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ABSTRACT 2 

Anterograde interference refers to the negative impact of prior learning on the propensity 3 

for future learning. Previous work has shown that subsequent adaptation to two 4 

perturbations of opposing sign, A and B, impairs performance in B. Here, we aimed to 5 

unveil the mechanism at the basis of anterograde interference by tracking its impact as a 6 

function of time through a 24h period. We found that the memory of A biased performance 7 

in B for all time intervals. Conversely, learning from error was hindered up to 1h following 8 

acquisition of A, with release from interference occurring at 6h. These findings suggest 9 

that poor performance induced by prior learning is driven by two distinct mechanisms: a 10 

long-lasting bias that acts as a prior and hinders the initial level of performance, and a 11 

short-lasting learning impairment that originates from a reduction in error-sensitivity. Our 12 

work provides insight into the timeline of memory stabilization in visuomotor adaptation. 13 

 14 

 15 

  16 
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INTRODUCTION 17 

We gain robustness through adaptation: in the face of environmental and/or internal 18 

perturbations, adaptation maintains the precise control of elementary movements like 19 

reaching and saccades. Like other types of learning, adaptation may lead to interference 20 

or facilitation depending on the level of congruency of sequentially learned materials. 21 

Facilitation of learning is commonly referred to as savings, a process by which subsequent 22 

exposure to the same perturbation results in faster learning (Krakauer, 2009). In contrast, 23 

successive adaptation to opposing perturbations (e.g., rotation A followed by rotation B) 24 

may lead to a deficit in the learning of B. This phenomenon, known as anterograde 25 

interference, has been reported in visuomotor and force-field adaptation paradigms when 26 

successively adapting to conflicting perturbations within the same reaching task (Brashers-27 

Krug, Shadmehr, & Bizzi, 1996; Sing & Smith, 2010; Tong & Flanagan, 2003; Wigmore, 28 

Tong, & Flanagan, 2002). Yet, there is currently no consensus on whether anterograde 29 

interference is transient or long lasting. In fact, whereas some studies suggest that 30 

anterograde effects may last less than a few hours (e.g., Brashers-Krug et al., 1996; 31 

Thoroughman & Shadmehr, 1999), others appear to point to a long lasting impact in the 32 

time scale of days (Caithness et al., 2004; Miall, Jenkinson, & Kulkarni, 2004). It has even 33 

been suggested that anterograde interference may be stronger than retrograde 34 

interference (Caithness et al., 2004; Miall et al., 2004; Sing & Smith, 2010), masking the 35 

effect of interest in retrograde protocols aimed at unveiling the time course of memory 36 

consolidation (Miall et al., 2004).  37 

This lack of consensus may be partly due to the manner in which anterograde 38 

interference is quantified (Sing, Joiner, Nanayakkara, Brayanov, & Smith, 2009). Previous 39 

studies estimated the amount of interference predominantly based on the initial level of 40 

performance, computed by averaging through the first trials of the learning curve. This 41 

empirical measure does not discriminate between changes in learning rate and retention. 42 
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That is, initial performance in B is a mixture of how much the subject has retained what 43 

they learned in A, and how much they can learn from errors experienced in B. If 44 

anterograde interference arises from impairment in the ability to learn, one would expect 45 

that prior exposure to A would reduce the learning rate in B. Yet, with the exception of Sing 46 

& Smith (2010) no study that we are aware of has focused on the rate of learning as the 47 

fundamental measure of anterograde interference.  48 

Here, we aimed to unveil the origins of anterograde interference by varying the time 49 

interval elapsed between adaptation to opposing rotations through a 24 h period. Our 50 

experimental approach allowed us to estimate the contribution of a prior memory 51 

independently from the ability to learn. The recruitment of a large number of subjects (n = 52 

93) allowed us to analyze and contrast individual measures of learning during adaptation 53 

to A and B, when the two events were separated by 5 min, 1 h, 6 h and 24 h. In addition, 54 

we analyzed cycle-by-cycle learning using a state-space model (Albert & Shadmehr, 2018; 55 

Cheng & Sabes, 2006; Donchin, Francis, & Shadmehr, 2003; Ethier, Zee, & Shadmehr, 56 

2008; Smith, Ghazizadeh, & Shadmehr, 2006). This allowed us to identify the impact of 57 

anterograde interference on three variables: initial state, error-sensitivity, and retention.  58 

We found that poor performance observed when A and B are learned successively 59 

is driven by two distinct phenomena operating on different time scales: the influence of a 60 

prior memory that biases initial behavior, and an impairment in the ability to learn from 61 

errors in the new context. Whereas the former appears to impact behavior on a scale of 62 

days, the latter resolves within a 6 h period.  63 

 64 

MATERIALS AND METHODS 65 

Participants  66 

Ninety-three healthy volunteers (33 males; ages: mean ± std. dev. 24±4 years old) with no 67 

known history of neurological or psychiatric disorders were recruited from the School of 68 
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Medicine of the University of Buenos Aires. All subjects were right handed as assessed by 69 

the Edinburgh handedness inventory (Oldfield, 1971). The experimental procedure was 70 

approved by the local Ethics Committee and carried out according to the Declaration of 71 

Helsinki. 72 

 73 

Experimental Paradigm 74 

Subjects were seated in a comfortable chair and performed a center-out-back task using a 75 

joystick operated with the thumb and index fingers of their right hand. Visual information 76 

was presented on a computer screen. The right elbow laid comfortably on an armrest and 77 

the wrist laid on a structure that fixed the joystick over a desktop. Subjects were told to 78 

maintain the same wrist posture across experimental sessions. Vision of the hand was 79 

occluded throughout the study.  80 

At the beginning of each trial, we displayed one of 8 potential targets (0.4 cm 81 

diameter, placed 2 cm from the start point and concentrically located 45° from each other) 82 

on a computer screen. Joystick position was represented on the screen with a grey cursor 83 

of the same size as the target. The gain of the joystick was set to discourage subjects from 84 

correcting their movements online. Specifically, a displacement of 1.44 cm of the tip of the 85 

joystick moved the cursor on the screen by 2 cm. On average, movement time for correct 86 

trials was 125.5 ± 26.6ms (mean ± 1 std. dev.), providing little or no opportunity for within-87 

movement corrections based on visual feedback. Participants were instructed to make a 88 

shooting movement through the target, as fast as possible, starting at target onset. There 89 

were 8 trials per cycle (one for each target) and 11 cycles per block. The order of target 90 

presentation was randomized within each cycle. 91 

Two types of trials were presented throughout the experimental session (Fig. 1A). 92 

