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Abstract 

There is still a significant gap between our understanding of neural circuits and the behaviours               

they compute – i.e. the computations performed by these neural networks ​(Carandini 2012) ​.             

Learning, behaviour, and memory formation, what used to only be associated with animals with              

neural systems, have been observed in many unicellular aneural species, namely Physarum,            

Paramecium, and Stentor ​(Tang & Marshall 2018) ​. As these are fully functioning organisms, yet              

being unicellular, there is a much better chance to elucidate the detailed mechanisms underlying              

these learning processes in these organisms without the complications of highly interconnected            

neural circuits. An intriguing learning behaviour observed in ​Stentor roeselii ​(Jennings 1902)            

when stimulated with carmine has left scientists puzzled for more than a century. So far, none of                 

the existing learning paradigm can fully encapsulate this particular series of five characteristic             

avoidant reactions. Although we were able to observe all responses described in literature and in               

a previous study ​(Dexter et al. 2019, ​manuscript in preparation ​) ​, they do not conform to any                

particular learning model. We then investigated whether models based on machine learning            

approaches, including decision tree, random forest, and feed-forward neural networks could infer            

and predict the behavior of ​S. roeselii​. Our results showed that an artificial neural network with                

multiple ‘computational’ neurons is inefficient at modelling the single-celled ciliate’s avoidant           

reactions. This has highlighted the complexity of behaviours in aneural organisms. Additionally,            

this report will also discuss the significance of elucidating molecular details underlying learning             

and decision-making processes in these unicellular organisms, which could offer valuable           

insights that are applicable to higher animals. 
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Since the 1700s many behaviours observed in lower unicellular organisms, such as ​Physarum​,             

Paramecium​, or ​Stentor​, have been successfully demonstrated to satisfy many of the existing             

learning paradigms, from simple non-associative ​(Boisseau et al. 2016; Osborn et al. 1973; Tang              

& Marshall 2018; Wood 1973; Eisenstein 1975) to more complex associative models ​(Hennessey             

et al. 1979; Shirakawa et al. 2011) ​. These observations have left scientists puzzled. To what               

extent do these organisms possess an awareness of their surrounding? Is it at all comparable to                

that experienced by higher animals? Herbert Jennings – one of the most influential biologists in               

the field of behaviours in aneural organisms – published some very detailed written accounts of               

the unique response seen in the single-cell ciliate ​Stentor roeselii upon mechanical or chemical              

stimulation ​(Jennings 1902) ​. In particular, when stimulated with carmine particles (Fig. 1), the             

organisms were described to perform a series of five characteristic observable avoidant reactions             

in order to remove themselves (or ‘to leave’) from the noxious stimulus, provided that the               

particles were persistently present in the surrounding environment. This complicated sequence of            

action was acknowledged as one of “the most intricate behaviors so far recorded in unicellular               

animals” by Dennis Bray ​(Bray 2009) ​. The five reactions are generally seen to occur in a                

particular order (Fig. 2), albeit with several variations. Sometimes the typical response order is              

not strictly followed, or time taken to switch between different avoidant reactions varies widely              

from one organism to another. Jennings was able to demonstrate that these differences in              

response are not due to fatigue, and thus concluded that the organism had performed some form                

of complex learning; an altered response due to prior experience ​(Jennings 1902) ​.  

Multiple attempts to characterize this intriguing behaviour were later carried out, some of which              

challenged Jennings’ proposition ​(Reynierse & Walsh 1967; Wood 1969) ​. However, some of            
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these subsequent experiments used a related but more motile species – ​S. coeruleus​. Thus, the               

exact Jennings observations were not seen and hence the avoidance behaviours were considered             

irreproducible. In an earlier ​(Dexter et al. 2019, manuscript in preparation) ​, we developed a              

video-microscopy experimental paradigm and used ​S. roeselii to duplicate Jennings'          

experiments. This study verified Jennings' findings of a complex hierarchy of avoidance            

behaviours, which indicated a complex decision making process underlying the behaviours.  

All these earlier studies were able to demonstrate that the observations in ​S. roeselii did not                

conform to any existing learning model for single cell organisms - they did not indicate               

habituation nor adaptive sensitization (which may require more than a life time to acquire!).              

Staddon had earlier suggested that it could be operant behaviour – behaviour “guided by its               

consequences”, and proposed some possible mechanisms, yet, no concrete conclusion was made            

(Staddon 1983)​.  

