- 1 Functional diversity plays a role in driving β -diversity: Or does it?
- 2
- 3 David Murray-Stoker^{1,2,3}
- 4
- ⁵ ¹Odum School of Ecology, University of Georgia, Athens, GA 30602, U.S.A.
- ⁶ ²Present Address: Department of Ecology and Evolutionary Biology, University of Toronto,
- 7 Toronto, ON M5S 3B2, Canada
- ³Present Address: Department of Biology, University of Toronto at Mississauga, Mississauga,
- 9 ON L5L 1C6, Canada
- 10
- 11 ORCID: https://orcid.org/0000-0002-4774-6948
- 12
- 13 E-mail: dstoker92@gmail.com
- 14 Keywords community diversity, functional diversity, metacommunity theory, open science,
- 15 structural equation modeling

16

17 Abstract

18	Patrick and Brown (2018) suggest that functional diversity of the species pool has an important
19	role in generating β -diversity. Using a combination of path analysis and model selection, they
20	ostensibly provide support for this hypothesis; however, they neglected to put theory and
21	modeling into proper ecological and statistical context. Here, I present a re-analysis of their data.
22	I conclude that the drivers of β -diversity are variable, with functional diversity typically having a
23	reduced, if any, role compared to consistently stronger roles played by γ -diversity or
24	environmental variation on structuring β -diversity.
25	Introduction
26	Environmental filtering is a common mechanism used to explain community assembly
27	(Poff 1997, Leibold et al. 2004). Under this framework, realized assemblages are derived from
28	the regional pool by a series of environmental variables selecting for taxa able to establish under
29	the local conditions. Derived from this framework is the hypothesized positive relationship
30	between environmental heterogeneity and β -diversity. Considering each community is comprised
31	of taxa able to occupy and persist in the local environmental conditions, greater variation in
32	environmental conditions in the region results in greater variation among communities due to
33	differential composition among habitats (Logue et al. 2011, Heino et al. 2013). This hypothesis
34	has been evaluated in terrestrial (Kraft et al. 2011, Cramer and Verboom 2017) and aquatic
35	(Grönroos et al. 2013, Heino et al. 2013, Astorga et al. 2014, Heino et al. 2017, Wojciechowski
36	et al. 2017) systems, but there is no conclusive support for the predominant drivers of β -
37	diversity.
38	Patrick and Brown (2018) suggested that functional diversity could play an important role
39	in generating β -diversity. Derived from the environmental filtering framework, they proposed

2

40 that greater functional differences among taxa in the region would allow for differential 41 composition among local communities, and this relationship would be greater at higher levels of 42 environmental heterogeneity or filtering. In other words, Patrick and Brown (2018) hypothesized 43 a positive relationship between functional diversity and β -diversity. This hypothesis is intuitive 44 in the broader context of the environmental filtering framework, and, through the use of 45 statistical modeling and causal inference, Patrick and Brown (2018) report functional diversity 46 having an important role in predicting β -diversity. Although the relative importance of functional 47 diversity as a predictor was generally less than environmental heterogeneity and greater than γ -48 richness, they asserted that functional diversity was still important and useful as a predictor of β -49 diversity. I contend that the study by Patrick and Brown (2018) does not adequately support this 50 conclusion.

51 I contest functional diversity as a driver of β -diversity and rather as a correlate of β -52 diversity. This argument is based on the hierarchical and correlative nature of α -, β -, and γ -53 diversity (Whittaker 1960) and the premise that functional diversity is dynamic, simultaneously 54 influencing and being influenced by (i.e. correlated to) α -, β -, and γ -diversity. I assert that 55 functional diversity is a constituent of community diversity and not an independent entity. I 56 hypothesized that models with correlations rather than causal pathways between or among 57 diversity metrics (i.e. functional, β -, and γ -diversity) would have better model support than 58 models proposed by Patrick and Brown (2018). Additionally, the relative importance of 59 functional diversity would be consistently less than the effects of environmental heterogeneity 60 and γ -diversity on β -diversity.