During null trials, participants performed shooting movements in the absence of a 93 

perturbation. During perturbed trials, a counterclockwise (CCW, labeled as perturbation A), 94 
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or a clockwise (CW, labeled as perturbation B) visual rotation of 30° was applied to alter 95 

the trajectory of the cursor.  96 

Feedback about the subject’s movement was provided on each trial via the color of 97 

the cursor, which varied along a gradient between red (miss) and green (hit). Furthermore, 98 

subjects had a limited amount of time to complete the movement after the appearance of 99 

the target. If the elapsed time exceeded 900 ms, the trial was aborted and the cursor was 100 

turned red until the next trial. Target hits with error < 2.5° were rewarded with a simulated 101 

sound of an animated explosion. The total score (hit percentage) was displayed on the 102 

screen at the end of each block. Subjects were instructed to try to maximize this score 103 

throughout the experiment. The task was programmed using MATLAB’s Psychophysics 104 

Toolbox, Version 3 (Brainard, 1997).  105 

 106 

Experimental Procedure 107 

Figure 1A illustrates the experimental design. Participants were randomly assigned to one 108 

of four experimental groups or a control group. The experimental groups (Fig. 1A) 109 

performed one block (11 cycles) of null trials followed by six blocks (66 cycles) of CCW 110 

perturbed trials (perturbation A). After a variable time interval, they performed six blocks 111 

(66 cycles) of the CW perturbation (perturbation B). The four experimental groups were 112 

distinguished by the amount of time that separated the two rotations: 5 min (n = 16), 1 h (n 113 

= 20), 6 h (n = 19), and 24 h (n = 18). This variation in the period between perturbations A 114 

and B allowed us to assess how the passage of time impacted on the initial level of 115 

performance in B (first cycle), as well as on each subject’s ability to adapt to B. 116 

A group of subjects (n = 20) experienced only the B perturbation. This control group 117 

served two purposes. First, it was critical for our analysis of anterograde interference, 118 

serving as our benchmark for performance in B without any potential influence of learning 119 

in A. Second, given that subjects always learned A before B, this group was key in ruling 120 
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out an order effect. Control subjects performed 1 block (11 cycles) of null trials followed by 121 

6 blocks (66 cycles) of B. 122 

 123 

Data post-processing 124 

For each trial, the pointing angle was computed based on the angle of motion of the 125 

joystick relative to the line segment connecting the start and target positions. Trials in 126 

which pointing angles exceeded 120° or deviated by more than 45° from the median of the 127 

trials for each cycle were excluded from further analysis (1.6% of all trials). After this 128 

processing, the trial-by-trial data were converted to cycle-by-cycle time series by 129 

calculating the median pointing angle in each 8-trial cycle for each subject. Unless 130 

otherwise noted, the cycle-by-cycle data were used for each analysis reported in this work. 131 

 132 

Model-free data analysis 133 

We empirically quantified each subject’s learning rate in A and B by fitting a single 134 

exponential function (Eq. 1) to the pointing angle corresponding to the A and B periods.  135 

     ex( p) t cy t  (Eq. 1) 136 

Here ( )y t  represents the pointing angle on cycle t. The first cycle of the rotation was 137 

represented by t = 0.  The exponential fits included three parameters. The parameters α 138 

and c determine the initial bias and the asymptote of the exponential, respectively. The 139 

parameter   represents the learning rate of the subject. We constrained the relationship 140 

between α and c to force the exponential fit to intersect subject behavior at time step t = 0. 141 

Therefore, the exponential function had only two free parameters; the third was fixed by 142 

the initial level of subject performance. We fit one exponential function to the 66 cycles of 143 

the A rotation and another one to the 66 cycles of the B rotation (Figure 1). Each period 144 
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was fit using the fmincon function (MATLAB 2018a) to minimize the squared error between 145 

subject behavior and the exponential fit. 146 

Although the exponential function closely approximates the decay of motor error 147 

during adaptation to a single perturbation, its learning rate parameter reflects a mixture of 148 

cycle-by-cycle forgetting and error-based learning. This potentially confounds our analysis 149 

of interference because during the A perturbation, the direction of forgetting (always 150 

towards baseline performance) opposes the direction of error-based learning. However, 151 

during the B perturbation, an initial bias in the performance of the experimental groups 152 

towards A causes forgetting and error-based learning to act in the same direction. This 153 

relationship switches once subjects pass the “zero point” of baseline performance: here 154 

retention and error-based learning again oppose one another. These considerations 155 

illustrate the difficulties inherent in using exponential fits to disambiguate the differential 156 

effects learning and forgetting may have on behavior. 157 

 158 

State-Space Model 159 

To better quantify subject performance in A and B, we used a state-space model that 160 

dissociates the effect of cycle-to-cycle learning from forgetting while appreciating initial 161 

biases in learning. 162 

When people perform a movement that produces an unexpected result, they learn 163 

from their movement error and retain part of this learning over time. In other words, 164 

behavior during sensorimotor adaptation can be described as a process of error-based 165 

learning and trial-by-trial forgetting (Donchin et al., 2003; Smith et al., 2006; Thoroughman 166 

& Shadmehr, 2000). State-space models of learning consider how the behavior of a 167 

learner changes due to trial-by-trial error-based learning, and decay of memory due to the 168 

passage of time (i.e., trials). To examine the anterograde interference of A on B, we fit a 169 

single module state-space model to the empirical data. This allowed us to ascribe any 170 
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differences in performance during the B period to meaningful quantities: sensitivity to error, 171 

forgetting rate, and initial state. 172 

We imagined that the state of the learner (the internal estimate of the visuomotor 173 

rotation) changed from one cycle to the next, due to error-based learning and partial 174 

forgetting, according to Eq. (2). 175 

 
       



  

1t t t t

x
x ax be  (Eq. 2) 176 

Here 
 t

x  represents the state of the learner on cycle t. The parameter a  is a retention 177 

factor that encapsulates how well the subject retains a memory of the perturbation from 178 

one cycle to the next. The parameter b  represents sensitivity to error and determines the 179 

rate at which each subject learns from error. The error sensitivity is multiplied by the visual 180 

error 
 t

e  between the pointing angle and target. The change in state from one cycle to the 181 

next is corrupted by state noise 
 


t

x
 which we assumed to be Gaussian with mean zero 182 

and variance equal to 
2

x . 183 

The internal state of the subject is not a measurable quantity. Rather, on each 184 

cycle, the motor output of the subject is measured. We imagine that the motor output 185 

directly reflects the internal state but is corrupted by motor execution noise according to 186 