Since there is no current learning model that can fully explain the series of avoidant reactions in                 

S. roeselii​, we examined if decision ‘to leave’ could be predicted from time spent performing               

each of the avoidant reactions using models based on Decision Tree, Random Forest, and              

Artificial Neural Network (ANN) machine learning algorithms. ANNs have proven their power            

with notable successes in applications across numerous fields, including modeling complex           

cognitive activities in higher animals ​(Savelli & Knierim 2018; Yang et al. 2019) ​. We set out to                 

explore how effective ANNs are at predicting ​S. roeselii​’s behaviour, and are particularly             

interested to find out the number of computational neurons required for an ANN to be proficient                

at predicting the behaviour observed in a single-celled organism.  
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Replication of Jennings’ original experiment – heterogeneity in S. roeselii’s behaviour 

We replicated Jenning’s experiment and validated the complexity of the observed behaviours by             

(Dexter et al. 2019, manuscript in preparation) ​. Upon stimulation with red-fluorescent latex            

beads, we were able to observe all the five avoidant reactions described by Jennings. Fig. S1                

shows our simple experimental set-up. We used a light microscope to observe and record ​S.               

roeselii’s behaviour and a gravity based water reservoir was used for pulsed bead stimulations.              

Since observations provided by Jennings were only qualitative description via words and            

sketches, with experimental methods not being documented in detail, all observations were            

subjected to our own interpretation as illustrated in Fig. 3. The high level of heterogeneity in ​S.                 

roeselii​’s behaviour upon stimulation noted by Jennings ​(Jennings 1902) were also detected. The             

order of the series of reaction is not always the same as that illustrated in Fig. 2. In many                   

instances, halting and reversing in direction of cilia beating took place before obvious bending              

was seen. The extent to which bending movements were performed varied massively. Generally,             

each of the five responses was repeated for a while before the organism decided to move on to                  

the next, with large differences in the number of repeats for each response between organisms​.               

Moreover, many individual ​S. roeselii ​did not demonstrate all five reactions, with some omitting              

bending, some contraction, and others immediately detaching. Occasionally, some ​S. roeselii           

immediately contracted upon stimulation. However, this could have been a reaction to the strong              

water pressure from releasing the beads into the environment. 

Performing the experiment repeatedly with absolute consistency of control variables was           

challenging. This may or may not have affected the ​Stentor​s’ behavior across experiments. For              

instance, experiments typically involved recording over five sessile ​S. roeselii ​simultaneously           
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due to time limitations. Thus, it can be hard to distinguish if contraction of these organisms was a                  

response to stimulation or due to collision with others swimming in close vicinity. Additionally,              

the amount of beads released into the environment for each experiment was, though roughly the               

same, not exact.  

Analysis of the video recordings was not always straightforward. Cilia movement was only             

clearly observable when the organisms were positioned correctly in the plane of focus. Quite              

often, the organism bended in multiple directions throughout the course of the experiment, and              

therefore, their cilia were not always observable. Moreover, the reversal of cilia beating is              

usually accompanied by a twist or slight bending, which could lead to potential mis-classification              

of response if cilia were not observable. Another factor that could impact the quality of input                

variables is that the videos collected are of different length (see Material Methods). In an attempt                

to mitigate these factors, experiments where these issues were more pronounced were discarded             

from analysis. Being aware of all complications and the wide variation in ​S. roeselii​’s              

behaviours, we were extremely cautious and very careful to make the most consistent and              

quantitative analysis possible. 

 

Evidence against Operant behaviour 

Operant behaviour is described as a form of goal-directed behaviour. This learning model             

suggests that ​S. roeselii​’s decision of switching from one response to the next is underpinned by                

a mechanism that “compute[s] the relative importance of time [spent repeating a particular             

response] and concentration [of the noxious substance in its vicinity]” ​(Staddon 1983) ​. Staddon             
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suggested a mechanism whereby the five reactions were graded according to their cost (energy              

expenditure +/- forgoing the opportunity to obtain further food), with each successive reaction             

only occurring above a certain threshold concentration of noxious beads. Additionally, each            

threshold elevates as the reaction continues to occur – ie. a form of habituation – and eventually,                 

will overtake that of the next reaction in the series, resulting to a switch in behaviour. However,                 

this seems to imply that the organism needs to go through the whole sequence of five reactions in                  

the exact order every time it is stimulated. Yet, this was not always in our experiments. There                 

were multiple instances where the first two or three stages were skipped, or the order of reactions                 

was not followed. Staddon also mentioned that the above mechanism was just one of the many                

possibilities one could come up with. Ultimately, he conceded that the exact operant behaviour              

mechanism could not be verified without further physiological and behavioral analysis. 

