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ABSTRACT 

 

Propofol is one of the most widely used anesthetics for routine surgical anesthesia. Propofol 

administration alone produces EEG spectral characteristics similar to most hypnotics; however, 

inter-individual variation can make spectral measures inconsistent. Complexity measures of EEG 

signals could offer universal measures to better capture anesthetic depth as brain activity exhibits 

nonlinear behavior at several scales. We tested the potential of nonlinear dynamics analyses to 

identify loss and recovery of consciousness at clinically relevant timepoints. Patients undergoing 

propofol general anesthesia for various surgical procedures were identified as having changes in 

states of consciousness by the loss and recovery of response to verbal stimuli after induction and 

upon cessation of anesthesia, respectively. Nonlinear dynamics analyses showed more significant 

differences between consciousness states than most spectral measures. Thus, complexity measures 

could provide a means for reliably capturing depth of consciousness based on subtle EEG changes 

at the beginning and end of anesthesia administration. 

 

INTRODUCTION 

 

Since the 1990s, commercial electroencephalogram (EEG) devices have been introduced into the 

operating room to monitor depth of anesthesia in surgical patients. Research has demonstrated that 

the use of these devices reduces the risk of intraoperative recall in patients (Avidan et al., 2013; G. 

A. Mashour & Avidan, 2015; Myles, Leslie, McNeil, Forbes, & Chan, 2004; O’Connor et al., 

2001). Additionally, monitoring anesthetic depth is becoming increasingly important, since lighter 

planes of anesthesia speed recovery times, decrease operative costs (Dexter, Macario, Manberg, 

& Lubarsky, 1999) and reduce morbidity, including the potential for post-operative delirium and 

cognitive dysfunction in vulnerable populations of surgical patients (B.A. Fritz, Maybrier, & 

Avidan, 2018; Bradley A. Fritz et al., 2016; Kertai et al., 2011; Petsiti et al., 2015; Tarnal, Vlisides, 
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& Mashour, 2015); though see also (Kalkman, Peelen, Moons, Group, & Group, 2011; Wildes et 

al., 2019) for limitations. However, lighter planes of anesthesia impart a greater risk of 

intraoperative recall in patients (Avidan et al., 2013; G. A. Mashour & Avidan, 2015). 

Commercially available monitors have consistently been shown to lack the sensitivity, accuracy, 

and response kinetics needed to prevent intraoperative awareness (Avidan et al., 2013; Health 

Quality Ontario, 2004; Schneider, Gelb, Schmeller, Tschakert, & Kochs, 2003), and different 

measures from different monitors produce significantly different processed EEG assessments at 

equal effect site concentrations (Soehle et al., 2008). Improvements to brain monitoring may be 

sought in new analytical techniques that capture the full nonlinear structure of the EEG signal 

instead of the traditional spectrally-derived metrics. 

 

EEG signals derived from the frontal cortex show stereotypic responses to GABAergic anesthetics 

(e.g. propofol and sevoflurane), and frequency domain measures are particularly sensitive to 

anesthetic levels (Billard, Gambus, Chamoun, Stanski, & Shafer, 1997; Ching, Cimenser, Purdon, 

Brown, & Kopell, 2010; Patrick L Purdon, Sampson, Pavone, & Brown, 2015; Rampil, 2001; 

Vijayan, Ching, Purdon, Brown, & Kopell, 2013; Winters, 1976). For most anesthetics, loss of 

response (in humans, equated with loss of consciousness) occurs when low amplitude, higher 

frequency EEG waveforms are replaced with higher amplitude slow-wave patterns, similar to the 

delta rhythms seen during slow wave sleep (Chander, García, MacColl, Illing, & Sleigh, 2014; 

Patrick L Purdon et al., 2015). These delta rhythms are gradually replaced by burst suppression 

patterns as patients transition to deeper surgical planes of anesthesia (Pilge, Jordan, Kreuzer, 

Kochs, & Schneider, 2014). Interestingly, recovery of consciousness is associated with much less 

delta activity and higher amounts of low amplitude, fast activity on awakening, indicating a 

hysteresis of brain states for loss and recovery from anesthesia (Chander et al., 2014; Stanski, 

Hudson, Homer, Saidman, & Meathe, 1984), also termed ‘neural inertia’ which may reflect 

differential activation of neural networks during these states (Friedman et al., 2010; Tarnal et al., 

2015). Emergence from general anesthesia also does not typically follow a stereotyped pattern, but 

rather a more heterogenous spectral pattern during the establishment of conscious awareness and 

responsivity (Chander et al., 2014). Further, frequency domain measures can differ for various 

classes of anesthetics and adjuvant agents (GABA versus non-GABAergic), in response to surgical 

stimulation, across age groups, and between people, making spectral domain measurements non-

invariant.  

 

The brain itself performs computations in both linear and nonlinear fashions, and both cognitive 

and arousal states have been characterized using analyses based on nonlinear dynamics (Ma, Shi, 

Peng, & Yang, 2018; Stam, 2005; Walling & Hicks, 2006; Watt & Hameroff, 1988; Widman, 

Schreiber, Rehberg, Hoeft, Elger, et al., 2000). An example of such a method is the use of time-

delayed embeddings derived from EEG signals. Anesthesiologists have noted that such 

embeddings could distinguish anesthetic depth (Watt & Hameroff, 1988; Widman, Schreiber, 

Rehberg, Hoeft, & Elger, 2000) as well as recovery of consciousness in surgical patients (Walling 

& Hicks, 2006). Sometimes, time-delayed embedding signals are observed to explore only a 

limited region of all possible states in a multidimensional space in which they are embedded; 

instead, they settle onto attractors in state space, and can thus be seen as probes of the underlying 

dynamics. We have previously shown that attractors generated from microEEG (local field 

potential) signals in rodents are sensitive to isoflurane-induced loss of righting responses in rats 

(MacIver & Bland, 2014). Loss of righting reflex is a surrogate measure for loss of consciousness 
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in rodents (Frank & Jhamandas, 1970). Specifically, we observed that initially spherical attractors 

became flattened and more ellipsoidal when moving from waking to loss of righting reflex 

(MacIver & Bland, 2014). We observed a similar change in attractor shape when characterizing 

human subjects anesthetized with a combination of remifentanil and nitrous oxide (Eagleman, 

Drover, Drover, Ouellette, & MacIver, 2018), and another patient population anesthetized with 

propofol and fentanyl (Eagleman, Vaughn, et al., 2018). We quantified the shape changes we 

observed using a novel geometric phase-space analysis, termed the ellipse radius ratio (ERR). We 

fit the 3D attractor with an ellipsoidal solid of revolution (Khachiyan, 1980) and then calculated 

the ratio between the major and minor axes. This ellipse radius ratio changes significantly and 

consistently before and after loss and recovery of response during several anesthetic regimes 

(Eagleman, Vaughn, et al., 2018; Eagleman, Drover, et al., 2018). Additionally, the ERR also 

shows a significant difference in adult patients across a wide range of ages (Eagleman, Vaughn, et 

al., 2018; Eagleman, Drover, et al., 2018). To make sense of this shape change, we compared this 

analysis to other complexity measures such as the correlation dimension and multiscale entropy, 

and found a significant correlation with multiscale entropy (Eagleman, Vaughn, et al., 2018). 