Eq. (3). 187 

      
 

t t t

y
y x  (Eq. 3) 188 

As with our exponential fit of Eq. (1), here 
 t

y  represents the subject’s pointing angle on 189 

cycle t. We assumed that the motor execution noise 
 


t

y
 corrupting the reaching movement 190 

was Gaussian with mean zero and variance equal to 
2

y
. 191 

We fit the state-space model to cycle-by-cycle single subject behavior using the 192 

Expectation Maximization (EM) algorithm (Albert & Shadmehr, 2018). The algorithm 193 
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identified the parameter set that maximized the likelihood of observing each sequence of 194 

subject pointing angles given the parameters and structure of our state-space model. This 195 

parameter set contained 6 parameters: the retention factor a , error sensitivity b , state 196 

noise variance 
2

x , motor noise variance 
2

y
, and two parameters describing the initial 197 

state of the learner. We modeled the initial state of the learner as a normally distributed 198 

random variable with mean 1
x  and variance 

2

1 . The parameter 1
x

 
served as our estimate 199 

of the initial bias of the learner. 200 

To fit the model, we started the EM algorithm from 5 different initial parameter sets, 201 

performed 100 iterations of the algorithm (Albert & Shadmehr, 2018), and selected the 202 

parameter set with the greatest likelihood. We fit our state-space model to single subject 203 

behavior separately for the A and B periods. For the A period, we fit the 77 cycles 204 

encompassing the first 11 null cycles and the following 66 CCW rotation cycles (Fig. 1). 205 

We fit the initial null trials along with the perturbation trials to increase confidence in the 206 

model parameters. For the B period, we fit the 66 cycles encompassing the CW rotation 207 

(Fig. 1). 208 

 209 

Validation of the single state-space model 210 

Our primary analysis assumed that learning could be represented using a single adaptive 211 

state. For a single state system, impairment in the learning rate in B requires that the 212 

learning system (i.e., the model parameters) has changed from the A to the B period. Prior 213 

accounts of anterograde interference considered how an impairment of learning might 214 

arise from the emergent properties of a two-state system (Sing & Smith, 2010). A two-state 215 

system might show a change in learning rate during the B period even if the system has 216 

not changed, simply due to differing initial biases in the underlying adaptive states of the 217 

system. 218 
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To validate the choice of a single state model, in a set of mathematical control 219 

studies, we tested if our findings were also consistent with the predictions of a two-state 220 

framework. For this analysis, we fit a two-state model of learning to the A and B 221 

sequences of subject pointing angles. The two-state model of learning is equivalent to the 222 

single state model of learning, with the exception that learning is described as the 223 

combined output of two parallel adaptive states, a fast learning state and a slow learning 224 

state. The states evolve over trials according to Eq. (4). 225 

 

       

       









  

  

1

1

t t t t

s s x

t t t t

f

s s

f f f x

x a x b e

x a x b e
 (Eq. 4) 226 

Here, the slow and the fast states are represented by the quantities sx and fx ,  227 

respectively. As with the single state model (Eq. 2) each state changes due to forgetting 228 

(described by its retention factor a) and error-based learning (described by its error 229 

sensitivity b). These internal estimates of the perturbation are additively combined to 230 

determine motor behavior according to Eq. 5. 231 

 
         
t t t t

s f yy x x  (Eq. 5) 232 

We fit this two-state model of learning to subject behavior during the A and B periods using 233 

the EM algorithm (Albert & Shadmehr, 2018). The algorithm identified the parameter set 234 

that maximized the likelihood of observing each sequence of subject pointing angles. We 235 

fit the model to the same cycles in A and B described for the single state model fits. To fit 236 

the model, we started the EM algorithm from 20 different initial parameter sets, performed 237 

250 iterations of the algorithm, and selected the parameter set with the greatest likelihood. 238 

The model parameter set consisted of 9 variables: slow and fast retention factors s
a  and f

a239 

, slow and fast error sensitivities s
b  and f

b , the variances of state evolution and motor 240 

execution, and three parameters for the initial state of the learner. We modeled the initial 241 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2019. ; https://doi.org/10.1101/593996doi: bioRxiv preprint 

https://doi.org/10.1101/593996
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

 

 

fast and slow states as normally distributed random variables with mean 
 1

s
x and 

 1

f
x , and 242 

variance
2

1 . Each model was fit under the linear constraints 
f s

b b and 
s f

a a . These 243 

constraints enforce that the slow state learns more slowly than the fast state, but also 244 

retains its memory better from one trial to the next (Smith et al., 2006). 245 

We compared the single state model and two-state model in their abilities to 246 

describe subject behavior. To compare these models, we computed the Bayesian 247 

Information Criterion (BIC) according to Eq. 6. 248 

     
max

log 2logBIC k n L  (Eq. 6) 249 

Here k represents the number of model parameters (6 for the single state model, 9 250 

for the two-state model), n represents the number of data points, and 
max

L  represents the 251 

maximum likelihood for the model fit obtained using the EM algorithm. To obtain a single 252 

estimate of BIC for each subject, we averaged the BIC over the A and B periods. To 253 

quantify the evidence for each model, we compared the BIC distributions for the single 254 

state and two-state models for all subjects in the experimental groups using a paired t-test. 255 

Finally, to test the hypothesis (Sing & Smith, 2010) that a learning impairment in B 256 

could trivially arise from the interplay between fast and slow state dynamics (rather than an 257 

actual impairment in the learning system) we simulated behavior during the B period using 258 

a two-state model, and compared this behavior to actual subject behavior. We reasoned 259 

that if the learning system did not differ across the A and B periods, the B period behavior 260 

should be predicted by the model parameters fit to the A period. To test this idea, we used 261 

the model parameters fit to the A period to simulate individual subject behavior during the 262 

B period, focusing specifically on the 5 min group that demonstrated the greatest amount 263 

of interference. 264 
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To simulate behavior in the B period, we calculated the expected value of subject 265 

performance by removing the noise terms in Eqs. 4 and 5. Due to the passage of time, 266 

behavior at the start of the B period exhibited decay relative to the performance at the end 267 

of the A period. We accounted for this forgetting using the initial biases in the fast and slow 268 

states. To do this, we calculated the amount of forgetting that occurred from the last cycle 269 

in A to the first cycle in B, as a percentage. We then estimated the final levels of the slow 270 

and fast states in A by simulating behavior in A using Eqs. 4 and 5, without any noise 271 

terms. For our simulation of the B period, we set the initial fast and slow state levels to the 272 

final levels in A, scaled down by the forgetting percentage. 273 

We calculated the rate of learning using our exponential model (Eq. 1) of behavior 274 

both for the actual behavior recorded in B and the behavior simulated using the two-state 275 

model. We compared these rates using a paired t-test to determine how well the two-state 276 

parameters from the A period accounted for the interference observed in the B period. 277 

