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ABSTRACT		

In	plants,	self-fertilization	is	both	an	important	reproductive	strategy	and	a	valuable	

genetic	tool.	In	theory,	selfing	increases	homozygosity	at	a	rate	of	0.50	per	generation.	

Increased	homozygosity	can	uncover	recessive	deleterious	variants	and	lead	to	

inbreeding	depression,	unless	it	is	countered	by	the	loss	of	these	variants	by	genetic	

purging.	Here	we	investigated	the	dynamics	of	purging	on	genomic	scale	by	testing	

three	predictions.	The	first	was	that	heterozygous,	putatively	deleterious	SNPs	were	

preferentially	lost	from	the	genome	during	continued	selfing.	The	second	was	that	the	

loss	of	deleterious	SNPs	varied	as	a	function	of	recombination	rate,	because	

recombination	increases	the	efficacy	of	selection	by	uncoupling	linked	variants.	Finally,	

we	predicted	that	genome	size	(GS)	decreases	during	selfing,	due	to	the	purging	of	

deleterious	transposable	element	(TE)	insertions.	We	tested	these	three	predictions	by	

following	GS	and	SNP	variants	in	a	series	of	selfed	maize	(Zea	mays	ssp.	mays)	lines	over	

six	generations.	In	these	lines,	putatively	deleterious	alleles	were	purged,	and	purging	

was	more	pronounced	in	highly	recombining	regions.	Homozygosity	increased	more	

slowly	than	expected;	instead	of	increasing	by	50%	each	generation,	it	increased	by	35%	

to	40%.	Finally,	three	lines	showed	dramatic	decreases	in	GS,	losing	an	average	of	398	

Mb	from	their	genomes	over	the	short	timeframe	of	our	experiment.	TEs	were	the	

principal	component	of	loss,	and	GS	loss	was	more	likely	for	lineages	that	began	with	

more	TE	and	more	chromosomal	knob	repeats.	Overall,	this	study	documented	

remarkable	GS	loss	–	as	much	DNA	as	three	Arabidopsis	thaliana	genomes,	on	average	-	

in	only	a	few	generations	of	selfing.		
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INTRODUCTION:		

Darwin	showed	that	the	self-fertilization	of	plants	leads	to	reduced	vigor	and	

fertility	–	i.e.,	inbreeding	depression	(Darwin,	1876).	His	work	supported	the	hypothesis	

that	self-fertilization	is	strongly	disadvantageous	and	also	provided	a	rationale	for	the	

prevalence	of	outcrossing	in	nature	(Fisher,	1941,	Morran	et	al.,	2009).	He	did	not,	

however,	know	the	genetic	basis	of	inbreeding	depression.	It	is	now	thought	to	be	

caused	by	increased	homozygosity,	which	inflates	the	genetic	load	by	uncovering	

recessive	deleterious	alleles	and/or	by	eliminating	heterozygosity	at	loci	with	an	

overdominant	advantage	(Charlesworth	and	Willis,	2009,	Hedrick	and	Garcia-Dorado,	

2016).	The	increase	of	homozygosity	–	or,	alternatively,	the	decrease	of	heterozygosity	

(H)	-	is	expected	to	occur	at	a	regular	rate;	in	a	selfed	lineage,	H	is	expected	to	be	halved	

each	generation.	However,	the	actual	rate	of	H	decline	is	likely	to	be	slowed	by	various	

factors,	such	as	interference	due	to	linkage	(linked	selection),	epistatic	interactions	

(Hedrick	et	al.,	2016)	and	selective	pressure	to	retain	heterozygosity	at	overdominant	

and	associative-overdominant	loci	(Byers	and	Waller,	1999,	Schnable	and	Springer,	

2013).	These	factors	presumably	contribute	to	the	fact	that	inbred	lines	of	maize	and	

selfing	Caenorhabditis	species	retain	some	heterozygosity,	even	after	many	generations	

of	selfing	(Barrière	et	al.,	2009,	McMullen	et	al.,	2009,	Rodgers-Melnick	et	al.,	2015,	

Brandenburg	et	al.,	2017).		

One	way	to	combat	the	increased	load	caused	by	inbreeding	is	the	removal,	or	

‘purging’,	of	recessive	deleterious	alleles.	When	purging	is	effective,	there	may	be	no	

inbreeding	depression	(Crnokrak	and	Barrett,	2002).	Purging	is	expected	to	occur	rapidly	

when	recessive	alleles	have	lethal	effects	(Lande	and	Schemske,	1985,	Charlesworth,	

1990,	Hedrick,	1994,	Schultz	and	Willis,	1995)	but	should	be	less	efficient	for	non-lethal	

recessives	(Byers	and	Waller,	1999,	Crow,	2008).	The	existence	of	purging	is	supported	

by	experiments,	theory	and	forward	simulations	(Charlesworth	and	Willis,	2009,	

Arunkumar	et	al.,	2015,	Liu	et	al.,	2017),	but	it	is	expected	to	vary	across	species	based	

on	features	like	population	history,	mating	system,	and	the	distribution	of	fitness	

effects.	Given	this	variation,	one	meta-analysis	has	concluded	that	purging	is	an	
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“inconsistent	force”	in	the	evolution	of	inbreeding	plant	populations	(Byers	and	Waller,	

1999).		