Characterization of attractors using correlation dimension (CD) has been proposed to provide a 

measure of complexity or information content of EEG signals (Walling & Hicks, 2006; Watt & 

Hameroff, 1988). Currently, it is unknown whether either correlation dimension or our geometric 

phase-space analysis is sensitive to recovery of consciousness for propofol anesthesia. It is also 

unknown how loss and recovery of response properties of EEG signals differ, and how the 

dynamics change with anesthetic administration and time as patients lose and regain their ability 

to respond (lose and regain consciousness). 

 

To determine whether nonlinear dynamics analyses capture depth of consciousness reliably and to 

compare the dynamics of complexity changes with loss and recovery of response, we explore the 

ability of correlation dimension and our ellipse radius ratio (ERR) to capture the loss and recovery 

of response during propofol anesthesia. We compare our analyses from nonlinear dynamics to 

frequency-derived measures of EEG signals for loss and recovery of consciousness, and 

characterize the dynamics that occur during these transitions.  

 

RESULTS  

 

Spectral differences between pre- and post-LOR and ROR transitions are best captured by 

spectral edge frequency and gamma  

We measured the EEG spectrum collected from F7 referenced to AFz in 20 s artifact-free clips 

identified pre- and post-loss (LOR) and recovery (ROR) of response (Figure 1A). Visualization of 

the EEG spectrum before and after loss of response (LOR) shows similar changes to what has been 

previously reported: notably, increases in lower frequencies and decreases in higher frequencies, 

including a visually apparent increase in the alpha range (8-12 Hz) (Breshears et al., 2010; Chander 

et al., 2014; P. L. Purdon et al., 2013) (Figure 2). In contrast, emergence from propofol anesthesia 

is marked by a more uniform distribution of power across frequency bands (Figure 2), which has 

also been reported previously (Chander et al., 2014). When we look at the spectral changes through 

time we observe the slower dynamic changes in the spectral content throughout LOR (Figure 1B, 

Figure 3). It appears that frequencies below 12 Hz gradually increase, while frequencies above 12 

Hz gradually decrease and the dominant frequency, near the alpha (8-12 Hz) range, emerges near 

to and following the LOR transition (Figure 1B, Figure 3). However, this alpha increase does not 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 31, 2019. ; https://doi.org/10.1101/594002doi: bioRxiv preprint 

https://doi.org/10.1101/594002


 4 

reach statistical significance in this sample (Table 1). In this cohort of patients, the ROR dynamics 

appear more abrupt, with sharp changes in frequency content near the ROR transition (Figure 3). 

The more uniform power distribution across frequency bands occurs within seconds of the marked 

ROR event, and the previously dominant alpha rhythm is replaced by a more pronounced beta 

rhythm (Figure 3), though it does not reach statistical significance in this sample (Table 2).  

 

We quantified these spectral changes in 20 second, artifact-free clips selected before and after LOR 

and ROR using spectral edge frequency, total power, and the percentage of power at delta (1-4Hz), 

theta (4 – 8Hz), alpha (8 – 12Hz), beta (12- 25Hz), and gamma (25 – 50Hz) frequency bands. We 

observed a significant decrease in spectral edge frequency from pre- to post-LOR (Figure 4A), and 

a significant increase in spectral edge frequency from pre- to post-ROR (Figure 4B). Additionally, 

we observed a significant increase in total power from pre- to post-LOR (Figure 4C), but no 

significant change in total power from before to after ROR (Figure 4D). This is reflected in a more 

uniform distribution of power across frequency bands (Figure 3), which recapitulates the 

emergence patterns of other GABAergic agents, like sevoflurane, reported in other studies 

(Chander et al., 2014). We summarize the percentage of power in band limited frequency ranges 

for LOR in Table 1 and for ROR in Table 2. Our pre- and post-LOR clips showed significant 

differences in the percentage of gamma power (Table 1). The percentage of power in the alpha 

range was close to significance but did not pass the correction for multiple comparisons (Table 1). 

Significant differences in pre- versus post-ROR clips were observed in delta (decrease), theta 

(decrease), alpha (decrease), beta (increase), and gamma (increase) percentages of power (Table 

2). There was also an increase in beta following ROR, but it did not reach significance after being 

corrected for multiple comparisons (Table 2).  
 
Attractor characterization using ellipse radius ratio and correlation dimension 

distinguishes between pre- and post-response transitions 

To assess complexity differences before and after LOR and ROR we created three-dimensional 

time-delayed embeddings of the 20 second clips using a 4 ms delay (shown in Figure 1C,D, Figure 
5 flattened in 2D). These embeddings appear to explore a limited amount of the possible 3D space, 

suggesting that they reveal attractors in the dynamics. As in previous reports, we observed flatter, 

more ellipsoidal attractors during periods when responses were absent and patients were 

anesthetized (Figure 1C,D, Figure 5). Conversely, broader, more spheroidal shapes were observed 

when patients were responsive (Figure 1C,D, Figure 5).  

 
To quantify the changes in the attractors observed before and after LOR and ROR, we measured 

the ellipse radius ratio (ERR) of the 3D attractor point clouds fit with ellipsoidal solids of 

revolution as previously described (Eagleman, Vaughn, et al., 2018; Eagleman, Drover, et al., 

2018). Consistent with our previous work, a significant decrease in ERR was observed in the clips 

preceding and following LOR, while a significant increase in ERR was observed in the clips 

preceding and following ROR (Figure 6A). The attractor shape change was also quantified using 

the correlation dimension (CD). A nonsignificant decrease was observed in the correlation 

dimension computed using a three-dimensional embedding (3D CD) following LOR; however, a 

significant increase in 3D CD from before to after ROR was observed (Figure 6B). To determine 

if this effect occurred if the embedding dimensionality was increased, we used a five-dimensional 

embedding and recalculated the correlation dimension (5D CD). A significant change in 5D CD 
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was observed in both conditions – a significant decrease pre- and post-LOR, and a significant 

increase pre- and post-ROR (Figure 6C).  