 278 

Statistical assessment 279 

Statistical differences were assessed at the 95% level of confidence. Prior to statistical 280 

testing, outlying parameter values were detected and removed based on a threshold of 281 

three median absolute deviations from the group median. For cases where our variables of 282 

interest did not fail tests for normality and equality of variance, we used a one-way ANOVA 283 

for our statistical testing. In cases where the statistical distributions failed tests for both 284 

equal variance across groups (Bartlett’s test) and normality (Shapiro-Wilk test) we used 285 

the Kruskal-Wallis test to detect non-parametric differences across experimental groups. In 286 

cases where our statistical tests indicated a significant effect of group (p < 0.05), we used 287 

either Tukey’s test (following one-way ANOVA) or Dunn’s test (following Kruskal-Wallis) for 288 

post-hoc testing. For the latter, pairwise tests of all experimental groups were conducted 289 

against the control group and Bonferroni corrected. In cases where one-way ANOVA was 290 
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used for statistical testing, complementary figures depict the mean statistical quantity for 291 

each group as well as the standard error of the mean, calculated assuming a normal 292 

distribution. In cases where Kruskal-Wallis was used for statistical testing, complementary 293 

figures depict the median statistical quantity for each group as well as the standard error of 294 

the median (estimated with bootstrapping). When comparing mean values against zero, a 295 

one-sample t-test test was used followed by the Bonferroni correction for multiple 296 

comparisons. 297 

 298 

RESULTS  299 

When people adapt to perturbation A, and then switch to the opposite perturbation B, 300 

performance in B appears impaired (Brashers-Krug et al., 1996; Braun, Aertsen, Wolpert, 301 

& Mehring, 2009; Caithness et al., 2004; Shadmehr & Brashers-Krug, 1997; Tong & 302 

Flanagan, 2003). Pinpointing the origin of this behavioral deficit is difficult because 303 

performance in B may reflect two different processes: the level of retention of the memory 304 

of A, and the ability to learn B. In addition, these factors may vary independently as a 305 

function of time. Our study aimed to dissociate between these two factors by varying the 306 

time interval elapsed between A and B as subjects adapted to conflicting visuomotor 307 

rotations. 308 

On each trial, subjects moved a joystick to displace a cursor to one of 8 targets. On 309 

average, movement time for correct trials was 125.5 ± 26.6ms (mean ± 1 std. dev.), 310 

providing little or no opportunity for within-movement corrections. All groups initially trained 311 

in a baseline period of null trials (no perturbation) followed by adaptation to perturbation A 312 

(Figure 1A). After completion of training in A, subjects waited for a specific amount of time 313 

(5 min, 1 h, 6 h or 24 h), and then were exposed to perturbation B. Figure 1B shows the 314 

pointing angle during null trials (cycles 1 to 11), learning of A (cycles 12 to 77) and learning 315 

of B (cycles 78 to 143) for each of the experimental groups (black curves) and the control 316 
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group (red curve). Pointing angle refers to angle of motion of the joystick relative to the line 317 

segment connecting the start and target positions. As expected, the pointing angle during 318 

null trials was close to zero. During exposure to perturbation A, subjects shifted their 319 

pointing angle gradually, asymptotically approaching -30° (Shmuelof et al., 2015). After 320 

adapting to A and waiting the assigned time, subjects returned and were exposed to 321 

perturbation B. 322 

How did learning of A impact performance in B? We quantified the initial level of 323 

performance in B as the mean pointing angle during the first cycle of adaptation for each 324 

group (Fig. 2A). Given that little or no learning is expected to take place in one cycle (1 325 

cycle = one trial per target), this measure allowed us to estimate the recall of A. The initial 326 

level of performance in B was biased towards A, and decayed as a function of time (Fig. 327 

2A, one-way ANOVA, F(69,3) = 3.37, p = 0.029; Tukey’s test, 5 min marginally different from 328 

6 h with p = 0.073, 5 min different from 24 h with p = 0.029, all other comparisons have p > 329 

0.358). Notably, even at 24 h the memory of A remained strong, exhibiting nearly 50% 330 

retention (one-sample t-test against zero with Bonferroni correction: p < 0.001 for all 331 

groups). This observation is consistent with the presence of a lingering memory of A 332 

(Shadmehr & Brashers-Krug, 1997; Thoroughman & Shadmehr, 1999). 333 

In summary, during initial performance in B the movements were strongly 334 

influenced by the presence of a memory of A. This memory decayed with time, but was 335 

still present at 24 h.  336 

 337 

Model-free analysis 338 

In order to assess if having learned A also impaired the ability to learn B, we fit the motor 339 

output for each subject and each group during adaptation to A and B with an exponential 340 

function (Eq. 1). We found that during the A period there was no difference in the learning 341 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2019. ; https://doi.org/10.1101/593996doi: bioRxiv preprint 

https://doi.org/10.1101/593996
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

 

 

rates across the four experimental groups (Kruskal-Wallis, X2(62) = 4.75, p = 0.19). 342 

Therefore, the various groups were indistinguishable during learning of A. 343 

 Did prior exposure to A interfere with the rate at which B was acquired? To quantify 344 

the ability to learn B, we statistically compared the rate of change in performance for each 345 

experimental group during adaptation to B with that of the control group (Figure 2B). Non-346 

parametric testing revealed a significant effect of group on the ability to learn B (Fig. 2B; 347 