Recently,	authors	have	argued	that	genomic	data	provide	more	precise	insights	

into	inbreeding	effects	than	previous	approaches	(e.g.	(Hedrick	and	Garcia-Dorado,	2016,	

Hedrick	et	al.,	2016,	Kardos	et	al.,	2016)).	Here	we	extend	that	argument	to	the	

phenomenon	of	purging,	beginning	with	three	simple	predictions.	The	first	is	that	selfed	

offspring	will	exhibit	a	bias	against	the	retention	of	putatively	deleterious	SNP	variants,	

because	these	SNPs	become	uncovered	in	a	homozygous	state.	The	second	is	that	

purging	of	SNP	variants	will	be	inconsistent	across	genomic	regions,	based	on	the	

amount	of	recombination.	All	else	being	equal,	regions	of	high	recombination	should	

purge	deleterious	variants	more	efficaciously,	because	recombination	reduces	

interference	among	selected	sites	(Hill	and	Robertson,	1966,	Morran	et	al.,	2010).		

The	third	and	final	prediction	is	that	purging	will	decrease	genome	size	(GS).	We	

make	this	prediction	because	GS	correlates	strongly	with	transposable	element	(TE)	

content	(Tenaillon	et	al.,	2010,	2011,	Diez	et	al.,	2014,	Bilinski	et	al.,	2018)	and	because	

plant	TE	insertions	are	thought	to	be	predominantly	deleterious	(Wright	et	al.,	2013).	As	

a	consequence,	inbreeding	should	purge	TE	insertions	by	favoring	the	retention	of	

haplotypes	with	fewer	TEs.	This	may	be	especially	true	for	TE	insertions	near	genes,	

which	are	deleterious	in	part	through	their	effects	on	gene	expression	(Hollister	and	

Gaut,	2009,	Hollister	et	al.,	2011,	Quadrana	et	al.,	2016,	Lee	and	Karpen,	2017).	

Consistent	with	these	predictions,	selfing	species	tend	to	have	smaller	genomes	than	

outcrossers	in	both	plants	(Price,	1976,	Govindaraju	and	Cullis,	1991,	Wright	et	al.,	2008)	

and	animals	(Fierst	et	al.,	2015).		

In	this	study,	we	take	an	‘experimental	evolution’	approach	to	investigate	the	

dynamics	of	purging	on	a	genome-wide	scale.	The	experiment	mimics	an	immediate	

transition	to	selfing,	because	it	consists	of	11	outcrossed	maize	parental	lines	that	were	

self-fertilized	for	six	or	more	generations.	Given	these	selfed	lineages,	we	gathered	flow	

cytometric	and	whole	genome	resequencing	data	to	address	three	sets	of	questions.	

First,	does	GS	decrease	rapidly	in	selfed	lineages?	If	so,	are	TEs	the	primary	component	
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that	is	lost?	Second,	are	putatively	deleterious	alleles	purged	more	rapidly	than	

putatively	neutral	alleles,	and	if	so,	does	purging	vary	with	recombination	rate?	Finally,	

does	H	decline	at	expected	rates	over	time?		

	

RESULTS	

Plants,	Phenotypes	and	Genome	Sizes:	The	plant	material	came	from	a	previous	

experiment	in	which	11	heterozygous	maize	landraces	were	self-fertilized	to	create	

homozygous	lines	(Wills	et	al.,	2013).	For	each	landrace,	the	experiment	began	with	a	

single,	outcrossed	parent	(P)	of	unknown	genotype,	and	selfing	was	continued	for	≥6	

generations	by	single	seed	descent.	For	this	study,	we	germinated	seeds	from	

intervening	generations	–	i.e.,	from	S1	to	≥S6.	Each	of	our	seeds	was	a	sibling	to	the	

seed	that	was	used	to	propagate	the	ensuing	generation	(Figure	1A).	Following	

germination,	we	sowed	3	plants	per	line	per	generation.	The	plants	did	not	flower	under	

our	growth	conditions,	but	we	measured	growth	rate	and	mortality	(proxies	for	fitness)	

over	a	45-day	period.	Growth	rate	and	mortality	varied	among	the	eleven	lines	

(p<0.001;	Figures	S1	&	S2).		