 

Ellipse radius ratio is embedding delay dependent, but the correlation dimension is not.  

We explored whether these differences in ERR and correlation dimension were dependent on the 

embedding delay used to create the attractors. To test this, we characterized attractors using 10 

successively increasing delays (4, 8, 12, 52, 100, 500, 1000, 1500, 2000, and 2500 ms, max set 

using autocorrelation of EEG signals). Visual inspection of the attractors shows that the obvious 

shape differences seen preceding and following both LOR (Figure 7A) and ROR (Figure 7B) at 

smaller delays become less pronounced as the delay increases, successively fading as attractors 

are plotted at larger delays. We assessed the significance of the measured values by delay. The 

ellipse radius ratio (ERR) was significant for the first three delays (p (corrected) = 0.0015, 0.0015, 

0.011 for 4, 8, and 12 ms respectively) for loss of response, but not for the rest of the delays (Figure 
8A, top). Additionally, the ellipse radius ratio (ERR) was significant for the first three delays (p = 

0.0039, 0.0039, 0.009 corrected for 4, 8, and 12 ms respectively) for recovery of response, but not 

for the rest of the delays (Figure 8A, bottom). The 3D correlation dimension (3D CD) for loss of 

response was not significant for any of the delays (Figure 8B, top). However, for recovery of 

response, the 3D CD was significant for all delays (p (corrected) = 0.0013, 0.0045, 0.011, 0.0032, 

0.0013, 0.0019, 0.0045, 0.011, 0.0013, 0.0032 for 4, 8, 12, 52, 100, 500, 1000, 1500, 2000, and 

2500 ms, respectively, Figure 8B, bottom). The 5D CD was not significant for any of the delays 

during LOR (Figure 8C, top). Note this result is different from Figure 6C because here we are 

controlling for multiple comparisons, since we are now comparing 10 embedding delays. The 

significance value needs to be adjusted in this case. Unlike the 3D CD, the 5D CD was significant 

for only the first delay (p = 0.022 corrected for 4 ms) for recovery of response (Figure 8C, bottom). 
 

To reveal the scale of the dynamics of our measures and to determine whether there was a 

relationship between the embedding delay and the difference in our complexity measures, the 

Spearman correlation was calculated between the 10 embedding delays we used and the ellipse 

radius ratio (ERR), 3D, and 5D correlation dimensions. There were no significant correlations 

between the delays and ERR for LOR (r = 0.24, p = 0.51) or ROR (r = -0.66, p = 0.04). Additionally, 

there were no significant correlations between embedding delay and 3D correlation dimension for 

LOR (r = 0.62, p = 0.06) or ROR (r = -0.42, p = 0.23). The Spearman correlation was not significant 

(when controlling for multiple comparisons), but was strongest between the embedding delay and 

the 5D correlation dimension for LOR (r = 0.72, p = 0.02) and ROR (r = -0.70, p = 0.03). Given 

the lack of significant relationships between embedding delays and our attractor characterizations, 

p-values reported here have not been corrected for multiple comparisons.  

 

Attractor differences track spectral changes and patient behavioral state. 

To explore the dynamics of our complexity measures around our events of interest, we evaluated 

the two complexity measures in the 2-minute epochs preceding and following either LOR or ROR. 

LOR spectrograms and their corresponding attractors, calculated in 20 second adjacent windows, 

are shown in Figure 9. One can clearly see the attractors flattening and becoming more ellipsoidal 

when approaching LOR and continuing to flatten after LOR in both example patients. ERR, 3D, 

and 5D correlation dimensions are also shown for both patient examples in Figure 9A and B. In 

both individuals, the LOR trend appears to be a decline in these measures across this window, 

though not consistently. In these patients, ROR shows the opposite trend, with attractors inflating 
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and becoming more spheroidal as a patient becomes responsive (Figure 10A and B). This is 

captured by all three attractor measures, the ERR, 3D, and 5D correlation dimensions, which all 

increase in the period spanning ROR. There is, however, a difference in the two patient examples 

shown. The patient in Figure 10A appears to be moving to a more unresponsive state at 

approximately minute +1.75, indicated by the decrease in higher frequencies and reappearance of 

a slow-wave dominated spectrogram. The attractors follow this trend during this period and 

become more ellipsoidal and flat. In the patient in Figure 10B, however, we do not see this 

reversion, reflecting a behavioral state in which the subject remained responsive. When we explore 

the dynamics of these measures for all patients, we can see a generally decreasing trend across the 

LOR time window and an increasing trend across the ROR time window (Figure 11). The LOR 

dynamics appear to change more gradually and consistently, while the ROR appears to have an 

abrupt jump in the complexity measures once the patient regains their ability to respond (Figure 

11).  

 

Complexity measure effect sizes are comparable to spectral measures and strongly 

correlated with gamma 

To determine the effect size of our EEG measures we calculated pairwise Cohen’s D for spectral 

edge frequency, total power, band-limited frequency ranges, and complexity measures (Table 3). 

This measure gives a description of the difference of means, with +/-1 reflecting a large effect size. 

The ERR phase-space analysis, spectral edge frequency, total power, and gamma power reflected 

the largest effect sizes for LOR, of approximately 1 (Table 3, middle column). Alpha power, 5D 

correlation dimension, and 3D correlation dimension had medium effect sizes of 0.6-0.7. For ROR 

the largest effects sizes were ERR (1.4) and spectral edge frequency (1.3), followed closely by 3D 

(1.2) and 5D (1.0) correlation dimension estimates (Table 3, last column). While these effect sizes 

for ROR were greater than LOR, the total power effect size was much smaller in the ROR condition 

(Table 3). Effect sizes of changes in power in all the frequency bands were relatively larger for 

ROR, with the exception of the gamma band (Table 3). To determine whether there was a 

relationship between our EEG measures we calculated the Spearman correlation. Specifically, the 

Spearman correlation between the pre- and post-event complexity measures (ERR, 3D CD at 4 ms 

delay) and percentage of power differences in individual frequency bands was computed 

separately for LOR (Table 4) and ROR (Table 5). During LOR, there was a significant relationship 

between the change in ERR and gamma, as well as between 3D CD and gamma (Table 4). 