Kruskal-Wallis, X2(80) = 10.84, p = 0.029). Post-hoc comparison between each 348 

experimental group and the control group identified a significant difference at 5 min and 1 349 

h (Dunn’s test with Bonferroni correction, 5 min different from control with p = 0.044, 1 h 350 

different from control with p = 0.024), that disappeared by 6 h (6 h and 24 h not different 351 

from control with p > 0.952). This temporal pattern in the impairment of motor learning is 352 

consistent with anterograde interference (Krakauer, 2009). 353 

To visualize differences in the learning of B, we artificially aligned the performance 354 

of the control group to each experimental group by shifting the control learning curve along 355 

the time axis (Figure 3). This procedure makes use of a fundamental property of 356 

exponential functions:  357 

                 𝛼1 exp(−𝛽𝑡) = 𝛼2 exp(−𝛽(𝑡 − 𝑡0)) , 𝑤ℎ𝑒𝑟𝑒 𝑡0 = ln (
𝛼1

𝛼2
) /𝛽                 (Eq. 7) 358 

 359 

 If two exponentials start at different points (𝛼1 𝑎𝑛𝑑 𝛼2) but share the same decay rate 𝛽, 360 

then shifting one in time by 𝑡0 will result in complete overlap of the two functions.  361 

To optimally align the behavior of the control with that of the experimental groups, 362 

we fit an exponential function (Eq. 1) to the median behavior of each group. We next 363 

calculated the cycle on which the predicted behavior would intersect a pointing angle of 0° 364 

for each group, and shifted the behavior of the control to match that of each experimental 365 
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group at Y = 0 (Fig 3). This temporal displacement points towards an impairment in the 366 

learning rate of the 5 min and the 1 h groups.  367 

Finally, to rule out the possibility that our results may be explained by an order 368 

effect (subjects always learned the CCW rotation before the CW rotation), we statistically 369 

compared the rate of learning of the control group with those of the experimental groups 370 

during learning in A. No differences were found between the learning rates of A and B 371 

control (Kruskal-Wallis, X2(78) = 5.53, p = 0.237). Therefore, the control condition rules out 372 

the possibility that our results are explained by the order in which the perturbations were 373 

learned.  374 

In summary, we conclude that while the lingering memory of A caused the starting 375 

point of the learning process to be strongly biased in all experimental groups, the learning 376 

process itself was impaired at 5 min and 1 h only. Release from interference, determined 377 

as the time point at which the rate of learning resembled that of the control group, took 378 

place about 6 h post adaptation. 379 

 380 

State-space model 381 

The exponential model we employed for our empirical analysis implicitly assumed that the 382 

rate of learning remained constant across trials. For the B period, this assumption is 383 

unlikely to be true because initially, learning from the errors induced by B is aided by 384 

forgetting of the memory of A. That is, as the B period starts, performance falls toward 385 

baseline, and the rate of this fall is due to two processes: forgetting of A, and learning from 386 

error in B. During this period, forgetting and learning act in the same direction. However, 387 

once the performance crosses baseline levels, the influence of memory decay on behavior 388 

is in the opposite direction to learning from error. State-space models of learning 389 

disentangle these processes of forgetting and learning. For this reason, we fit a state-390 
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space model to the data from individual subjects separately during the A and B periods 391 

(Eq. 2 and 3). 392 

The state-space model assumes that learning is governed by two processes: a 393 

process that learns from error, and a process that retains a fraction of that memory from 394 

one trial to the next. The state-space model closely tracked the observed behavior (Fig. 4). 395 

To quantify the model’s goodness-of-fit, we computed the fraction of each subject’s 396 

behavioral variance accounted for by our model fit (R2). To measure this coefficient of 397 

determination, we computed the expected value of the behavior predicted by our 398 

stochastic model (Eqs. 2 and 3) and compared this model prediction to each individual 399 

subject’s data. We found that across subjects, our model accounted for approximately 81.4 400 

± 8.4% (mean ± 1 std. dev.) of the variance in subject behavior. We repeated this analysis 401 

at the group level, where noise in the process of learning (Eq. 2) and production of a 402 

movement (Eq. 3) is smoothed over subjects. For each group, we computed the median 403 

behavior (Fig. 4A, black curves for experimental groups, red curve for control), the median 404 

behavior predicted by our model (Fig. 4A, blue curves for experimental groups, green for 405 

control), and then the coefficient of determination for these two time-courses. At the group 406 

level, the model accounted for 96.0 to 98.2% of the variance in median subject behavior. 407 

After validating our model, we next considered how anterograde interference could 408 

be quantified at the level of three different processes that could affect performance in B: 409 

(1) memory of A, (2) cycle-to-cycle forgetting rate in B, and (3) learning from error in B. 410 

These three processes are represented separately by three specific model parameters: (1) 411 

the initial state of the learner in B, (2) the retention factor, and (3) the error-sensitivity.  412 

Unsurprisingly, the initial state of the learner in B (Fig. 4B) closely followed our 413 

empirical estimate of the initial level of performance in B (Fig. 2A). As the interval between 414 

A and B increased, the initial state of the learner in B, i.e., the amount of the A memory 415 

retained over time, decreased (one-way ANOVA, F(69,3) = 3.89, p = 0.013; Tukey’s test, 5 416 
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min different than 24 h with p = 0.020, marginal differences between 5 min and 6 h as well 417 

as 1 h and 24 h with p = 0.097, all other comparisons have p > 0.347). However, despite 418 

this temporal decay, all groups retained at least 50% of the A memory (one-sample t-test 419 

with Bonferroni correction, all groups p < 0.001). Therefore, impairment of performance in 420 

B was in part caused by a lingering memory of A that did not fully decay even after 24 h. 421 

To what extent was the impairment in B driven by changes in the rate of cycle-by-422 

cycle memory retention and learning from error? Similar to our empirical analysis, we first 423 

confirmed that the experimental groups did not differ in performance during the A period. 424 

That is, there was no difference in the retention factor (Kruskal-Wallis, X2(66) = 0.53, p = 425 

0.912) or error sensitivity (Kruskal-Wallis, X2(65) = 1.16, p = 0.763) across the 426 

experimental groups during adaptation to A. Furthermore, we found no difference in the 427 

retention factor during learning in B for any of the experimental groups, including the 428 

control group (Fig. 4C; Kruskal-Wallis, X2(79) = 5.66, p = 0.226). In contrast, error 429 

sensitivity was affected by prior learning in a manner consistent with anterograde 430 

interference (Fig. 4D; Kruskal-Wallis, X2(83) = 14.47, p = 0.006). Post-hoc tests against the 431 

control group unveiled a significant reduction in error sensitivity at 5 min and 1 h but not at 432 

longer time intervals (Dunn’s test with Bonferroni correction, 5 min different from control 433 

with p = 0.008, 1 h different from control with p = 0.004, 6 h and 24 h not different from 434 

control with p > 0.132). 435 

In summary, our state-space model pointed to a similar conclusion drawn from our 436 

empirical findings. Prior exposure to A resulted in a bias in the initial state of B that 437 

persisted through 24 h. Moreover, prior exposure produced a reduction in error sensitivity, 438 

but this effect was short lasting: we found no evidence for it when the time between A and 439 