To	test	for	GS	change,	we	gathered	flow	cytometry	estimates	for	96	plants	and	

five	B73	controls.	Plant	choice	was	restricted	by	mortality,	but	the	96	plants	were	

chosen	to	represent	a	time	series	for	each	of	the	11	lines,	with	>	1	plant	per	generation	

where	possible	(Table	S1).	We	included	three	technical	replicates	per	plant,	for	a	total	of	

303	assays	(Table	S2).	We	then	investigated	our	prediction	of	GS	loss	in	two	ways.	First,	

we	contrasted	GS	between	the	S1	generation	and	the	latest	(≥S4)	generation	with	at	

least	two	siblings.	By	this	measure,	three	lines	(MR01,	MR08	and	MR18)	exhibited	

significant	decreases	in	GS	(Wilcoxon	rank-sum	tests;	p	<	0.05),	with	no	detectable	GS	

shifts	for	the	remaining	eight	lines	(p	>	0.5;	Table	S3).	Second,	we	plotted	flow	

cytometry	data	as	a	function	of	time,	which	included	data	from	intermediate	

generations	(Figures	1B	&	S3).	The	results	again	indicated	that	MR01,	MR08	and	MR18	

exhibited	significant	decreases	in	GS	and	that	the	other	lines	had	no	detectable	loss,	

based	on	linear	and	exponential	model	fits	(Table	S4).	For	MR01	and	MR18,	a	model	of	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/594812doi: bioRxiv preprint 

https://doi.org/10.1101/594812
http://creativecommons.org/licenses/by-nc-nd/4.0/


6		

exponential	decay	fit	the	data	better	than	a	linear	model,	suggesting	that	GS	loss	

occurred	more	rapidly	in	the	early	generations.	

We	made	three	further	observations	based	on	flow	cytometric	data.	First,	GS	

loss	occurred	in	three	of	the	four	lines	with	the	largest	S1	genomes	(Figure	1B).	These	

rankings	were	non-random	by	permutation	test	(p	=	0.006),	illustrating	an	increased	

tendency	for	lines	with	larger	genomes	to	lose	size.	Second,	because	none	of	the	lines	

exhibited	a	significant	GS	increase,	the	probability	of	GS	loss	was	significantly	higher	

than	GS	gain	(p=0.04;	two-sided	binomial).	Finally,	we	estimated	the	number	of	bases	

lost	by	each	line,	assuming	a	reference	value	of	5.64	pg/2C	for	maize	B73	(Diez	et	al.,	

2013)	and	a	conversion	rate	of	1pg	=	978	Mb	(Dolezel	et	al.,	2003).	Line	MR01,	for	

example,	had	an	average	GS	estimate	of	7.26	pg/2C	in	S1	and	a	corresponding	average	

of	6.75	pg/2C	in	generation	4.	The	difference	between	generations	was	therefore	0.51	

pg,	which	corresponds	to	a	loss	of	7.0%,	or	499Mb.	Similarly,	lines	MR08	and	MR18	lost	

2.8%	(or	186Mb)	and	7.9%	(or	508	Mb)	between	generations	1	and	6.		

	

Genomic	Components	Correlate	with	GS	Variation	Across	Samples:	We	predicted	that	

purging	leads	to	GS	loss,	which	was	true	for	3	of	11	lines.	We	also	predicted	that	loss	

would	be	dominated	by	TEs,	but	TEs	are	not	the	only	potential	genomic	component	that	

may	contribute	to	rapid	GS	reduction.	GS	loss	could	also	be	attributed	to:	i)	the	loss	of	

genes,	ii)	variation	in	rDNA	copy	number	(Cullis,	2005,	Long	et	al.,	2013),	iii)	fluctuations	

in	the	number	of	chromosomal	knob	and	CentC	repeats	(Jian	et	al.,	2017,	Bilinski	et	al.,	

2018);	or	iv)	the	loss	of	supernumerary	B-chromosomes,	which	are	small	(Mroczek	et	al.,	

2006)	but	can	be	multicopy	(Randolph,	1941)	and	vary	among	accessions	(Yamakake,	

1976).		

To	investigate	the	genomic	regions	responsible	for	GS	change,	we	resequenced	

33	plants	that	included	data	from	S1	and	≥S5	for	the	three	lines	that	exhibited	GS	loss	

(MR01,	MR08	and	MR18;	the	GSΔ	group)	and	from	three	control	lines	(MR09,	MR19	and	

MR22;	the	GScon	group)	(Table	S1).	The	data	were	mapped	to	the	maize	B73	AGPv4	

genome	with	four	annotated	genomic	components	--	genes,	rDNA,	TEs,	knob-specific	
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repeats	–	and	B	chromosome	repeats	(see	Methods).	Total	read	counts	varied	among	

individuals;	hence	comparison	across	individuals	and	generations	required	

normalization.	Similar	to	previous	papers	(Diez	et	al.,	2014,	Bilinski	et	al.,	2018),	we	

normalized	across	libraries	based	on	the	number	of	read	counts	to	genes,	but	in	this	

case	we	focused	on	single	copy	BUSCO	orthologs	(Simão	et	al.,	2015)(see	Methods).	Our	

reasoning	was	that	BUSCO	genes	were	unlikely	to	contribute	to	short-term	GS	change,	

because	they	are	conserved	across	the	kingdom	Plantae.	Simulations	demonstrated	that	

this	normalization	approach	leads	to	accurate	inferences	of	relative	read	counts	in	

genomic	components	(like	TEs)	that	may	vary	across	generations	(Figure	S4),	even	with	

low	(2x)	coverage.		