Similarly, during recovery of response (ROR), significant correlations were observed between 

ERR and gamma as well as 3D CD and gamma (Table 5). Interestingly, the correlation between 

ERR and 3D CD reached significance for the ROR condition, even when corrected for multiple 

comparisons; it did not rise to significance for the LOR condition. 

 

DISCUSSION 

 

Our results agree with previous reports of the utility of complexity analyses to discriminate 

between the subtle EEG changes that occur in operating room patients during induction (Eagleman, 

Vaughn, et al., 2018; Eagleman, Drover, et al., 2018; Watt & Hameroff, 1988) and emergence 

(Eagleman, Drover, et al., 2018; Walling & Hicks, 2006) from anesthesia. We demonstrate here 

that these approaches provide equivalent discrimination between periods preceding and following 

LOR, and improved discrimination between periods preceding and following ROR. As in our 

previous work, our geometric phase-space ellipse radius ratio (ERR) was significantly different 
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between pre and post-LOR and ROR clips. Additionally, significant differences were found using 

3D correlation dimension between pre and post-ROR. We also found that our ERR values were 

correlated with correlation dimension values during ROR. Since ERR is correlated with multiscale 

entropy (Eagleman, Vaughn, et al., 2018), another measure of complexity, and the correlation 

dimension used here, we reason that ERR may itself capture signal complexity. In fully awake 

patients, the attractor is a nearly perfect sphere. As patients lose consciousness, the attractor 

collapses into an ellipsoidal shape and explores less of the possible trajectory shape, thus 

decreasing complexity and information content. After LOR a clear additional compression of the 

attractor was evident when comparing the 20-second moving windows of EEG before and after 

patients stopped responding to verbal command. The opposite trend is observed upon ROR 

indicating a recovery of complexity and information upon arousal. This finding confirms a 

previous report of correlation dimension increase with ROR from anesthetic administration 

(Walling & Hicks, 2006). Additionally, we also observed an abrupt change in the correlation 

dimension (as well as our other measures) near the ROR transition as has been previously 

described (Walling & Hicks, 2006).  

 

In this data set, attractors following ROR were observed to be more spheroidal than prior to LOR 

(Figure 5). This is a function of the propofol infusions being started significantly before (i.e., 

minutes) we started calculating the attractors in the LOR condition. We wanted to compare close 

time windows to significant anesthetic depth transitions (loss of consciousness) to test our 

measures on subtle EEG changes. The difference in pre-LOR and post-ROR attractor shape, along 

with the attractor shape changes that occur over LOR (Figure 9) and ROR (Figure 10), shows that 

the ellipse radius ratio measure closely follows the dynamics during these events. This is especially 

true in Patient G (Figure 10A), where the patient becomes less responsive again with lack of 

stimulation after initial recovery of consciousness. This relapse to unconsciousness is not 

uncommon in patients who have emerged from anesthesia but are no longer being stimulated. It is 

as if their states of wakefulness and consciousness oscillate. Also, many drugs such as propofol 

and the more lipophilic volatile anesthetics have a context-sensitive half-life (Struys et al., 2000) 

and remain in fatty tissue. They form a depot or reservoir of anesthetic that continues to leach out 

even after the maintenance anesthetic is terminated. The careful tracking of our method during this 

period of recovery means these methods could be useful to assess level of consciousness in the 

recovery post-anesthesia care unit as an added measure of vigilance and safety. 
 

Unlike previous reports (Eagleman, Vaughn, et al., 2018; Eagleman, Drover, et al., 2018) where 

complexity measures show enhanced performance over spectral measures, here our complexity 

measures had equivalent performance compared to spectral measures. We reason that this is due 

to the use of propofol with adjuvant agents (e.g. remifentanil, fentanyl, midazolam) which 

enhances the signal change from high frequency, low amplitude awake activity to low frequency, 

high amplitude activity upon anesthetic induction (Billard et al., 1997; Egan, 1995; Greenblatt et 

al., 2004; Minto et al., 1997; Scott, Ponganis, & Stanski, 1985). In contrast, use of agents like 

nitrous oxide with propofol make spectral measurements less reliable (Foster & Liley, 2011; Hirota, 

Kubota, Ishihara, & Matsuki, 1999; Rampil, Kim, Lenhardt, Negishi, & Sessler, 1998). Here the 

predominant anesthetic was a slow infusion of propofol; thus, spectral measures were expected to 

discriminate between the two states well. 
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Previous reports indicate significant differences in alpha power following induction of anesthesia 

(Akeju et al., 2014; Feshchenko, Veselis, & Reinsel, 2004; P. L. Purdon et al., 2013). We found 

significant differences in geriatric patients induced with propofol and fentanyl (Eagleman, Vaughn, 

et al., 2018). However, here we found an increase but not significant difference in the percentage 

of alpha before and after LOR (Table 1), but did observe a significant reduction upon ROR (Table 

2). Our time points are very close to the clinically relevant loss of response and propofol anesthesia 

was delivered slowly and gradually over several minutes, whereas in our previous study (Eagleman, 

Vaughn, et al., 2018) propofol was delivered in a bolus so LOR and EEG changes were likely 

achieved faster than those observed here. Thus, the dynamic state of the brain around LOR was 

not so greatly altered during the time points investigated. 

Since we are retrospectively analyzing previously collected data, we have some limitations in 

interpretation. We restricted our analysis to patients who were maintained on propofol infusions; 

however, adjuvant agents that could influence the EEG, including lidocaine, remifentanil, 

midazolam, and fentanyl, were also co-administered. In humans, slowing of EEG activity from 

high frequency, low amplitude signals to low frequency, high amplitude signals is observed when 

administering these agents (Billard et al., 1997; Egan et al., 1993, 1996; Mi, Sakai, Kudo, Kudo, 

& Matsuki, 2003; Veselis, Reinsel, Marino, Sommer, & Carlon, 1993). This is reflected by 

significant observations in increased total power (Kortelainen, Koskinen, Mustola, & Seppänen, 

2009), delta power (Kortelainen et al., 2009), and decreased spectral edge frequency (Egan et al., 

1996). When combined with propofol for sedation, remifentanil decreases the amount of anesthetic 

needed and can allow for lighter sedation levels while maintaining patient comfort (Mazanikov et 

al., 2011). Additionally, a similar decrease in SEF was observed after patients lost response to 

verbal commands (LOR); however, addition of remifentanil (compared to propofol only) 

attenuated this effect in a dose-dependent manner (Kortelainen, Koskinen, Mustola, & Seppänen, 

2008). It also appears to attenuate the increase in delta activity following LOR compared to the 

administration of propofol alone (Kortelainen et al., 2009). Lidocaine decreases the median 

frequency when added to propofol anesthesia (Kaka et al., 2015; Maher, Reynolds, & Chander, 

2016). Co-administration of fentanyl with propofol anesthesia decreases the amount of propofol 

needed to keep patients unconscious but does not influence spectral measures upon emergence (Mi 

et al., 2003). All of these agents appear to influence the EEG dynamics in the same manner as 

propofol relatively, driving the EEG to slower, higher amplitude patterns. Additionally, the 

anesthesia used in patients in this study represents clinically relevant administration protocols. The 

ability of these complexity measures to follow the consciousness transitions during routine 

anesthesia care highlights their utility.  