B was 6 h or more. Therefore, differences in performance in B for any timescale greater 440 

than 1 h were likely related to a prior memory of A and not to a deficit in learning. 441 

 442 
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Validation of the computational approach 443 

An earlier account of anterograde interference (Sing & Smith, 2010) investigated how the 444 

emergent properties of a learning system composed of two parallel adaptive states (Smith 445 

et al., 2006) could demonstrate impaired learning in B after the experience of A, even if 446 

there was no change in the learning rate of either state. Two-state models of learning posit 447 

that adaptation is supported by two parallel learning processes, a slow process (Fig. 5A, 448 

red) that learns little from error but exhibits strong retention over trials, and a fast process 449 

(Fig. 5A, green) that learns greatly from error but has poor ability to retain its memory over 450 

trials. Sing and Smith (2010), demonstrated that if a two-state learning system is exposed 451 

to the A perturbation (+30o), followed by the opposing B perturbation (-30o), learning of B 452 

would appear to be slowed (Fig. 5A, compare B curve with the naïve A curve shown in 453 

blue) because the slow state is heavily biased towards A at the start of B. That is, a two-454 

state system can exhibit anterograde interference (a slowing of the overall adaptation 455 

rate), despite the fact that the individual learning rates have not changed from A to B. 456 

Could the reduction in error sensitivity we report in our analysis of anterograde 457 

interference be explained by a two-state system whose constitutive parameters do not 458 

differ across the A and B periods?  459 

To answer this question, we first mathematically compared the likelihood that our 460 

data was better described by a two-state system rather than a single state system. We fit a 461 

two-state model of learning (Albert & Shadmehr, 2018) separately for the A and B periods 462 

and compared the likelihood of this model with that of the single state model explored in 463 

our primary analysis using the Bayesian Information Criterion (BIC). At the level of 464 

individual subjects, we found that a two-state model of learning was justified in only 5 of 465 

the 73 subjects in the experimental groups (Fig. 5B, red lines). Therefore, in this task, the 466 

measured behavior was better described by a single state model of learning (Fig. 5C, 467 

lower BIC for single state model, paired t-test, t (92) = 16.133, p < 0.001).  468 
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We next asked if a two-state model fit to the A period of behavior would produce 469 

the pattern of interference we measured in B, as described by Sing and Smith (2010). For 470 

this analysis, we focused on the 5 min group that exhibited the most significant amount of 471 

anterograde interference (Fig. 2B). Using the two-state model parameters fit to the A 472 

period of behavior, we simulated subject performance during the B period. We found that 473 

the dynamics of learning predicted by a two-state model whose learning rates were 474 

unchanged from A to B (Fig. 5D, red), did not visually resemble the pattern of interference 475 

we measured in the 5 min experimental group (Fig. 5D, black). Indeed, the exponential 476 

rate of improvement in B exhibited by the two-state model simulation was a rather poor 477 

predictor of the actually measured behavior as exhibited by the 5 min group (Fig. 5E, 478 

paired t-test, t(15) = 4.235, p < 0.001). That is, our subjects learned much slower in the B 479 

perturbation than predicted by a two-state model in which parameters remain constant in A 480 

and B. This result gives us some assurance that the reduction in error sensitivity we 481 

observed during the B period was not due to a trivial property of a two-state learning 482 

system. Rather, it appears that following adaptation to A, the motor system was 483 

fundamentally impaired in its ability to learn B. 484 

 485 

DISCUSSION 486 

How do motor memories influence one another? In this work, we studied the expression of 487 

anterograde interference in visuomotor adaptation by varying the time elapsed between 488 

learning opposing perturbations. We examined the impact of prior learning on the initial 489 

level of performance as well as the rate of learning over the time course of 5 min through 490 

24 h. We found that these two parameters behaved very differently as a function of time. 491 

On one hand, adaptation in A biased the initial level of performance in B. Although the 492 

magnitude of this effect decreased with time, it remained strong at 24 h. On the other 493 

hand, prior adaptation hindered the ability to learn from error when perturbations were 494 
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separated by 5 min and 1 h but not at 6 h and beyond, suggesting that actual learning is 495 

impaired on a shorter time scale, subsiding within a 6 h window.  496 

There has been no general agreement in the literature of sensorimotor adaptation 497 

regarding how to define and, therefore, quantify anterograde interference. With the 498 

exception of Sing and Smith (2010), who measured the relative change in learning rate, 499 

most previous studies estimated anterograde interference based on the initial level of 500 

performance, by averaging across the first trials/cycles/blocks (Brashers-Krug et al., 1996; 501 

Krakauer, Ghez, & Ghilardi, 2005; Lee & Schweighofer, 2009; Shadmehr & Brashers-Krug, 502 

1997; Tong & Flanagan, 2003). For example, Tong and Flanagan (2003) reported 503 

interference at 5 min based on the average of the second and third cycles. Likewise, Miall 504 

and collaborators (2004) reported interference at 15 min based on the initial state obtained 505 

from fitting a power function, while noting that the rate of learning was not affected. Yet, 506 

there is evidence suggesting that using the initial level of performance as a proxy for 507 

anterograde interference may confound the actual ability of learning in B with the bias of a 508 

lingering memory of A. For example, Thoroughman and Shadmehr (1999) have shown 509 

that the preferred direction of the biceps and triceps during exposure to the second 510 

opposing force field is appropriate to solve the first force field. Moreover, Sing and Smith 511 

(2010) have demonstrated that the magnitude of initial errors does not impact on the ability 512 

to learn. In fact, high initial error may be associated either with faster (Sing et al., 2009) or 513 

slower learning. Therefore, assessing anterograde interference based on the initial level of 514 

performance may overestimate its magnitude. To rule out this possibility here we 515 

compared the bias imposed by the memory of A with the deficit observed in the rate of 516 

learning. We reasoned that if, as suggested by previous work, the initial level of 517 

performance reflects the level of anterograde interference then the two measures should 518 

behave similarly as a function of time. In contrast, we found that initial performance was 519 

profoundly hindered throughout the 24 h of testing, whereas the ability to learn returned to 520 
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control levels by 6 h. This impairment in the ability to learn that gradually subsides with the 521 

passage of time is consistent with anterograde interference. 522 

Our work sheds light on a long-standing debate regarding the failure of retrograde 523 

protocols at unveiling the time course of memory consolidation. Over the past two 524 

decades, several laboratories have attempted to uncover the time course of memory 525 

stabilization in sensorimotor adaptation using behavioral protocols based on retrograde 526 

interference (e.g. Brashers-Krug et al., 1996; Caithness et al., 2004; Krakauer et al., 527 