 

Modelling S. roeselii’s avoidant behaviour using machine learning approaches 

We decided to use the time (in seconds) spent performing each of the avoidant reactions               

described by Jennings as features to train our machine learning models. This includes the              

duration of (1) being at rest, (2) bending, (3) cilia reversal and (4) contraction (Video 1).                

Detachment was used as an outcome in our model, and so the 5​th feature included was (5)                 

number of contractions observed. There are many more features which can be extracted from the               

raw data collected from analyzing the videos, such as dynamics of contraction and retraction,              

time taken for each contraction, or order of events taking place, etc. Nonetheless, as the data set                 

is relatively small, it is not appropriate to use too many features to train the models. 
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The correlations between these features were investigated (Fig. 4). The results showed that             

contraction time and number of contraction is highly positively correlated, which is to be              

expected as the longer the organism spent in contraction stage, the more opportunities they              

would have to perform contraction. With respect to the outcome “Leave”, the duration of              

contraction and cilia reversal stages are the most negatively correlated features, with the number              

of contractions having a slightly less negative correlation.  

The first classification model was based on Decision Tree algorithm. The tree-like flowchart             

(Fig. 5) was generated, with each internal node representing a “test” on an attribute, and the                

outcome of the test – the decision – is displayed on the branch. The decision is made at each                   

branch until it comes to the termination point. At each node, data points are initially segregated                

based on all input variables individually, and the split that generates the most homogeneous              

classes will be chosen and displayed. Thus, the decision tree model identifies the significance              

hierarchy of input features used by the model after being trained. Applying this algorithm on our                

data set, contraction time and cilia reversal time were recognized as the most critical features.  

The second model we used was Random Forest. It is a different tree-based model, in which                

multiple trees are generated at the same time instead of the single tree approach that Decision                

Tree uses. Each tree will categorize a subset of the training dataset based on a random selection                 

of input features, but only the variable with the highest association with the target will be chosen.                 

The predictions generated from this collection of decision trees will be analyzed further and the               

class of highest “votes” will be chosen as an overall result. Random Forest model also allows                

variable importance to be assessed and extracted in the format of a ranking (Fig. 6). The mean                 

decrease Gini measures the average reduction in purity of splitting events. Features that are              
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highly correlated with the outcome seem to contribute more to the variation, hence, usually              

found most useful for prediction as they tend to help splitting mixed nodes into those with higher                 

purity (indicated by Gini index). Here, the top three variables chosen by the model are, again,                

time spent in contraction, cilia reversal, and number of contractions, in order of decreasing              

importance.  

The algorithms performed by decision tree are relatively clear, as we can examine the              

computations generated by the model, whilst random forest is more complicated with a big forest               

of deep trees. To gain a full understanding of the decision process by examining each tree is                 

almost impossible. Although these approaches are easy to interpret and provide straightforward            

visualizations, their level of depth in inferring relationships and patterns from the data set is               

relatively poor. Since they mainly pick out variables that have the most significant impact on               

making predictions, they capitulate to capture other finer and more subtle details from the              

training data set involving the rest of the input variables. It does not make sense to conclude that                  

the first two reactions in the series of five are insignificant or irrelevant as the organisms would                 

not have done so otherwise.  

Hence, feed-forward neural networks were used to further investigate the series of response in ​S.               

roeselii ​. These networks are made up of structured layers of computational neurons called             

‘perceptrons’ (Fig. 7), mimicking actual biological input and activation architecture of real            

neurons. An Input layer takes in information from all training features, which is then passed on                

to hidden layer(s). There can be more than one hidden layer, and the perceptrons architecture can                

be customized. The more hidden layers there are, with highly intricate connecting algorithms, the              

more complex the network is, and hence the “deep” learning. These layers then perform              
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computations that cannot, yet, be understood. The output of one layer is used as an input for the                  

next layer. Eventually it will reach the final output layer, where the predictions are made.  

Three feed-forward models were compiled with different hidden layer architecture and           

complexity (Table 1). After being trained, the performance of these models on a novel dataset               

can be evaluated using several different metrics. Some of these are summarized in Table 1, as                

well as being demonstrated through the Receiver Operator Curves (ROC) curves (Fig. 8).             