61 **Re-Analyses**

62 I first re-analyzed the data by testing the path models hypothesized by Patrick and Brown 63 (2018, see fig. 2) and the alternative path models presented here (fig. 1) by using structural 64 equation models and model selection techniques. I generally followed the methods outlined by 65 Patrick and Brown (2018), although I have provided more detailed methods in the appendix. 66 Models were fit for the whole community and each individual functional feeding group. I refer to 67 models by the number associated with the model structure. Models 1-5 were proposed by Patrick 68 and Brown (2018), while I proposed models 6-8. 69 I found that the top model or models varied among the full community and functional 70 feeding group subsets (table 1). Variation in top models notwithstanding, causal pathways 71 linking environmental heterogeneity or γ -diversity to β -diversity consistently had the strongest 72 effect. Environmental heterogeneity had significant effects on β -diversity for the whole 73 community and collector-gatherer and filter-feeder subsets; γ -diversity had significant effects on 74 β -diversity for the herbivore, shredder, and predator subsets; and functional diversity had 75 significant effects on β -diversity for the collector-gatherer and filter-feeder subsets. Even when 76 functional diversity effects on β -diversity were significant, these effects were considerably 77 reduced in relative importance (collector-gatherer model 4: functional diversity = 0.264, 78 environmental heterogeneity = 0.527) or negatively related to β -diversity (filter-feeder model 4: 79 functional diversity = -0.509, environmental heterogeneity = 0.419; filter-feeder model 5: 80 functional diversity = -0.502, environmental heterogeneity = 0.414). Net effects also showed that 81 functional diversity was generally of lower or negligible relative importance compared to the net 82 effects of environmental heterogeneity or γ -diversity (table 1). 83 Although the alternative models were only retained among the top models for the 84 predator community subset (table 1), results from the re-analysis drastically contradicted what

85 was presented by Patrick and Brown (2018, see table 2). Discrepancies were not just in relative 86 model support, but also goodness-of-fit tests and net effects of predictor variables; therefore, I 87 proceeded to also re-analyze the original model set (i.e. models 1-5). Again, there was variation 88 in the top model or models for the whole community and functional feeding group subsets (table 89 2). Causal pathways linking environmental heterogeneity or γ -diversity to β -diversity 90 consistently had the strongest effect. Importantly, a link between functional diversity and β -91 diversity was only retained in the top model(s) for three of the six community sets (table 2); this 92 contrasts Patrick and Brown (2018), who report a link between functional diversity and β -93 diversity in at least one top model for all six model sets. In the remaining community subsets, 94 models including a causal pathway between functional diversity and β -diversity were equivalent 95 to or outperformed by models without the causal pathway. Even when retained in the top models, 96 the causal pathway between functional diversity and β -diversity was only significant for two of 97 the three community subsets (collector-gatherer and filter-feeder subsets), and of reduced 98 importance for driving (i.e. collector-gatherer subset) or negatively-related to (filter-feeder 99 subset) β -diversity (table 2) when significant.

Drivers of β-Diversity: Ecological Context

Given the deviation between the results presented by Patrick and Brown (2018) and those presented here, I argue this could have been prevented by incorporating and applying proper ecological and statistical context. Regarding ecological context, Patrick and Brown (2018) neglected to present or provide summary data on community composition. Given the nature of the sampling design (i.e. first- to fourth-order streams), it is to be expected that collectorgatherers, shredders, and predators would comprise the majority of community abundance and biomass and play critical roles in food web structure and ecosystem functioning (Vannote et al. 108 1980, Rosi-Marshall and Wallace 2002). It would be more relevant to the ecology of the system

- 109 to focus on the dominant taxa and concomitant functional feeding group subsets, in terms of
- 110 relative abundance and biomass, rather than treating all functional feeding groups as equivalent.
- 111 Based on my re-analysis of the complete model set, functional diversity only had a significantly-
- 112 positive effect on driving β -diversity of collector-gatherers, and the magnitude of functional
- 113 diversity on β -diversity (standardized path coefficient = 0.264) was roughly half of the
- 114 magnitude of environmental heterogeneity (standardized path coefficient = 0.527); γ diversity
- had a significant role in driving β -diversity of shredders (standardized path coefficient = 0.652)
- and predators (standardized path coefficient range = 0.416-0.448).