2005). In these studies, subjects usually adapt to opposing perturbations A (A1) and B 528 

separated by a time interval that varies between minutes to 24 h. Next, they wait for a 529 

further period of time (usually 24 h) and are again exposed to A (A2) to assess the integrity 530 

of the motor memory. Consolidation of the memory of A should be reflected as the 531 

presence of savings (a faster rate of learning) in A2. Although this approach has proved 532 

successful in declarative (Lechner, Squire, & Byrne, 1999; Tulving, 1969) and some kinds 533 

of motor skill learning tasks (Korman et al., 2007; Walker, Brakefield, Hobson, & Stickgold, 534 

2003), it has led to inconclusive results in sensorimotor adaptation. In fact, with the 535 

exception of three force-field studies reporting release from interference at around 6 h 536 

(Brashers-Krug et al., 1996; Shadmehr & Brashers-Krug, 1997) or later (Overduin, 537 

Richardson, Lane, Bizzi, & Press, 2006), other experiments have shown complete lack of 538 

savings even if 24 h are interposed between A1 and B (Caithness et al., 2004; Goedert & 539 

Willingham, 2002; Krakauer et al., 2005). Miall and collaborators (2004) have claimed that 540 

naïve performance at recall (A2) reported in retrograde protocols (Caithness et al., 2004; 541 

Goedert & Willingham, 2002; Krakauer et al., 2005) actually reflects a mixture of 542 

anterograde interference from B and the integrity of the memory of A, and not catastrophic 543 

retrograde interference. It is important to note, however, that these authors measured 544 

anterograde interference based on the initial level of performance. In light of our findings, 545 

the interpretation of these studies may need to be revised. Because release from 546 
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interference occurs at 6 h anterograde interference is not likely to cause naïve 547 

performance in A2. Future work using retrograde protocols should in fact track the integrity 548 

of the memory based on the speed of learning in experimental designs in which B and A2 549 

are separated by at least 6 h.  550 

The temporal dissociation we observed between the initial level of performance and 551 

the rate of learning likely reflects two distinct processes at play: the persistence of a prior 552 

memory and competition for the same neural resources. The formation of memory involves 553 

learning-dependent synaptic plasticity as part of a process known as long-term 554 

potentiation (LTP). Given that biological substrates underlying synaptic plasticity are 555 

limited by nature, cellular modifications induced by learning temporarily constrain the 556 

capacity for further LTP induction. This phenomenon known as occlusion, which reflects 557 

competition from the same neural resources, has been implemented experimentally to 558 

investigate LTP maintenance and memory stabilization (Ling et al., 2002). Using this 559 

approach, it has been shown that motor skill learning in rats and humans is associated 560 

with LTP (Cantarero, Tang, O’Malley, Salas, & Celnik, 2013; Rioult-Pedotti, Friedman, 561 

Hess, & Donoghue, 1998; Rioult-Pedotti, Friedman, & Donoghue, 2000). Cantarero and 562 

collaborators showed that in fact, in humans, occlusion fades around 6 h after motor skill 563 

learning. In this light, we may speculate that adaptation in A may have partially occluded 564 

the capacity for further synaptic plasticity, thereby hindering adaptation in B. The timing of 565 

release from interference described herein (6 h) coincides with the peak in functional 566 

connectivity of a visuomotor adaptation network that includes the primary motor cortex 567 

(M1), the posterior parietal cortex (PPC) and the cerebellum (Della-Maggiore, Villalta, 568 

Kovacevic, & McIntosh, 2015). These regions have been linked to memory formation in 569 

this paradigm (Della-Maggiore, Malfait, Ostry, & Paus, 2004; Hadipour-Niktarash, Lee, 570 

Desmond, & Shadmehr, 2007; Landi, Baguear, & Della-Maggiore, 2011; Richardson et al., 571 

2006). Whether this timing reflects the process of motor memory consolidation is now a 572 
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hypothesis amenable for testing.  573 

Using a state-space model allowed us to identify which aspect of learning was 574 

affected by anterograde interference. In other words, was the decrease in the rate of 575 

learning observed in B caused by a deficit in the ability to learn from error or in the ability 576 

to retain information cycle-by-cycle? Error sensitivity refers to how the brain responds to 577 

perceived error from one movement to the next and, as such, has been widely used to 578 

study changes across learning sessions in the context of savings and meta-learning 579 

(Herzfeld, Vaswani, Marko, & Shadmehr, 2014; Leow, de Rugy, Marinovic, Riek, & Carroll, 580 

2016). The retention factor, on the other hand, refers to the degree of decay that occurs 581 

from one movement to another, reflecting the ability to retain information. It has been 582 

previously shown that the retention factor and error sensitivity can be independently 583 

affected by different manipulations (Galea, Mallia, Rothwell, & Diedrichsen, 2015) such as 584 

punishment (increasing only the sensitivity to error) and reward (enhancing retention). 585 

Here we found that prior learning of a contrasting perturbation had no effect on the cycle-586 

by-cycle retention of subsequent learning. 587 

Humans also have the capacity to change their error sensitivity depending on their 588 

prior experience with errors (Gonzalez Castro, Hadjiosif, Hemphill, & Smith, 2014). For 589 

example, Herzfeld and colleagues (2014) compared the sensitivity to error in participants 590 

that were exposed to alternating force fields, and found that individuals who experienced a 591 

slow switching environment showed a greater sensitivity to error than those who were 592 

exposed to a fast switching environment. These results indicate that the brain relies on a 593 

history of past errors to learn and, thus, when errors are not predictable learning is 594 

attenuated. Likewise, here we found that the temporal distance separating two opposing 595 

perturbations also hinders sensitivity to error. We may speculate that when perturbations 596 

are presented in close proximity (as in our 5 min and 1 h groups) competition for neural 597 

resources may hinder the ability to maintain a history of errors, resulting in a reduced error 598 
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sensitivity. This phenomenon may revert at longer intervals as neural competition 599 

subsides.  600 

In conclusion, we have examined the strength and duration of anterograde 601 

interference in visuomotor adaptation by tracking its impact on behavior when learning 602 

opposing perturbations separated from 5 min through 24 h. We found that prior learning 603 

dramatically hindered the initial state at all time intervals. This was likely due to a bias 604 

imposed by a lingering memory associated with the previous perturbation. Prior learning 605 

also impaired the ability to learn from error for at least 1 h, with release from interference 606 

detected about 6 h post training. The occurrence of release from interference within this 607 

time interval is consistent with a process of memory stabilization for this type of learning. 608 