 

In summary, we have demonstrated the utility of complexity measures to distinguish between the 

subtle EEG changes that occur with loss and recovery of response. On a larger scale, our work fits 

in with other studies from the neuroscience community showing that complexity changes occur in 

neural activity with consciousness transitions (Bodart et al., 2017; Casali et al., 2013; Rosanova et 

al., 2018; Sarasso et al., 2015). As the brain naturally transitions from wakefulness to sleep or has 

unconsciousness imposed with small molecules as in anesthesia, neural activity becomes more 

synchronous. Decreases in functional connectivity with anesthesia (Lee, Mashour, Noh, Kim, & 

Lee, 2013; George A. Mashour & Hudetz, 2018) impose regularity, periodicity, and consistency. 

Complexity measures of EEG signals capture these changes well, especially in patients who 

exhibit behavior associated with unconsciousness. These observations in our work, consistent with 

others, highlight that complexity measures from nonlinear dynamics not only have utility as 
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measures of anesthetic depth, but also support existing theories on neural correlates of 

consciousness transitions in the brain.  

 

MATERIALS AND METHODS 

 

Patient Selection 
A retrospective analysis of EEG data as part of a medical chart review was approved by the 

Stanford University School of Medicine Institutional Review Board Protocol 28130. Twenty 

patients were chosen from a population of surgical all-comers to the operating room at Stanford 

Hospital and Clinics. Patients were included if they were to be anesthetized with propofol as their 

maintenance anesthetic (a total intravenous anesthetic or TIVA). Subjects were between the ages 

of 23 and 87 years old (median age 51), comprised American Society of Anesthesiology (ASA) 

classes 1-3, and were undergoing various surgical procedures (breast, gynecological, head and 

neck, and neurosurgery). Subjects included 17 females and 3 males. We deliberately did not restrict 

the population studied to a single surgical cohort, in order to better reflect the diversity of patients 

that would undergo surgical anesthesia, and to demonstrate that nonlinear dynamics tools would 

be sensitive to brain state. 

 

Anesthetic Administration 

Patients were administered an infusion of intravenous propofol over minutes in order to achieve a 

slowly increasing plasma concentration of anesthetic for hemodynamic stability on induction of 

anesthesia, and to more accurately determine the precise time of the loss of response (LOR). LOR 

was defined at the moment the patient lost response to verbal stimulus (eye opening or verbal 

response to name), assessed every 5 seconds after the infusion was started. If there was doubt 

regarding the LOR, an additional verbal stimulus was delivered to the patient. Recovery of 

response (ROR) was similarly assessed by verbal stimulus (stating the patient's name and asking 

them to open their eyes) after the maintenance anesthetic was turned off. Timing of LOR and ROR 

were marked to the nearest second for off-line analysis of EEG signals. We estimate an error range 

for the observer to be less than 5 seconds based on continuous vigilance of the patient between 

stimuli. Raw EEG data, processed EEG data (patient state index or PSI), and time stamps were 

downloaded for off-line data analysis. 

 

Choice of airway device (laryngeal mask airway or endotracheal tube) for general anesthesia was 

determined by the anesthesiologist based on the type of surgical procedure and patient needs. LOR 

measurement was unaffected since it occurred prior to instrumentation of the airway. Patients were 

maintained on propofol infusions as the maintenance anesthetic (TIVA), with analgesic adjuncts 

as needed according to the anesthesiologist’s clinical judgment. Some patients received pre-

operative medication (midazolam and/or fentanyl) prior to initiation of the propofol infusion as 

clinically necessary. Intraoperative analgesia was supplied by fentanyl, hydromorphone, ketorolac, 

acetaminophen, or ketamine IV boluses, and supplemented by lidocaine, fentanyl, or remifentanil 

infusions according to the anesthesiologist's discretion and the degree of surgical stimulation. 

Timing of ROR would have been influenced by maintenance anesthesia and analgesic adjuncts, 

but was equally compared across all analyses. 
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EEG Data Acquisition and Preprocessing 

Standard American Society of Anesthesiologists (ASA) monitors (pulse oximeter, non-invasive 

blood pressure cuff, capnograph, electrocardiogram) (Committee, 2015) were utilized for each 

patient in order to measure intraoperative oxygen saturation, hemodynamic parameters, and end-

tidal gas concentrations (O2, CO2). A self-adhesive, 5-lead frontal EEG electrode array was placed 

according to the manufacturer's instructions (SedLine Legacy, Masimo, Irvine, CA) on the 

forehead of each patient prior to induction of anesthesia. Electrodes were applied at approximately 

F7, F8, Fp1, and Fp2 referenced to AFz (Figure 1A) in the standard 10-20 electrode EEG montage. 

Appropriate electrode impedance was checked according to an automated SedLine routine that 

sends a ~78 Hz impedance pulse to each electrode. Data was digitized at 250 Hz. EEG recordings 

from F7 were de-trended and then filtered using a 50 Hz low-pass Butterworth Infinite Impulse 

Response (IIR) filter, and a 1 Hz high-pass Butterworth IIR filter for subsequent analysis.  

 

Identification of clips for analysis has been previously described (Eagleman, Vaughn, et al., 2018; 

Eagleman, Drover, et al., 2018). Briefly, 20 second artifact-free clips occurring within 2 minutes 

before to 2 min after loss and recovery of response to verbal commands (LOR and ROR 

respectively) were selected manually for subsequent analysis (Figure 1A). Two of the authors 

visually inspected the EEG traces as well as the EEG spectrograms to ensure the clips did not 

contain burst suppression or artifacts (SLE, MBM). From the original 20 patients, 19 were selected 

for LOR analysis and 16 selected for ROR analysis given these were the patients who had artifact-

free EEGs for at least 20 continuous seconds before and after the events of interest. 

