IL-18 driven IFN-γ secretion to T. gondii is independent of secreted GRA 1095 

proteins. Percent of IFN-γ+ cells amongst total viable splenic CD3–NKp46+ cells in naïve mice 1096 

24 hours after i.v. injection of 107 T. gondii ME49, ME49 GRA20-deficient or ME49 GRA23-1097 

deficient tachyzoites. Mice were treated with mAb against IL-12 immediately after injection of 1098 

T. gondii. Results are presented as individual data points of 4-15 mice per group from at least 1099 

two pooled independent experiments. Statistical analyses: One-way ANOVA followed by 1100 

Dunnett’s multiple comparison test; not significant. 1101 

 1102 

S3 Figure: IL2C treatment expands IL-18 responsive IFN-γ-secreting cell subsets but has 1103 

no impact on upstream IL-18 secretion 1104 

(A, B) Naïve B6 mice were treated i.p. with IL2C on four consecutive days. Two days after the 1105 

last IL2C treatment mice were injected i.v. with 107 T. gondii ME49 tachyzoites and viable 1106 

splenic CD3+CD4+, CD3+CD8+, CD3+CD4–CD8– (DN) T cells IFN-γ-secreting cells (A) were 1107 
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40 
 

enumerated 24 hours later, and serum IL-18 (B) levels were measured. Statistical analyses: 1108 

One-way ANOVA followed by Dunnett’s multiple comparison test; significant differences are 1109 

indicated by asterisks: * p<0.05; ** p<0.01; *** p<0.001; n.s. not significant. 1110 
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Figure 1: A model to study Toxoplasma-driven IFNγ secretion by non-CD4 immune cells following oral
               infection with brain cysts or intravenous infection with tachyzoites
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Figure 2: Rapid IFNγ-production in response to T. gondii requires IL12 and IL18
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Figure 5: IL18-driven IFNγ secretion to T. gondii depends on parasite invasion
               but is independent of secreted GRA proteins
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Figure 7: IL2C treatment protects mice from lethal toxoplasmosis independently
               of TReg expansion and parasite burden
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