Accuracy implies the ratio of number of correct predictions out of all predictions made, and               

therefore, it seems like the higher the accuracy, the better the performance intuitively. Yet, this is                

not always the case, especially if statistical tests show that it is not significant, or if the dataset is                   

imbalanced. F1 scores are one of the popular metrics used for evaluation of machine learning               

algorithms. It is the measure of the model’s precision and robustness. Generally, the higher the               

F1 score, the better the performance as it shows that not only could the model make predictions                 

with adequate accuracy, but it also did not miss out too many difficult instances. Other               

evaluation metrics include the model’s sensitivity (ie. True Positive Rate or TPR) and specificity              

(can be interpreted by False Positive Rate or FPR), which can be summarized into Receiver               

Operating Characteristic – ROC curves (Fig. 8). TPR tells the proportion of class 1 samples that                

were correctly classified, whereas FPR tells the proportion of samples classified as class 0 that               

are False Positives. When the ROC curve is above the diagonal line, it means that the proportion                 

of correctly classified samples in class 1 is greater than the proportion of samples that were                

incorrectly classified as class 0. The area under this curve (AUC) is particularly widely used as                

an evaluation metric for binary classification problems, which is very applicable in our             

experiment. AUC helps to compare different ROC curves for multiple machine learning models,             
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and therefore, provides a measurement of model performance. Typically, the higher the AUC             

value, the better the performance.  

Taking all these metrics into account, we have concluded that model 3, with the average level of                 

network architecture complexity (of the 3), was the best model used for inferring meaningful              

patterns from the ​S. roeselii ​’s behavioural dataset to make predictions. It is important to              

emphasize that a simple ANN like model 1 is of no benefit. Even the best model can only                  

produce roughly 59% accuracy. Yet, these ANNs contain many more “neurons” than the             

organism – ​S. roeselii is a single-cell aneural ciliate. What does this really mean? How can we                 

can unravel the mechanistic details and computations that a highly complex brain does when we               

are not yet able to fully understand what a simple organism like ​Stentor ​is doing? 

These results have highlighted the high level of complexity in the behaviours of ​Stentor roeselii               

in response to external stimulation. It cannot be fully explained by habituation, sensitisation, nor              

operant behaviour. Our machine-learning based models, though impressive in modelling          

activities of neural systems like the brain ​(Savelli & Knierim 2018; Yang et al. 2019) ​, have been                 

largely unsuccessful when applied here.  

These aneural organisms exhibit fascinating behaviours that are considered learning, yet do not             

possess the complex neural networks of higher animals. Their ability to learn from             

environmental factors and respond appropriately would suggest the requirement for a different,            

but functionally equivalent network. Bray has argued extensively in his book “Wetware” ​(Bray             

2009) how a system of protein molecules can perform all the tasks needed for a cell to sense and                   

respond to its environment. The switching in behaviour of ​S.roeselii indicates an adaptational             
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change in its internal state – i.e. the state of existing internal molecular networks (since the time                 

scale is too short to allow for modifications in gene expression). The organism is changed by its                 

previous experience, implying some form of memory. Molecular networks in single-cell           

organism and neural circuits in higher animals may have been independent evolutionary events             

but may also be fundamentally related. 

And here comes the immense power of studying underlying mechanisms in lower single-cell             

organisms. It might seem counter-intuitive initially, but the pathway regulating E. coli’s            

chemotaxis behaviour – possibly the most well characterized pathway in biology to date – has               

taught us many critical lessons that can be applied to higher organisms, including humans, which               

also helped to develop general biological principles. As mentioned previously, ​Stentor is not the              

only example of a unicellular organism displaying learning behaviours but many more aneural             

organisms ​(Applewhite 1979; Applewhite & Gardner 1973; Reid et al. 2012; Shirakawa et al.              

2011; Eisenstein 1975) have been extensively studied, leading to surprising results. Exploring the             

mechanistic details underpinning these behaviours can reveal profound insights into how neural            

circuits function in higher animals.  

These ANNs, however, can be further developed, both by improving the experimental design and              

establishing more fine-tuned, advanced models. Our training dataset was relatively small and            

highly imbalanced. We addressed this issue by applying down-sampling method, however, it            

resulted in an even smaller set. It would be much more beneficial to have a bigger data set of                   

higher control and filming quality, as these directly impact the performance of the ANNs.              