117 Drivers of β-Diversity: Statistical Context

118 Patrick and Brown (2018) also ignored important statistical context, partly derived from 119 neglecting ecological context but also by conducting suspect analyses and subsequent 120 presentation of results. First, I argue that applying the models to the whole community and each 121 functional feeding group subset is a quasi-form of p-hacking. Rather than focusing on dominant 122 taxa or groups relevant to the ecology of their study systems, Patrick and Brown (2018) had six 123 model sets (i.e. the whole community and five functional feeding group subsets) in which to find 124 a role for functional diversity driving β -diversity, enabling the identification of statistical 125 significance without integrating ecological relevance. Moreover, only one out of five models 126 would contradict their hypothesis, increasing the potential to find a statistically-significant but 127 ecologically-contentious result. Second, I contend that the presence of a causal pathway between 128 functional diversity and β -diversity is irrelevant because that does not indicate if the pathway is 129 statistically significant, although this is purportedly how Patrick and Brown (2018) evaluated 130 model results (see table 3). By not acknowledging if the pathway was significant, Patrick and

131 Brown (2018) did not put the results into the appropriate context. Causal pathways could 132 improve overall model fit, but it is fallacious to conflate improving model fit with having a 133 significant effect on β -diversity, which is ostensibly the argument made by Patrick and Brown 134 (2018). Finally, I claim the presentation of results is highly misleading. Patrick and Brown 135 (2018) report the net effects of correlational pathways or pathways excluded from the respective 136 model as 0.000 (see table 2). It is specious to report a net effect of 0 for a pathway that was not 137 modeled, and the nature of correlational pathways in structural equation models precludes 138 reporting direct or indirect effects mediated by correlational pathways (Grace 2006). Reporting 139 net effects as null or not applicable, as done in this comment, would have been a better way to 140 present the results as it accurately reflects model structures.

141 **Concluding Remarks**

142 I contend that critical errors in the evaluation and subsequent interpretation of hypotheses 143 led to spurious claims by overlooking fundamental ecological and statistical context. Although 144 my alternative models were not consistently among the top models (table 1), I demonstrate that, 145 as predicted, environmental heterogeneity and γ -diversity had consistently stronger and 146 significant effects on β -diversity compared to effects mediated by functional diversity. 147 Importantly, I show that results presented by Patrick and Brown (2018) are not reproducible, and 148 this lack of reproducibility is concerning because it is avoidable. Patrick and Brown (2018) 149 provided data and used open-access software for analyses, but analytical scripts were not 150 archived alongside the data. Additionally, the supplementary data were partial; no raw 151 environmental or community data were provided, limiting critical evaluation by reviewers and 152 readers. Given the growing call for a culture shift with regards to open access, data archiving, 153 and reproducibility in ecology and evolution (Hampton et al. 2015, Roche et al. 2015),