 

Spectral Analysis  

EEG Data was analyzed using custom scripts written in MATLAB (Mathworks, Natick, 

Massachusetts). Power spectral density was calculated on the 20 second EEG clips during the pre- 

and post-LOR and pre- and post-ROR periods using the multitaper method as part of the 

‘mtspectrumc’ function of the Chronux toolbox (Mitra & Bokil, 2008) (http://chronux.org/). 

Specifically, we used a time-bandwidth product of 5, 9 tapers, and limited the frequency range to 

0 to 50 Hz. The error range for power spectral density plots was computed using the theoretical 

estimate method at 0.05 significance level. Power values were expressed in decibels. 

 

To visualize the temporal profiles of the spectral changes occurring during the 4 minute windows 

surrounding the LOR and ROR transitions (i.e. 2 minutes before to 2 minutes after), we computed 

normalized spectrograms with custom MATLAB scripts (Figure 1B). A Fourier transform (using 

‘fft’ function in MATLAB) was performed using Hann windows with half window overlap. The 

magnitude was converted to decibels (dB) and the spectrogram was normalized by its maximum 

magnitude.  

 

Total power and spectral edge frequency (SEF, the frequency below which 95% of the total EEG 

power resides) were also calculated using multitaper spectral analysis (Mitra & Bokil, 2008) on 

the filtered EEG. In addition, we calculated the percentage of total power for individual frequency 

bands per condition (pre- and post-LOR, pre- and post-ROR). The percentage of total power was 

used because significant changes in EEG total power with exposure to propofol have been 

previously reported. The frequency band ranges were defined as follows: delta: 1 to 4 Hz; theta: 4 

to 8 Hz ; alpha: 8 to 12 Hz; beta: 12 to 25 Hz; and gamma: 25 to 50 Hz (Gugino et al., 2001; P. L. 

Purdon et al., 2013).  
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Characterization of Dynamical Attractors  

 

Geometric Phase-Space Analysis  

We constructed three-dimensional, time-delayed embeddings (attractors) of the EEG signal before 

and after LOR and ROR using a 4 ms delay for correlation dimension analysis (Figure 1C). We 

chose this delay as it was the smallest delay possible for our sampling frequency and showed the 

most significant effects based on previous work (Eagleman, Vaughn, et al., 2018; Eagleman, 

Drover, et al., 2018). We observed shape changes in attractors before and after our time points of 

interest when plotted at this timescale. We quantified this shape change by fitting the three-

dimensional attractor to an ellipsoidal solid of revolution (Eagleman, Vaughn, et al., 2018; 

Eagleman, Drover, et al., 2018; Khachiyan, 1980) (Figure 1D). The lengths of the symmetry axes 

of the ellipsoid were calculated and the ratio of the minimum and maximum axes (which we term 

the ellipsoid radius ratio, ERR) was used to quantify the shape change. A radius ratio of 1 implies 

a sphere, while smaller ratios imply more strongly ellipsoidal shapes.  

 

Correlation Dimension 

Using the same three-dimensional attractor with 4 ms embedding delay (Figure 1C), we tested 

whether the correlation dimension captured the EEG changes that occurred before and after LOR 

and ROR. We used a previously reported and commonly used algorithm to compute the non-

integer (fractal) correlation dimension that works for irregularly sampled objects (e.g., a point 

cloud in our case) (Grassberger & Procaccia, 1983; Walling & Hicks, 2006; Widman, Schreiber, 

Rehberg, Hoeft, & Elger, 2000). We also tested whether significant differences in correlation 

dimension could be observed when we increased the dimensionality of the embeddings from 3 to 

5 dimensions. 

 

Complexity Measures by Embedding Delay 

We tested also whether the ellipse radius ratio and correlation dimension were changed by varying 

the embedding delay time. To estimate the optimal delay for creating the attractors we calculated 

the first zero-crossing of the autocorrelations of the pre-LOR and post-LOR signals. We used this 

value to set our maximum range, and tested multiple embedding delays (4, 8, 12, 52, 100, 500, 

1000, 1500, 2000, and 2500 ms) between the shortest time window (shifting the EEG by 1 point) 

to the largest (set by the autocorrelation zero crossing). Spearman’s correlation was used to 

determine whether a trend existed between the embedding delays and ellipse radius ratio or 

correlation dimension. We tested whether a trend existed for both 3D and 5D time-delayed 

embeddings and correlation dimension.  

 

Dynamics of Complexity Measures  

To explore the dynamics of our measures around our two clinically relevant time periods (LOR 

and ROR) we calculated ERR and correlation dimension in a 4 min window surrounding these 

events. Specifically, 20 second windows of EEG activity starting 2 min before an event to 2 min 

after the event were used to create attractors. We shifted these 20 second windows every 5 seconds 

so windows had 75% overlap. We created the attractors using the smallest embedding delay (4 ms) 

as this delay showed the most significant differences before and after LOR and ROR. We then 

calculated the ERR and correlation dimension (both 3D and 5D) for each 20 second segment of 

EEG activity. The average and standard error of the mean of all EEG data from 19 LOR and 16 

ROR patients were calculated to show the dynamics of our measures across this period.  
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Effect Size and Correlations of EEG Measures  

We calculated a paired-data Cohen’s D on our EEG measures before and after LOR and before 

and after ROR for the complexity (ERR and correlation dimension) measures. We also calculated 

the Cohen’s D for the spectral edge frequency, total power, and percentage of power in each of the 

frequency bands (delta, theta, alpha, beta, and gamma) for comparison. We used the 4 ms 

embedding delay complexity measures as these showed the most significant results. Additionally 

we calculated Spearman correlations between the ERR, 3D, and 5D correlation dimension 

measures and age to determine if these patient characteristics influenced our results. We also 

calculated the Spearman correlation between the ERR and 3D correlation dimension (again at the 

shortest 4 ms delay) with each other and with the percentage of power in the band-limited 

frequency ranges. We calculated these correlations independently for LOR and ROR periods. 