Equally, these ANNs can be further developed to a higher level of complexity, with better suited                

and tuned parameters to increase their performance. This would allow more features to be              
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extracted from the raw data. The best source to search for guidance to improve computer-based               

models is from our understanding and knowledge of the underlying biology ​(Dasgupta et al.              

2017) ​.  

We now know that learning and memories are required even at single-cell level. All living cells                

must have an awareness of their immediate environment to a certain extent. Components of the               

immune system, like macrophages or neutrophils, are constantly required to learn and form             

memories ​(Prentice-Mott et al. 2013) ​. We are now in a much better position to study these                

intriguing behaviours in aneural organisms, or single-cell behaviours generally, which were           

undreamt of by scientists like Jennings a hundred years ago. With the abundance of advanced               

biochemical and genetic tools, we are able to unravel the molecular circuits inside these single               

cells in much more detail. These results are then combined with computational simulation and              

computer-based artificial intelligence, creating a powerful synergistic effect which will one day            

decode the mystery behind these observations. One might question the validity of using ANNs in               

modelling biological molecular networks. Despite many differences in details, general principles           

and properties are still shared ​(Bray 2009) ​. This research contributes significantly to our ultimate              

goal of elucidating general principles of computations taking place in the brain ​(Carandini 2012) ​.              

Nonetheless, the biggest drawback of this approach is, indeed, its black-box nature. There have              

been multiple efforts recently to open this black box and reveal the computations performed by               

ANNs ​(Castelvecchi 2016; Zhang et al. 2018) ​. As Richard Feyman’s famously said – whether it               

be ANN computations or living cellular behaviours – “What I cannot create, I do not               

understand”.  
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Figure 1 

 

 

 

 

 

 

 

 

 

 

Fig 1. A sketch of carmine particles introduced to the buccal cavity of a ​S. roeselii ​. ​Illustration of the                   

experiment from Jennings’ paper ​(Jennings 1906)​. Carmine particles are released over the mouth of a ​S.                

roeselii ​that are attached to a surface via its tube and holdfast 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Series of five avoidant reactions observed in ​S. roeselii ​. ​This is Vance Tartar’s illustration of ​the                  

five reactions of ​S. roeselii stimulated by carmine in the order described by Jennings ​(Tartar 1961)​. As                 

long as the stimulus is still present in the surrounding environment, these five reactions are: 

a. No response – at rest 

b. Bending away from the source 

c. Transient stop of cilia beating, reversal of spiraling direction 

d. Strong full contraction 

e. Detachment and swim away 
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Figure 3  

 
 
 

 

 

 

 

 

 

 

 

 

Figure 3 ​. ​Example observations of ​S. roeselii ​’s different behavioural responses upon stimulation            

with polystyrene beads. ​At rest: ​S.roeselii is fully extended with cilia beating to generate a vortex                

current 

a. Bending 

b. Transient halting of cilia beating (arrow) 

c. Full contraction after encountering the fluorescent beads 

     e-f. The organism slowly extended after contraction until full length is reached 
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     g-h. Detachment 

 
Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Correlation between 5 input features and output​. The five input features that were used in the                  

analysis are time spent at rest (Rest), bending (Bending), halting and reversing cilia (Cilia), contraction               

(Contraction_time) and number of contraction (Contraction_number) and output is determined as whether            

or not the organism detached and swam away (Leave). The correlation plot shows Contraction_time,              

Contraction_number, and Cilia being negatively correlated (orange/ light pink) to the outcome (in order of               

decreasing correlation strength – indicated by the decrease in the colour darkness) 
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Figure 5 

 

 

 

 

 

 

 

 

 

Fig. 5. ​Tree representation of the classification process performed by Decision Tree model on              

training dataset​. At each branch, a decision was made based on the feature printed to classify the dataset                  

into class 0 (did not leave) or class 1 (did leave). The model used Contraction_time and then Cilia to                   

classify the whole training dataset in 2 steps. Each box represent a group being classified, showing the                 

class predicted, the probability of correct prediction, and size of the group as a percentage of the whole                  

training dataset. (eg. in box 2, probability of an organism in this group belonging to class 0 is 0.83, and                    

the group contains 27% of the whole training dataset.) 
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Figure 6  

 