154	publishing full data and analytical scripts should be done whenever possible to preclude the
155	presentation of irreproducible results. In summary, I discourage the use of results presented by
156	Patrick and Brown (2018) because further analyses demonstrate the results are incorrect.
157	Although functional diversity is important for linking community and ecosystem ecology
158	(McGill et al. 2006, Petchey and Gaston 2006), evidence from Patrick and Brown (2018)
159	suggests functional diversity does not generate β -diversity. Instead, environmental variation and
160	diversity within the regional species pool are the primary drivers underlying β -diversity.
161	Appendix
162	Structural equation models (SEMs) were constructed to evaluate the causal pathways
163	through which environmental variation, functional diversity, and γ -diversity structure β -
164	diversity. Structural equation models are tests of fit to the data, and model fit was assessed by
165	comparing expected and observed covariance between predictor and response variables using
166	chi-square tests (Grace 2006). Structural equation models were considered consistent with the
167	data when expected and observed covariance was not significantly different (i.e. $p > 0.05$).
168	Hypothesized SEMs were then compared using Akaike's information criterion (AIC, Burnham
169	and Anderson 2002), ΔAIC (change in AIC value, Burnham and Anderson 2002), and AIC
170	weight (relative support for the model, Burnham and Anderson 2002). Model selection occurred
171	in two distinct phases. First, SEMs had to have good fit to the data ($p > 0.05$) and be considered
172	statistically equivalent ($\Delta AIC < 2.00$). Second, SEMs with comparable AIC weights were
173	selected as the top models within the model set and then included in model interpretation and
174	discussion. All SEMs were estimated by maximum likelihood. Path coefficients, which show the
175	direction and magnitude of the causal relationship between variables, were standardized to allow
176	for the comparison of relationship strengths within each SEM (Grace 2006). All variables were

177	scaled (i.e. centered on the mean and then divided by the standard deviation) prior to analysis.
178	Scaling was done on the full dataset and then on each functional feeding group subset
179	individually. Statistical analyses were conducted using R (version 3.4.3, R Core Team 2017)
180	using the lavaan (Rosseel 2012) and AICcmodavg (Mazerolle 2017) packages; R code for the re-
181	analyses is deposited at figshare (10.6084/m9.figshare.6163841).
182	Literature Cited
183	Astorga, A., R. Death, F. Death, R. Paavola, M. Chakraborty, and T. Muotka. 2014. Habitat
184	heterogeneity drives the geographical distribution of beta diversity: the case of New
185	Zealand stream invertebrates. Ecology and Evolution 4:2693-2702.
186	Burnham, K. P., and D. R. Anderson. 2002. Model selection and multi-model inference: a
187	practical information-theoretic approach. Second edition. Springer, New York, New
188	York, USA.
189	Cramer, M. D., and G. A. Verboom. 2017. Measures of biologically relevant environmental
190	heterogeneity improve prediction of regional plant species richness. Journal of
191	Biogeography 44:579-591.
192	Grace, J. B. 2006. Structural equation modeling and natural systems. Cambridge University
193	Press, Cambridge, United Kingdom.
194	Grönroos, M., J. Heino, T. Siqueira, V. L. Landeiro, J. Kotanen, and L. M. Bini. 2013.
195	Metacommunity structuring in stream networks: roles of dispersal mode, distance type,
196	and regional environmental context. Ecology and Evolution 3:4473-4487.
197	Hampton, S. E., S. S. Anderson, S. C. Bagby, C. Gries, X. Han, E. M. Hart, M. B. Jones, W. C.
198	Lenhardt, A. MacDonald, W. K. Michener, J. Mudge, A. Pourmokhtarian, M. P.

- Schildhauer, K. H. Woo, and N. Zimmerman. 2015. The Tao of open science for ecology.Ecosphere 6:120.
- 201 Heino, J., M. Grönroos, J. Ilmonen, T. Karhu, M. Niva, and L. Paasivirta. 2013. Environmental
- 202 heterogeneity and β diversity of stream macroinvertebrate communities at intermediate
- 203 spatial scales. Freshwater Science 32:142-154.
- 204 Heino, J., J. Soininen, J. Alahuhta, J. Lappalainen, and R. Virtanen. 2017. Metacommunity
- 205 ecology meets biogeography: effects of geographical region, spatial dynamics and
- 206 environmental filtering on community structure in aquatic organisms. Oecologia
- 207 183:121-137.
- 208 Kraft, N. J., L. S. Comita, J. M. Chase, N. J. Sanders, N. G. Swenson, T. O. Crist, J. C. Stegen,
- 209 M. Vellend, B. Boyle, M. J. Anderson, H. V. Cornell, K. F. Davies, A. L. Freestone, B.
- 210 D. Inouye, S. P. Harrison, and J. A. Myers. 2011. Disentangling the drivers of β diversity
- along latitudinal and elevational gradients. Science 333:1755-1758.
- Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D.
- Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau, and A. Gonzalez. 2004. The
- 214 metacommunity concept: a framework for multi-scale community ecology. Ecology
 215 Letters 7:601-613.
- Logue, J. B., N. Mouquet, H. Peter, H. Hillebrand, and G. Metacommunity Working. 2011.
- Empirical approaches to metacommunities: a review and comparison with theory. Trends
 in Ecology and Evolution 26:482-491.
- 219 Mazerolle, M. J. 2017. AICcmodavg: Model selection and multimodel inference based on
- 220 (Q)AIC(c). R package version 2.1-1. <<u>https://cran.r-project.org/package=AICcmodavg</u>>

- McGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding community ecology
 from functional traits. Trends in Ecology and Evolution 21:178-185.
- 223 Patrick, C. J., and B. L. Brown. 2018. Species Pool Functional Diversity Plays a Hidden Role in

224 Generating β -Diversity. The American Naturalist 191:E159-E170.

- Petchey, O. L., and K. J. Gaston. 2006. Functional diversity: back to basics and looking forward.
 Ecology Letters 9:741-758.
- 227 Poff, N. L. 1997. Landscape filters and species traits: towards mechanistic understanding and
- prediction in stream ecology. Journal of the North American Benthological Society16:391-409.
- R Development Core Team. 2017 R: a language and environment for statistical computing. R
 Foundation for Statistical Computing, Vienna, Austria. <<u>https://cran.r-project.org/</u>>
- Roche, D. G., L. E. Kruuk, R. Lanfear, and S. A. Binning. 2015. Public data archiving in ecology
 and evolution: how well are we doing? PLoS Biology 13:e1002295.
- Rosi-Marshall, E. J., and J. B. Wallace. 2002. Invertebrate food webs along a stream resource
 gradient. Freshwater Biology 47:129-141.
- Rosseel, Y. 2012. lavaan: an R package for structural equation modeling. Journal of Statistical
 Software 48:1–36.
- 238 Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. The
- river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37:130137.
- Whittaker, R. H. 1960. Vegetation of the Siskiyou mountains, Oregon and California. Ecological
 Monographs 30:279-338.

- 243 Wojciechowski, J., J. Heino, L. M. Bini, and A. A. Padial. 2017. Temporal variation in
- 244 phytoplankton beta diversity patterns and metacommunity structures across subtropical
- 245 reservoirs. Freshwater Biology 62:751-766.