Given	normalized	read	count	data,	we	examined	the	relationship	between	GS	(as	

measured	by	flow	cytometry)	and	sequence	counts	across	the	entire	sample	of	33	plants.	

Regressing	each	component	separately,	there	was	no	significant	relationship	to	GS	for	

genic	content	(r2=-0.027,	p=0.63)	or	B-chromosome	content	(r2=-0.015,	p	=	0.45).	There	

was	borderline	significance	for	rDNA	(r2=0.079,	p=0.07)	,	but	strongly	positive	

relationships	between	GS	and	both	knob	repeat	content	(r2=0.662,	p=4.5x10-8)	and	TE	

content	(r2=0.901	p<	10-15;	Figure	S5).	When	all	of	the	components	were	combined	into	

a	single	linear	model,	only	TE	counts	remained	significant	(linear	model	t-value=	9.18,	p=	

2.55	x10-09),	but	knobs	were	again	significant	after	TE	counts	were	removed	from	the	

model	(linear	model	t-value=	5.78,	p=	5.02	x10-06).	Hence,	GS	correlates	most	strongly	

with	TE	content	but	there	is	a	hint	that	knobs	also	contribute	to	GS	variation.		

	

Genomic	Components	that	Contribute	to	Temporal	Loss:	TEs	and	knobs	contribute	to	

GS	variation,	but	which	among	the	five	components	varied	over	time	and	contributed	to	

GS	change?	To	address	this	question,	we	applied	ANOVA	to	read	count	data	from	each	

of	the	five	genomic	components	separately.	The	ANOVA	tested	for	significant	

differences	between	groups	(GSΔ	vs.	GScon),	among	landraces	(e.g.,	MR01	to	MR22),	and	

between	generations	(e.g.,	S1	to	S6).	It	also	tested	for	group*generation	and	

landrace*generation	interactions.	We	were	particularly	interested	in	group*generation	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/594812doi: bioRxiv preprint 

https://doi.org/10.1101/594812
http://creativecommons.org/licenses/by-nc-nd/4.0/


8		

interactions,	because	they	identify	components	that	differentiate	the	GSΔ	vs.	GScon	

groups	over	time.		

We	applied	ANOVA	to	each	of	the	six	genomic	components	separately	(Tables	1	

&	S5)	and	plotted	normalized	counts	for	groups	(Figure	2)	and	landraces	(Figure	S6).	

Focusing	first	on	genes,	the	ANOVA	had	no	significant	terms	(p	>	0.05;	all	p-values	FDR	

corrected	for	all	of	the	tests	in	Table	1).	The	lack	of	significance	was	reflected	in	plots	of	

read	counts,	because	there	were	only	moderate	differences	between	groups	and	among	

landraces,	without	a	consistent	trend	over	time.	For	rDNA,	the	ANOVA	detected	

differences	among	landraces	(F-value=	5.28,	p=0.004),	with	41%	of	the	variance	

explained	(VE)	but	with	no	other	significant	terms.	By	comparing	GS	estimates	to	read	

counts	(see	Methods),	we	estimated	the	average	number	of	Mb’s	attributable	to	rDNA	

repeats	in	each	line	and	each	generation.	No	line	had	>	8Mb	of	estimated	rDNA,	and	the	

temporal	difference	between	S1	and	S6	was	<	0.7	Mb	for	most	lines	(Table	S6).	A	third	

component	was	B-chromosomes.	Only	one	line	(M18)	had	substantial	hits	to	B-

chromosome	repeats,	representing	an	average	of	10.7	Mb	of	DNA	content	across	S1	

individuals.	By	S6,	counts	were	at	background	levels,	indicating	the	loss	of	B-

chromosomes	.	Given	these	patterns,	the	ANOVA	detected	significant	landrace	(F-

value=5.90,	p	=0.021)	and	landrace*generation	terms	(F-value=4.85,	p	<	0.022),	but	no	

group	effects.		

We	next	turned	to	the	two	genomic	components	that	correlated	strongly	with	

GS	across	the	entire	dataset:	TE	counts	and	knob	repeats.	TE	counts	exhibited	significant	

terms	across	groups	(F-value=53.94,	p=2.38x10-07;	14%	VE),	landraces	(F-value=64.71,	

p=2.91x10-11;	70%	VE),	generations	(F-value=10.35,	p=0.018;	2.8%	VE)	and	

group*generation	interactions	(F-value=19.84,	p=0.0013;	5.4%	VE)(Table	1).	The	plots	of	

TE	counts	were	consistent	with	these	statistical	results,	because	they	show	that:	i)	the	

GSΔ	group	had	higher	overall	TE	counts	than	the	GScon	group;	ii)	landraces	within	

GSΔ	exhibited	marked	reductions	in	TE	counts	from	generation	S1	to	S6,	but	iii)	

landraces	within	GScon	did	not	(Figure	2).	By	equating	GS	to	read	counts,	we	estimated	

that	the	Mb	loss	due	to	TEs	was	481	Mb	for	MR01,	199	Mb	for	MR08	and	465	Mb	for	
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MR18,	representing	>90%	of	the	estimated	shift	in	GS	over	time	for	each	line.	In	

contrast,	the	GScon	lines	exhibited	temporal	TE	changes	of	~10Mb	each	(Table	S6).		