Our findings suggest that poor performance observed when opposing rotations are learned 609 

subsequently is driven by two distinct phenomena operating on different time scales (days 610 

vs hours): a long-lasting influence of a memory that acts as a prior which negatively 611 

influences the initial level of performance, and a shorter-lasting impairment of learning. 612 
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FIGURES  

 

Figure 1. Experimental paradigm and learning 
curves. A. Paradigm. Subjects held a joystick 
and made pointing movements towards one of 
eight visual targets shown on a display. The 
experiment began with 11 cycles of null trials 
(Null) after which a 30° counterclockwise rotation 
was applied to the cursor for 66 cycles (A). Next, 
each experimental group waited a different 
length of time ranging from 5 min to 24 h. After 
this break, subjects were immediately exposed 
to a -30° clockwise rotation (B) for 66 cycles. B. 
Behavior. Subject pointing angles on each trial 
were collapsed into cycles by identifying the 
median pointing angle across each cycle of 8 
trials. Each inset shows the median behavior of 
1 of the 4 experimental groups. The shaded 
region indicates ±1 standard error of the median. 
Each group differs in the amount of time that 
elapsed between the exposure to the A and B 
periods (from top to bottom: 5 min, 1 h, 6 h, and 
24 h). The behavior for each group (black) is 
compared with that of a control group (red) that 
was exposed to 11 cycles of null and then 66 
cycles of the B rotation. 
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Figure 2. Effect of prior learning on different behavioral parameters. A. The initial level of 
performance in B, estimated from the mean pointing angle on the first cycle is displayed 
here for all groups. Given that learning within one cycle is minimal, this measure reflects 
the retention of the memory of A. B. The median rate of improvement (i.e., the empirical 
learning rate) in B for all experimental groups and the control group is shown. In both A 
and B, experimental groups are shown from left to right in order of increasing temporal 
separation between the A and B periods. The control group is shown at far right where 
appropriate. In A and B, error bars indicate ±1 standard error of the mean and median, 
respectively. Asterisks indicate a level of significance of p < 0.05. 
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Figure 3. Anterograde interference and performance in B. The median pointing angle of 
each experimental group during learning the B rotation (solid black) and the control group 
(solid red) is shown. The shaded error region indicates ±1 standard error of the median. To 
highlight any difference in the rate of learning of the B rotation, the behavior of the control 
group was shifted in all plots, so that it roughly intersected the behavior of each 
experimental group at a pointing angle of approximately 0°. The magnitude of the shift was 
determined by fitting exponential curves (dashed lines) to the behavior of the experimental 
group (black) and control group (red) and horizontally shifting the control group so that the 
exponential fits intersected at 0°. From left to right, experimental groups are ordered in 
terms of increasing separation between the A and B perturbations. 
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Figure 4. State-space model fit to behavior. A. We fit individual subject behavior using a 
single module state-space model of learning that accounted for cycle-by-cycle forgetting, 
error-based learning, and initial bias. We fit behavior separately for the A (cycles 1 through 
77) and B (cycles 78 through 143) periods. Each plot depicts the median pointing angle for 
1 of the 4 experimental groups (black lines) as well as the median pointing angle predicted 
from simulating the state-space model without noise (blue lines) using the maximum 
likelihood model parameter sets identified for each subject. Corresponding behavior (red) 
and state-space predictions (green) are provided for the control group in the top-left plot. 
The shaded error region indicates ±1 standard error of the median. B. Initial state. Here we 
report the initial state of the learner at the start of the B period. C. Here we report the 
retention factor during the B period for the experimental and control groups. D. We report 
the error sensitivity during the B period for the experimental and control groups. The height 
of each bar denotes the mean (B) or median (C and D) parameter value for each 
experimental group. Error bars indicate ±1 standard error of the mean or median. In all 
plots, experimental groups are shown from left to right in order of increasing temporal 
separation between the A and B periods. The control group is shown at far right where 
appropriate. Asterisks indicate a level of significance of p < 0.05 (*) or p < 0.01 (**). 
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Figure 5. Validation of the state-space model. Prior accounts of anterograde interference 
have shown that a two-state model of learning can show an impairment in learning of the B 
memory without any change in the constitutive parameters of the two-state system from A 
to B. A. The two-state model (parameters obtained from Sing and Smith, 2010) posits that 
behavior (black) can be decomposed into parallel contributions from a slow (red) and fast 
(green) state. After learning the A perturbation (left half of the figure, +30° perturbation) 
both the fast and slow states are biased towards a memory of A. At the start of the B 
period (right half of the figure, -30° perturbation) the initial bias of the slow state towards A 
can slow the apparent rate of learning of the B perturbation, as compared to initial learning 
of A (blue trace shows the pointing angle during A with opposite sing and shifted to the 0° 
pointing angle of B). B. We asked if a two-state system could better account for subject 
behavior than the single state system considered in the primary analysis. We calculated 
the Bayesian Information Criterion (BIC) associated with single-state and two-state model 
fits to individual subject behavior. The endpoint of each line shows the average BIC for the 
A and B periods (left, single state model; right, two-state model). Each line depicts the 
result for a single subject. Red lines indicate subjects for which the two-state model was 
superior to the single state model. Black lines indicate subjects for which the single state 
model was superior to the two-state model. C. We calculated the difference in BIC for the 
single state and two-state models. Negative values indicate higher evidence for the single-
state model. The height of the bar indicates the mean BIC, and error bars indicate ±1 
standard error of the mean. D. We simulated behavior of each subject during the B 
perturbation (red) using the two-state model parameters fit to the A period. The initial bias 
of the slow state towards a memory of A did not produce learning in B that resembled the 
impaired rate of learning exhibited in the 5 min experimental group (black). Solid lines 
indicate the median prediction or behavior across subjects. Error shade indicates ±1 
standard error of the median. E. To quantify any discrepancy between the rate of learning 
in B and the rate of learning predicted by the two-state model we fit our empirical 
exponential learning curve to the actual and simulated B behaviors. The height of each bar 
indicates the median empirical learning rate. Error bars indicate ±1 standard error of the 
median. Asterisks indicate a level of significance of p < 0.001. 
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