Fig. 6. ​ ​Variable Importance extracted from Random Forest model 

A. The degree of importance of each input feature in classifying the training dataset, represented as               

percentage: Contraction_time being the most important variable with 100% importance; followed           

by Contraction_number, Cilia, Rest and Bending 

B. Contribution of each feature to the mean decrease in Gini index (indication of node impurity).               

The higher the decrease in Gini index, the higher the contribution of the feature to the nodes                 

homogeneity. 
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Figure 7 

 

 

 

 

 

 

 

 

Fig. 7. Schematic representation of an Artificial Neural Network (ANN) architecture. ​This particular             

ANN has an input layer with 5 perceptrons (blue circles) for 5 input features; 2 hidden layers: the first one                    

with 6 perceptrons, and the second one with 3 perceptrons; and 1 output layer with 1 perceptron for binary                   

classification outcome 
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Figure 8 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Receiver operating characteristic (ROC) curves (smoothened) for the ​three multilayer neural             

network models. ​These curves were generated and the corresponding area under the curves (AUCs) were               

calculated using R Studio, showing that model three gives the best performance overall at classifying the                

dataset. 
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Table 1 

 

Table 1. Metrics used to evaluate performance of 3 multilayer neural network models 
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Material Methods 

S.roeselii source and maintenance 

Cultures of ​S.roeselii were purchased from Sciento (Manchester, UK) approximately every week            

over a period of 1 month. Sciento harvested the organisms from a pond on the property of                 

Whitefield Golf Club (83 Higher Lane, Whitefield, Manchester, UK). In the lab, ​S. roeselii was               

maintained in well-aerated glass flasks in pond water, which were kept mainly in the dark, with                

partial sunlight. All behavior experiments were performed on organisms purchased no more than             

seven days beforehand.  

Micro-stimulation apparatus and set-up 

Custom-built apparatus to deliver controlled pulses of polystyrene beads directly near the mouth             

of the organism was used. A small clamp was placed next to the microscope. The microinjection                

glass needle was loaded with the suspension of fluorescent red latex beads (Fluorescent-red,             

carboxylate-modified polystyrene beads in aqueous suspension with 0.1% NaN3         

(Sigma-Aldrich; mean diameter 2 μm)) and connected to an elevated reservoir of distill water.              

The needle was then held next to the microscope by the clamp. 

One drop of ​S. roeselii culture was placed on a glass slide for each observation. The droplet                 

culture was allowed to settle down for few minutes. The microinjection needle was positioned              

next to the mouth of the organism by hand, and its position was adjusted as needed throughout                 

the experiment using the clamp. Short pulses of beads were generated as a gravity-flow with the                
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opening and closing of a two-way stopcock connected to the bottom of the reservoir, or adjusting                

the height of the reservoir.  

Microscopy 

All images were acquired using a Leica MZ16F Stereoscope equipped with a 11.25x objective              

lens and a QImaging Retiga 2000R monochrome camera. Images were collected at a rate of 15                

frames per second for time lapse experiments, using an exposure time of 16.184 ms using               

Micro-Manager (Edelstein et al., 2014). All microscopy experiments were performed at the            

Imaging Facility, Zoology Department, University of Cambridge. 

Video analysis 

29 collected videos were analyzed and investigation was performed on 188 individual organisms.             

Detailed description of ​S. roeselii’​s behaviours were recorded along with the corresponding time             

in the video. A video would be terminated if: (1) all sessile ​S. roeselii “decided” to leave and                  

swam away, or (2) the specimen dried out even though there were still organisms being attached                

to the piece of algae. 

Modelling 

All modelling was done using R Studio. 

Raw data collected from video analysis were converted into time spent (1) at rest, (2) bending,                

(3) reversing cilia, (4) contraction, (5) number of contractions, and (6) leave (or did not leave).                

These data were then scaled and randomly split into a training dataset (70%) and a testing dataset                 

(30%). A down-sampling method was applied to the training dataset to ensure a 1:1 ratio               
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between 2 classes (“Leave” and “Did not leave”). New training dataset is then shuffled before               

being used to train the models. 

Decision Tree and Random Forest models were compiled using rpart, randomforest           

(respectively), and caret packages in R. 10-fold cross validation with 10 repetitions were used to               

train the models. 

Feed-forward neural networks were compiled, trained, and evaluated using keras package.  
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Figure S1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1 ​. ​A. Micro-stimulation apparatus and set-up. ​Picture of the whole apparatus set up B. Glass                

needle set-up. ​Picture of the zoomed in section where showing the glass needle.  
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