Finally,	knob	counts	differed	between	groups	(F-value=158.99,	p=2.91x10-10;	56%	

VE)	and	among	landraces	(F-value=62.75,	p=2.91x10-10;	35%	VE),	with	the	GSΔ	group	

having	generally	higher	counts.	However,	knob	counts	did	not	exhibit	significant	

interaction	terms	or	variation	between	generations,	which	was	surprising	given	the	

correlation	between	knob	counts	and	GS	across	all	samples	(Figure	S5).	We	thus	

investigated	the	possibility	that	the	lack	of	significance	reflected	reference	bias	by	

repeating	analyses	with	the	W22	reference	(Springer	et	al.,	2018).	The	results	largely	

corroborated	the	B73	results	but	did	produce	a	significant	group*generation	interaction	

for	knobs	(F-value=10.88,	p=0.0128)	(Table	S7).	Based	on	the	W22	reference,	the	

average	Mb	loss	over	generations	due	to	knobs	was	136	Mb	in	MR01,	59.4	Mb	in	MR08	

and	77.0	in	MR189,	but	TEs	explained	more	temporal	variation	in	every	case	(341	Mb,	

130Mb,	and	413	Mb,	respectively;	Table	S8).		

	

TE	Locations,	Types	and	Mechanism:	We	predicted	that	GS	loss	could	reflect	purging	of	

TEs	near	genes	due	to	their	deleterious	effects	on	gene	expression	(Hollister	and	Gaut,	

2009,	Lee	and	Karpen,	2017).	To	address	this	prediction,	we	separated	TEs	from	B73	into	

three	bins:	non-genic	TEs,	which	mapped	to	TEs	>	5kb	away	from	genes;	near-genic	TEs	

that	were	within	5kb	of	a	gene;	and	the	subset	of	near-genic	genes	that	overlapped	with	

annotated	genes	–	i.e.,	they	fell	within	introns	or	UTRs.	Both	non-genic	and	overlapping	

TEs	exhibited	significant	group*generation	interactions	(F-values=18.46	and	13.97,	p	

≤0.001	all	p-values	FDR	corrected;	Table	S9),	explaining	9.1%	and	12.4%	of	the	total	

variance	for	non-genic	and	overlapping	TEs,	respectively.	Despite	our	prediction,	none	

of	the	ANOVA	terms	were	significant	for	TEs	near	(<	5kb)	genes,	but	three	components	

were	borderline	significant	(F-value=3.34,	p	<	0.10;	Table	S10),	including	both	the	

generation	and	landrace*generation	terms.	Interestingly,	the	latter	reflects	the	fact	that	

five	of	the	six	lines	lost	near-genic	TEs	through	the	course	of	the	experiment	(Figure	S6),	

suggesting	that	the	loss	of	TEs	near	genes	was	a	general	phenomenon	across	all	lines.	
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We	repeated	these	analyses	for	the	W22	reference,	and	we	found	that	all	three	TE	

locations	exhibited	group*generation	effects	(Table	S10	&	Figure	S7).	Overall,	then,	

these	data	suggest	that	TEs	were	lost	throughout	the	genome,	but	it	is	unclear	whether	

near-genic	TEs	were	lost	across	all	lines	or	only	from	the	GSΔ	group.		

We	also	investigated	potential	biases	by	TE	order,	focusing	on	six	TE	types	in	the	

B73	reference:	Helitrons,	Long	Terminal	Repeat	(LTR)	retrotransposons,	solo	LTRs,	

Terminal	Inverted	Repeats	(TIRs),	SINEs	and	LINEs.	All	but	solo	LTRs	exhibited	significant	

variation	between	the	GSΔ	and	GScon	groups	(F-value	>	39.10,	p<1.2x10-5).	Four	of	the	

six	also	exhibited	a	significant	group*generation	interaction,	which	explained	>	5%	of	

the	variance	for	LTRs,	solo	LTRs	and	Helitrons	(Figure	S8	&	Table	S11).	Thus,	GS	loss	

encompassed	an	array	of	TE	types.		