246 Tables

Group	Fit (P)	AIC	ΔΑΙΟ	AIC Weight	γ-Richness	FD on β	Environmental	γ-Richnes
					on FD		Dispersion on β	on β
Whole Communit	У							
2	0.468	510.65	0.00	0.19	NULL	NA	0.411	-0.096
4	0.452	510.75	0.10	0.18	NULL	0.085	0.391	NULL
5	0.700	510.82	0.17	0.17	0.210	0.085	0.390	0.018
3	0.382	512.03	1.38	0.09	NULL	0.108	0.410	-0.119
8	0.382	512.03	1.38	0.09	NULL	NULL	0.410	NULL
7	0.964	512.11	1.46	0.09	0.210	NULL	0.414	-0.097
6	0.964	512.11	1.46	0.09	0.210	NA	0.414	-0.097
1	0.964	512.11	1.46	0.09	0.210	0.109	0.414	-0.097
Collector-Gathere	r							
4	0.799	500.70	0.00	0.31	NULL	0.264	0.527	NULL
8	0.764	502.23	1.53	0.15	NULL	NULL	0.520	NULL
3	0.764	502.23	1.53	0.15	NULL	0.250	0.520	0.085
5	0.740	502.29	1.59	0.14	0.173	0.263	0.525	0.045
7	0.717	503.82	3.12	0.07	0.173	NULL	0.517	0.127
6	0.717	503.82	3.12	0.07	0.173	NA	0.517	0.127
1	0.717	503.82	3.12	0.07	0.173	0.248	0.517	0.127
2	0.211	504.21	3.51	0.05	NULL	NA	0.511	0.130
Herbivore								
2	0.973	494.92	0.00	0.46	NULL	NA	-0.192	0.500
8	0.895	496.92	2.00	0.17	NULL	NULL	-0.193	NULL
3	0.895	496.92	2.00	0.17	NULL	0.009	-0.193	0.499
7	0.770	498.78	3.86	0.07	0.047	NULL	-0.194	0.502
6	0.770	498.78	3.86	0.07	0.047	NA	-0.194	0.502
1	0.770	498.78	3.86	0.07	0.047	0.009	-0.194	0.502
4	0.004	508.06	13.13	0.00	NULL	0.031	-0.167	NULL
5	0.001	509.92	15.00	0.00	0.047	0.031	-0.167	0.001
Filter-Feeder	- 1 - 1		1					1
5	0.467	496.24	0.00	0.24	0.254	-0.509	0.419	-0.129
4	0.272	496.61	0.38	0.20	NULL	-0.502	0.414	NULL
1	0.355	497.57	1.33	0.12	0.254	-0.530	0.400	-0.037
7	0.355	497.57	1.33	0.12	0.254	NULL	0.400	-0.037
6	0.355	497.57	1.33	0.12	0.254	NA	0.400	-0.037
3	0.198	497.95	1.71	0.10	NULL	-0.528	0.399	0.098
8	0.198	497.95	1.71	0.10	NULL	NULL	0.399	NULL
2	< 0.000	512.46	16.22	0.00	NULL	NA	0.337	-0.021
Shredder								
2	0.726	462.37	0.00	0.37	NULL	NA	0.021	0.652
3	0.759	463.61	1.24	0.20	NULL	0.104	0.033	0.635
8	0.759	463.61	1.24	0.20	NULL	NULL	0.033	NULL
7	0.459	465.60	3.23	0.07	0.160	NULL	0.033	0.651
6	0.459	465.60	3.23	0.07	0.160	NA	0.033	0.651
1	0.459	465.60	3.23	0.07	0.160	0.104	0.033	0.652
4	< 0.000	483.78	21.41	0.00	NULL	0.207	0.051	NULL
5	< 0.000	485.78	23.41	0.00	0.160	0.207	0.051	0.033
Predator	II		L	II.		1	1	
1	0.664	504.15	0.00	0.19	0.129	0.136	0.239	0.434
7	0.664	504.15	0.00	0.19	0.129	NULL	0.239	0.434
6	0.664	504.15	0.00	0.19	0.129	NA	0.239	0.434
2	0.228	504.29	0.14	0.18	NULL	NA	0.237	0.448
8	0.206	505.12	0.97	0.12	NULL	NULL	0.246	NULL
3	0.206	505.12	0.97	0.12	NULL	0.139	0.246	0.428
5	0.008	511.55	7.40	0.00	0.129	0.192	0.345	0.025
4	0.006	512.52	8.37	0.00	NULL	0.192	0.346	NULL
	0.000	012.02	0.07	0.00		5.175	0.010	

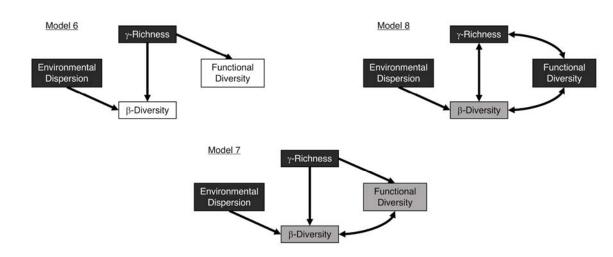
Table 1. Summary of all the path models in the re-analyses.