 

Since we had a large age range in our study, we tested whether patient age may have influenced 

our measures. To determine whether complexity measures change with age we calculated the 

Spearman correlation between age and change in pre- to post-ERR and 3D CD (at 4 ms delay) 

measures individually for LOR and ROR. There were no significant correlations in the change in 

ERR or 3D CD and age for LOR (ERR and age r = 0.17, p = 0.48; 3D CD and age r = -0.21, p = 

0.38, p values are uncorrected) and ROR (ERR and age r = 0.006, p = 0.98; 3D CD and age r = 

0.04, p = 0.88, p values are uncorrected). Given the lack of correlation in these measures we 

reasoned that our complexity EEG measures were not confounded by age. 

 

Statistics 
Significance values for multiple comparisons within a particular analysis type were corrected using 

the Holm-Bonferroni method—a sequentially-rejective procedure(Holm, 1979). Specifically, we 

corrected p values for pre- vs post-metrics for LOR and ROR separately within each of the 

following analyses: (1) the power percentage across all 5 frequency bands (delta, theta, alpha, beta, 

gamma), (2) the ellipse radius ratio (ERR) when comparing across all 10 embedding delays, (3) 

the correlation dimension when comparing across all 10 embedding delays, and (4) the Spearman 

correlation of ERR, correlation dimension, and frequency band power. We report our results as 

medians (25, 75 percentiles), and corrected significance values (p) are calculated from Wilcoxon 

Signed Rank Tests. 
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FIGURES 

 
Figure 1 Example of activity around loss of response (LOR). A) EEG was recorded from F7 

referenced to AFz. Twenty second artifact-free segments were identified before (red) and after 

(blue) loss of response (LOR) and used for subsequent analysis. Data shown is from patient A. B) 

Spectral activity around LOR shows increases in low frequency activity (< 12 Hz), previously 

termed slow-wave anesthesia, and decreases in high frequency activity (>12 Hz). C) Time-delayed 

embeddings generated from EEG activity from before (red) and after (blue) LOR. D) One way 

differences in the time-delayed embeddings pre- and post-LOR were quantified by fitting them 

with ellipsoids.  
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Figure 2 Power Spectra before and after loss and recovery of response. Power spectra around 

loss (left) and recovery (right) of response from four individual patients is shown. Awake or 

responsive periods (pre-LOR in left column and post-ROR in right column) are in red while 

anesthetized periods (post-LOR in left column and pre-ROR in right column) are in blue. The 

responsive state (red) is characterized by higher power in the frequency bands > 12 Hz, while the 

anesthetized or LOR state is characterized by higher power in the slower frequency bands < 12 Hz, 

with peaks in the delta (1-4 Hz) and alpha (8-12 Hz) band range, previously defined as slow-wave 

anesthesia (SWA). Solid red and blue lines indicate the mean value at each frequency, while the 

shading indicates a 95% confidence interval using a theoretical error distribution.  
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Figure 3 Spectrograms before and after loss and recovery of response. Examples of 

normalized spectrograms around loss (left) and recovery (right) of response events from four 

patients. Preceding and following LOR, the pattern of spectral activity is characterized by an 

increase in power of slow-wave activity, termed slow-wave anesthesia18, in both the delta (1-4 Hz) 

and alpha (8-12 Hz) bands; a predominant alpha rhythm is particularly noticeable. This transition 

emerges slowly during the LOR period, and with a variable time-course for each patient. In 

contrast, the period of emergence from general anesthesia to ROR is marked by a more uniform 

distribution of power across frequency bands, and the previously dominant alpha rhythm is 

replaced by a more pronounced beta rhythm. In the 4 patients shown, this transition appears to be 

more abrupt than the trajectory toward LOR.  
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Figure 4 Spectral changes before and after loss and recovery of response. Spectral edge 

frequency and total power changes that occur in the 20 second clips analyzed before and after loss 

of response (LOR) and recovery of response (ROR). A) A significant decrease in spectral edge 

frequency was observed before to after LOR. B) A significant increase in spectral edge frequency 

was observed before to after ROR. C) A significant increase in total power was observed before 

to after LOR. D) A decrease in total power was observed before to after ROR. Reported p values 

are uncorrected.  
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Figure 5 Attractor shape changes with loss and recovery of response. Examples of shape 

changes that occur before and after loss and recovery of response using 4 ms embedding delays. 

Although the attractors are three-dimensional, a two-dimensional projection is shown here for each 

attractor for each patient at the same viewing angle. During behavioral states when patients 

respond to verbal commands (red) attractors are more spherical and three-dimensional. During 

states when patients do not respond (blue), attractors are more ellipsoidal and flat. 
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Figure 6 Attractor characterization measures before and after loss and recovery of response. 
A) Ellipse radius ratio (ERR) of three-dimensional attractors significantly decreases in the 

transition preceding loss of response (LOR) to the post-LOR state. ERR significantly increases in 

the transition that precedes recovery of response (ROR) to the post-ROR state. B) Correlation 

dimension (CD) of three-dimensional attractors decreases from pre- to post-LOR, but not 

significantly. CD increases significantly between the pre- and post-ROR state. C) Correlation 

dimension of five-dimensional attractors decreases significantly from pre- to post-LOR, and 

increases significantly between the pre- and post-ROR state. Reported p-values are uncorrected. 
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Figure 7 Attractors for loss and recovery of response change shape based on embedding 

delay. We plotted attractors from the 20 second windows we identified before and after LOR (A) 

and ROR (B) at a range of embedding delays. Note that the shape difference observed in the 

attractors disappears with increasing embedding delays. Examples are from patient D for both 

LOR and ROR. 
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Figure 8 Attractor measures at increasing embedding delays for loss and recovery of 

response. Three-dimensional attractors were characterized using the ellipse radius ratio (ERR, A) 

and correlation dimension (CD) in both 3 (B) and 5 (C) dimensions. We calculated the differences 

in these three measures in 20 second EEG clips before and after LOR (top plots) and before and 

after ROR (bottom plots) at all embedding delays. The difference between the two clips before to 

after the events is shown here. Solid lines indicate the median differences for all patients at each 

delay and the shaded error represents the 25th and 75th quartiles. The * indicates a significant 

difference between pre- and post- clips in the EEG measures at that embedding delay at p < 0.05 

corrected.  
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Figure 9 Examples of dynamics of attractors around loss of response (LOR). Spectrograms 

and attractors for epochs surrounding LOR by +/- two minutes for two individual patients (A and 