Finally,	we	addressed	a	question	related	to	a	potential	mechanism	of	TE	loss.	In	

some	plant	species,	TE	loss	is	driven	by	unequal	recombination	between	LTR	elements	

(Devos	et	al.,	2002).	These	recombination	events	are	expected	to	increase	the	ratio	of	

solo	LTR	elements	to	intact	LTR	elements.	If	this	mechanism	operated	during	our	

experiment,	the	ratio	of	reads	mapping	to	LTRs	vs.	the	internal	regions	of	elements	

should	increase	over	time,	especially	in	the	GSD	lines.	To	test	this	idea,	we	

independently	annotated	22,530	full-length	LTR	elements	of	the	Sirevirus	genus,	based	

on	the	B73	reference.	We	focused	on	Sireviruses	for	three	reasons:	i)	they	represent	a	

substantial	proportion	(~20%)	of	the	maize	genome	(Bousios	et	al.,	2012),	ii)	they	can	be	

accurately	annotated	based	on	numerous	internal	features,	including	the	boundary	

between	LTRs	and	internal	regions	(Darzentas	et	al.,	2010),	and	iii)	they	provide	a	set	of	

LTR	elements	that	were	annotated	independently	of	the	existing	B73	v4	genome	

annotation.	We	found	that	both	solo	and	intact	Sireviruses	exhibited	losses	over	time	in	

the	GSΔ	group	(Table	S12;	Figure	S9),	which	is	consistent	with	our	LTR	analyses	based	

on	the	v4	annotations.	However,	the	ratio	of	mapping	to	LTRs	vs.	internal	regions	did	

not	exhibit	an	obviously	increasing	trend	through	time	or	a	significant	group*generation	

effect	(F-value=0.27,	p=0.73),	as	would	be	predicted	if	TE	loss	were	driven	by	numerous	

unequal	recombination	events.		
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The	fate	of	deleterious	variants:	We	now	turn	to	a	second	prediction	about	purging:	

Over	time,	there	should	be	a	bias	against	the	retention	of	deleterious	SNP	variants.	We	

tested	this	prediction	by	first	calling	SNPs	for	each	of	the	six	lines	from	the	GSΔ	

	and	GScon	groups	and	then	by	focusing	only	on	bi-allelic	SNPs	that	were	inferred	to	be	

heterozygous	(H	=	1)	in	the	resynthesized	parent	(see	Methods).	For	each	of	these	

heterozygous	sites,	we	predicted	derived	deleterious	variants	using	SIFT	(Ng	and	

Henikoff,	2003)	and	noted	the	fate	of	variants	in	four	functional	classes	(non-coding,	

synonymous,	tolerated	nonsynonymous	and	putatively	deleterious	non-synonymous	

variants).	In	total,	we	examined	1,914,845	SNPs	across	the	six	lines	(Table	S13).		

As	a	signal	of	purging,	we	expected	deleterious,	derived	SNP	variants	to	exhibit	

biased	rates	of	loss	over	time.	To	characterize	this	potential	bias,	we	identified	derived	

alleles	by	comparison	to	Sorghum	outgroup	and	estimated	the	proportion	of	derived	

allele	(Pd)	across	sites.	We	expected	Pd	to	be	50%	in	the	parent	and	to	remain	50%	in	the	

absence	of	perturbing	factors	like	selection.	To	test	this	prediction,	we	combined	results	

across	the	six	lines	and	plotted	Pd	for	each	functional	class	in	S1	and	S6	(Figure	3A).	In	

S1,	for	example,	average	Pd	estimates	for	non-coding	and	synonymous	sites	were	below	

0.5,	potentially	reflecting	biases	in	ancestral	inference	and/or	selection	against	a	subset	

of	these	putatively	‘neutral’	derived	alleles	between	Parents	and	S1.	Consistent	with	the	

latter	interpretation,	Pd	declined	from	S1	to	S6	for	both	site	classes	(linear	model	

contrast	Z-value=14.92,	p	<	0.001).		

Importantly,	these	effects	were	greatly	amplified	for	nonsynonymous	mutations	

(Figure	3A).	For	example,	putatively	deleterious,	derived	nonsynonymous	SNPs	had	a	Pd	

of	0.384	in	S1,	representing	a	significant	decrease	relative	to	that	of	synonymous	and	

non-coding	variants	(linear	model	contrast	Z-value=44.89,	p<	0.001;	Table	S14).	

Between	S1	and	S6,	Pd	fell	even	further,	from	an	average	of	0.384	to	0.334	(linear	model	

contrast	Z-value=20.83,	p<0.001).	Overall,	putatively	deleterious	SNPs	demonstrated	

accelerated	rates	of	loss	over	time	relative	to	other	variant	classes.		
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	 Recombination	is	expected	to	mediate	the	effects	of	selection,	because	it	uncouples	

interference	between	linked	variants.	Therefore,	deleterious	variants	should	be	purged	

more	rapidly	in	regions	of	high	recombination.	To	explore	this	prediction,	we	contrasted	

genomic	regions	that	encompass	the	highest	and	lowest	quartiles	of	recombination	

rates,	as	defined	by	cross-over	events	(r)	(Rodgers-Melnick	et	al.,	2015).	The	results	

showed	the	expected	pattern:	in	S6,	Pd	was	lower	in	high	compared	to	low	recombining	

regions	for	both	classes	of	nonsynonymous	variants	(tolerated:	Z-value=-3.37,	p=0.006;	

deleterious:	Z-value=-4.95,	p	=	5.98x10-6	based	on	linear	model	contrasts;	Table	S15).	