248 Note: All models were compared for the full community and each functional feeding group using

249 Akaike's information criteria (AIC). The difference in AIC scores (Δ AIC) is relative to the

- 250 model with the lowest AIC score, and model weight is the relative support of the individual
- 251 model within the model set. Models in boldface had good fit to the data ($\chi^2 > 0.05$) and $\Delta AIC <$
- 252 2.00, and italicized models had the greatest relative support. Net effects are the sum of the direct
- and indirect effects mediated by unidirectional causal pathways; correlational pathways between
- 254 variables cannot be included when calculating net effects. If correlations were the singular or
- 255 mediating pathway modeled between the variables, the effects are reported as NULL. FD =
- functional diversity; NA = not applicable (i.e. no causal pathway in the model).

257 Table 2. Summary of the candidate path models proposed by Patrick and Brown (2018), with


Group	Fit (P)	AIC	ΔAIC	AIC Weight	γ-Richness	FD on β	Environmental	γ-Richnes
					on FD		Dispersion on β	on β
Whole Community							[
2	0.468	510.65	0.00	0.26	NULL	NA	0.411	-0.096
4	0.452	510.75	0.10	0.25	NULL	0.085	0.391	NULL
5	0.700	510.82	0.17	0.24	0.210	0.085	0.390	0.018
3	0.382	512.03	1.38	0.13	NULL	0.108	0.411	-0.119
1	0.964	512.11	1.46	0.12	0.210	0.109	0.414	-0.097
Collector-Gatherer								
4	0.799	500.70	0.00	0.44	NULL	0.264	0.527	NULL
3	0.764	502.23	1.53	0.20	NULL	0.250	0.520	0.085
5	0.740	502.29	1.59	0.20	0.173	0.263	0.525	0.045
1	0.717	503.82	3.12	0.09	0.173	0.248	0.517	0.127
2	0.211	504.21	3.51	0.08	NULL	NA	0.511	0.130
Herbivore								
2	0.973	494.92	0.00	0.66	NULL	NA	-0.192	0.500
3	0.895	496.92	2.00	0.24	NULL	0.009	-0.193	0.499
1	0.770	498.78	3.86	0.10	0.047	0.009	-0.194	0.502
4	0.004	508.06	13.14	0.00	NULL	0.031	-0.167	NULL
5	0.001	509.92	15.00	0.00	0.047	0.031	-0.167	0.001
Filter-Feeder								
5	0.467	496.24	0.00	0.36	0.254	-0.509	0.419	-0.129
4	0.272	496.61	0.37	0.30	NULL	-0.502	0.414	NULL
1	0.355	497.57	1.33	0.19	0.254	-0.530	0.400	-0.037
3	0.198	497.95	1.71	0.15	NULL	-0.528	0.399	0.098
2	< 0.000	512.46	16.22	0.00	NULL	NA	0.337	-0.021
Shredder						1	l	
2	0.726	462.37	0.00	0.58	NULL	NA	0.021	0.652
3	0.759	463.61	1.24	0.31	NULL	0.104	0.033	0.635
1	0.459	465.60	3.23	0.11	0.160	0.104	0.033	0.652
4	< 0.000	483.78	21.41	0.00	NULL	0.207	0.051	NULL
5	< 0.000	485.78	23.41	0.00	0.160	0.207	0.051	0.033
Predator		1						
1	0.664	504.15	0.00	0.39	0.129	0.136	0.239	0.434
2	0.228	504.29	0.14	0.36	NULL	NA	0.237	0.448
3	0.206	505.12	0.97	0.24	NULL	0.139	0.246	0.428
5	0.008	511.55	7.40	0.01	0.129	0.192	0.345	0.025
4	0.006	512.52	8.37	0.01	NULL	0.193	0.346	NULL

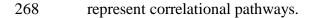
258 models reported in order of AIC and Δ AIC.

259 Note: All models in the re-analysis were compared for the full community and each functional

260 feeding group. Models are ordered and formatted following Table 1.

261 Figures

262


Figure 1. Alternative path models to those proposed by Patrick and Brown (2018). Models

264 display the hypothesized relationships between environmental dispersion, γ -richness,

265 functional diversity, and β -diversity. Exogenous (independent) variables are represented in

black boxes, endogenous (dependent) variables in grey boxes, and response-only variables in

white boxes. Single-headed arrows represent causal pathways, and double-headed arrows