B). Attractors are three-dimensional but shown projected into two dimensions from the same 

viewing angle. Note the flattening and more ellipsoidal shapes approaching and following LOR in 

both patients. The ellipse radius ratio (ERR) measure appears to be the only one to decrease 

throughout the LOR period.  
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Figure 10 Examples of dynamics of attractors around recovery of response. Spectrograms 

and attractors for epochs surrounding ROR by +/- two minutes for two individual patients (A and 

B). Attractors are three-dimensional but shown projected into two dimensions from the same 

viewing angle. Note the broadening and more spheroidal shapes approaching and following ROR 

in both patients. In patient G (A), at approximately +1.75 minutes, the ellipsoidal attractor begins 

to flatten again, reflecting the patient’s behavioral state moving to becoming less responsive again 

with lack of stimulation. 
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Figure 11 Dynamics of attractors during loss and recovery of response for the population 

studied. A) The average ellipse radius ratio (ERR) for all patients appears to decrease gradually 

as patients approach loss of response (LOR), and continues to decrease in value as anesthetic depth 

increases (A, left). In contrast ERR upon recovery (A, right) is marked by a more abrupt increase 

in ERR at the ROR transition point. B) The 3D correlation dimension (CD) gradually decreases 

during LOR (B, left) and more abruptly increases during ROR (B, right). C) The 5D correlation 

dimension (CD) gradually decreases during LOR (C, left) and more abruptly increases during 

ROR (C, right). Both the 3D CD ROR (B, right) and the 5D CD ROR (C, right) appear to lag 

behind the recovery timepoint (dashed line), while the ERR does not. Solid black lines represent 

the mean complexity values at each timepoint for all patients. Shaded area is the standard error of 

the mean. Vertical dashed lines represent the time of LOR or ROR. 
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Frequency band Percentage of Power 

Pre-LOR 

Percentage of Power 

Post-LOR 

Significance 

value, 

corrected 

Delta (1 – 4 Hz) 37.8% [31.2, 44.7] 33.1% [28.7, 41.9] 0.63 

Theta (4 – 8 Hz) 10.8% [6.2, 16.2] 9.6% [8.1, 12.2] 0.63 

Alpha (8 – 12 Hz) 9.4% [6.1, 11.9] 15.6% [10.2, 19.9] 0.075 

Beta (12 – 25 Hz) 11.4% [8.1, 20.4] 17.4% [9.3, 20.7] 0.63 

Gamma (25 – 50 Hz) 6.5% [4.0, 9.6] 1.9% [1.2, 2.9] 0.0006* 

 

Table 1 Summary of spectral changes from before and after loss of response (LOR). 

Percentage of power in individual frequency bands are reported as medians [25, 75 percentiles]. 

Significance values reported are from Wilcoxon signed rank tests, corrected for multiple 

comparisons. The * indicates that the percentage of power change was significant at p < 0.05 

corrected. 

 
Frequency band Percentage of Power 

Pre-ROR 

Percentage of Power 

Post-ROR 

Significance 

value, 

corrected 

Delta (1 – 4 Hz) 44.5% [27.6, 64.6] 26.2% [16.3, 44.7] 0.010* 

Theta (4 – 8 Hz) 10.8% [9.6, 13.3] 7.3% [5.6, 9.8] 0.014* 

Alpha (8 – 12 Hz) 11.9% [6.1, 17.7] 7.1% [4.9, 9.5] 0.010* 

Beta (12 – 25 Hz) 10.6% [3.8, 18.4] 17.8% [10.4, 28.8] 0.049* 

Gamma (25 – 50 Hz) 1.3% [0.7, 4.3] 11.8% [7.8, 22.4] 0.0055* 

 

Table 2 Summary of spectral changes from before and after recovery of response (ROR). 

Percentage of power in individual frequency bands are reported as medians [25, 75 percentiles]. 

Significance values reported are from Wilcoxon signed rank tests, corrected for multiple 

comparisons. The * indicates that the percentage of power change was significant at p < 0.05 

corrected. 
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EEG measure Cohen’s D LOR Cohen’s D ROR 

SEF -1.1 1.3 

Total Power 1.0 0.38 

Delta -0.18 -0.80 

Theta -0.12 -0.78 

Alpha 0.68 -0.79 

Beta 0.23 0.58 

Gamma -0.95 0.87 

ERR -1.1 1.4 

CD 3D -0.59 1.2 

CD 5D -0.67 1.0 

 

Table 3 Summary of Cohen’s D for measured values before and after loss of response and 

recovery of response. Cohen’s D (sign convention: post – pre) was calculated to quantify the 

effect sizes of various EEG measures by comparing means. We included all measures that showed 

significant differences before and after LOR or ROR, and the standard frequency bands for 

comparison. ERR, and CD values (for both dimensions) are shown here for 4 ms (shortest) delay.  

 
Parameter 1 Parameter 2 Spearman’s Rho Significance value, 

corrected 

ERR CD (3D) 0.54 0.07 

ERR Delta -0.12 0.79 

ERR Theta -0.23 0.61 

ERR Alpha 0.019 0.94 

ERR Beta 0.16 0.79 

ERR Gamma 0.71 0.0055* 

CD (3D) Delta -0.28 0.53 

CD (3D) Theta -0.48 0.11 

CD (3D) Alpha 0.054 0.91 

CD (3D) Beta 0.11 0.79 

CD (3D) Gamma 0.73 0.0055* 

 

Table 4 Summary of correlations for measured changes before and after loss of response 

(LOR). Spearman Correlation calculated between pairs of EEG measures. ERR and CD 3D, 

calculated for a 4 ms delay, were compared against each other as well as percentage of power in 

each of the frequency bands. The * indicates that the correlation is significant at p < 0.05 corrected. 
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Parameter 1 Parameter 2 Spearman’s Rho Significance value, 

corrected 

ERR CD (3D) 0.70 0.012* 

ERR Delta -0.41 0.12 

ERR Theta -0.54 0.075 

ERR Alpha -0.45 0.11 

ERR Beta 0.51 0.084 

ERR Gamma 0.91 0* 

CD (3D) Delta -0.48 0.10 

CD (3D) Theta -0.41 0.12 

CD (3D) Alpha -0.35 0.19 

CD (3D) Beta 0.59 0.0495* 

CD (3D) Gamma 0.73 0.0099* 

 

Table 5 Summary of correlations for measured changes before and after recovery of response 

(ROR). Spearman Correlation calculated between pairs of EEG measures. ERR and CD 3D, 

calculated for a 4 ms delay, were compared against each other as well as percentage of power in 

each of the frequency bands. The * indicates that the correlation is significant at p < 0.05 corrected.  
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