Recombination	did	not	have	an	effect	on	Pd	for	nonsynonymous	SNPs	in	S1,	consistent	

with	the	fact	that	time	is	required	for	recombination	to	break	down	linkage	between	

loci.	

	

Declining	Heterozygosity:	Finally,	we	measured	a	phenomenon	of	empirical	interest,	

which	is	the	rate	of	loss	of	heterozygosity	over	generations.	To	do	so,	we	took	

advantage	of	the	fact	that	SNPs	inferred	to	be	heterozygous	in	the	parental	generation	

can	be	in	only	one	of	two	states	within	S1	and	S6:	heterozygous	or	homozygous.	

Moreover,	these	two	states	are	expected	to	fall	into	blocks,	with	the	transition	between	

blocks	defined	by	recombination	events.	To	identify	these	blocks,	we	examined	

windows	of	100	SNPs	in	size,	focusing	on	genic	SNPs,	and	used	a	Bayesian	clustering	

method	to	assign	windows	as	either	heterozygous	or	homozygous	for	each	individual	

(see	Methods).	The	proportion	of	heterozygous	SNPs	across	the	genome	(Hb)	can	be	

compared	directly	to	the	null	expectation	that	H	=	0.50	in	S1	and	0.015	in	S6.		

	 We	applied	this	approach	successfully	to	the	two	lines	with	highest	coverage	(MR09	

and	MR22)	(Figure	4)	and	offer	five	observations	about	heterozygosity.	First,	Hb	

exceeded	60%	in	both	MR09	(65.7%)	and	MR22	(63.7%)	for	generation	S1,	representing	

a	significant	deviation	from	the	null	expectation	(one-sided	Wilcoxon	test	p=0.0019	and	

p=0.019	respectively).	Second,	Hb	significantly	exceeded	the	expected	value	of	1.5%	in	

S6,	at	14.2%	for	MR22	and	4.8%	for	MR09	(one-sided	Wilcoxon	test	p=0.00098	and	

p=0.019	respectively).	Third,	for	reasons	that	are	not	immediately	apparent,	the	
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difference	between	the	two	lines	in	S6	was	also	significant	(one-sided	Wilcoxon	test	p	=	

0.00036).	Fourth,	heterozygous	blocks	had	a	significantly	higher	proportion	of	

nonsynonymous	SNPs	(7.19%)	compared	to	homozygous	blocks	(6.14%,	one-sided	chi-

square	=	27.72,	p	=	1.4x10-7).	Finally,	heterozygosity	was	also	related	to	recombination,	

because	heterozygosity	and	r	were	modestly	but	significantly	correlated	across	windows	

in	S6	(linear	regression	adjusted	r2	=	0.016;	p	=	1.5x10-4).	

	

DISCUSSION	

Self-fertilization	is	an	important	reproductive	strategy	in	plants	(Charlesworth	

and	Wright,	2001),	and	it	is	also	a	widely	applied	tool	for	plant	genetics	and	plant	

breeding.	In	this	study,	we	took	an	experimental	approach	to	assess	the	genomic	effects	

of	selfing,	with	a	focus	on	the	dynamics	of	purging.	Previous	studies	have	investigated	

the	effects	of	selfing	by,	for	example,	contrasting	selfing	and	outcrossing	plants	in	

flowering	phenology,	population	structure,	genomic	diversity	(Wright	et	al.,	2013)	and	

evolutionary	fate	(Takebayashi	and	Morrell,	2001).	Yet,	most	of	these	effects	likely	

accrue	after,	not	during,	the	transition	to	selfing.	A	smaller	number	of	studies	have	

found	evidence	of	purging	by	comparing	inbreeding	depression	between	naturally	

inbreeding	and	naturally	outcrossing	species	(Crnokrak	and	Barrett,	2002,	Weller	et	al.,	

2005,	Charlesworth	and	Willis,	2009).	In	contrast,	the	immediate	genomic	effects	of	

purging	have	gone	largely	undocumented.		

	

Rapid	genome	flux:	Our	experiment	documents	rapid	GS	loss	in	three	of	11	selfed	

lineages	(Figure	1).	These	observations	add	to	a	growing	consensus	that	GS	can	change	

rapidly	in	plant	species.	Other	examples	include	GS	changes	in	flax	over	a	single	

generation	(Cullis,	2005),	GS	shifts	on	experimental	time-scales	in	Festuca	(Smarda	et	al.,	

2010),	and	GS	reductions	in	maize	after	six	generations	of	selection	for	early	flowering	

(Rayburn	et	al.,	1994).	However,	the	magnitude	of	our	observed	GS	losses	is	

unprecedented.	Based	on	flow	cytometry	estimates,	the	three	lines	lost	~6%	of	their	

genome,	or	398	Mb,	on	average	from	S1	to	S6.	To	put	these	changes	in	context,	the	GS	
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of	two	fully-sequence	maize	inbred	lines	(Mo17	and	B73)	differ	by	only	~25Mb	(Sun	et	

al.,	2018).	

Following	precedence	(Tenaillon	et	al.,	2011,	Chia	et	al.,	2012,	Diez	et	al.,	2014,	

Bilinski	et	al.,	2018,	Lyu	et	al.,	2018),	we	used	read	counts	to	infer	the	size	of	genomic	

components,	focusing	on	genes,	TEs,	knob	repeats,	rDNA	and	B-chromosomes.	Among	

these	five,	it	is	clear	that	TEs	are	the	major	source	of	loss,	which	is	not	too	surprising	

given	that	DNA	derived	from	TEs	constitute	>85%	of	the	maize	genome	(Schnable	et	al.,	

2009)	and	that	previous	studies	have	shown	TEs	contribute	to	plant	GS	variation	

(Tenaillon	et	al.,	2011,	Chia	et	al.,	2012,	Diez	et	al.,	2014,	Bilinski	et	al.,	2018,	Lyu	et	al.,	

2018).	However,	GS	shifts	are	not	always	caused	by	TE	content.	In	flax	and	Arabidopsis	

thaliana,	GS	shifts	are	fueled	primarily	by	variation	in	rDNA	repeats	(Cullis,	2005,	Long	et	

al.,	2013),	and	GS	differences	between	selfing	and	outcrossing	Caenorhabditis	species	

are	roughly	equally	apportioned	among	genes	and	TEs	(Fierst	et	al.,	2015,	Yin	et	al.,	

2018).	

Given	that	TEs	are	the	major	source	of	GS	loss,	we	examined	loss	according	to	

both	TE	type	and	location.	Read	count	data	indicate	that	loss	occurred	within	the	GSΔ	

group	for	all	of	the	six	TE	orders	we	tested	(Figure	S8	and	Table	S6).	This	finding	–	i.e.,	

that	TE	loss	is	general	and	not	limited	to	specific	families	-	mirrors	previous	studies	that	

have	compared	TE	content	among	Zea	genomes	(Tenaillon	et	al.,	2011,	Diez	et	al.,	2014).	

For	example,	Tenaillon	et	al.	(2011)	compared	genome	content	between	Zea	luxurians	

and	maize	B73,	two	taxa	that	diverged	~140,000	generations	ago	(Ross-Ibarra	et	al.,	

2009).	They	estimated	that	70%	of	the	GS	difference	between	species	was	due	to	TEs,	

but	that	the	relative	abundance	of	TE	families	was	conserved	between	species.		

We	also	predicted	that	GS	loss	should	be	especially	evident	for	TEs	that	are	near	

genes,	because	they	are	known	to	have	deleterious	effects	on	gene	expression	and	

genome	function	(Hollister	and	Gaut,	2009,	Lee	and	Karpen,	2017).	The	results	varied	

somewhat	depending	on	the	reference.	With	B73,	the	line*generation	effect	for	near-

genic	TEs	was	borderline	significant	(p	=	0.058),	because	five	of	the	six	resequenced	

lines	lost	these	TEs	over	time,	irrespective	of	their	inclusion	in	the	GSΔ	or	GScon	group	
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(Figure	S5).	This	result	implies	that	the	loss	of	near-genic	TEs	may	be	a	general	property	

of	selfing.	However,	the	W22	results	do	not	fully	support	this	claim,	because	they	

suggest	that	the	pattern	of	loss	in	near-genic	TEs	varied	between	groups.	Given	these	

results,	we	cannot	yet	conclude	that	the	loss	of	near-genic	TEs	is	a	general	outcome	of	

selfing.		We	advocate	further	investigation	of	this	issue	that	also	considers	the	fact	that	

TE	families	vary	in	both	their	tendency	to	insert	near	genes	and	their	epigenetic	profiles.		

In	this	context,	it	is	important	to	emphasize	the	limitations	of	the	read-count	

approach	for	estimating	genomic	components.	The	approach	is	better	suited	for	broad-

scale	inferences	about	genome	content	than	for	inferences	about	the	fate	of	specific	

genes,	TE	insertions	or	chromosomal	regions.	Here	our	inferences	about	location	are	

based	on	the	reference	genome	and	may	not	accurately	reflect	the	genome	of	our	

sample.		We	investigated	reference	biases	by	applying	our	read-count	approach	to	two	

references	(B73	and	W22).		With	either	reference,	there	was	little	evidence	that	genes,	

rDNA	and	B-chromosomes	contributed	substantively	to	GS	loss,	but	the	magnitude	of	

the	TE	and	knob	effects	did	vary	by	reference.	With	B73,	TEs	explained	>	90%	of	loss	

from	S1	to	S6	and	as	much	as	481	Mb.	With	W22,	the	estimated	TE	loss	was	more	

modest,	explaining	~75%	of	GS	shift	on	average,	with	the	remainder	of	loss	assigned	to	

knob	repeats.	The	difference	in	results	probably	reflects	annotation	and	assembly	

differences	between	references,	because	we	disregarded	counts	from	regions	where	

annotated	features	overlapped.	In	B73,	TEs	often	overlapped	with	putative	knob	regions,	

but	overlaps	occurred	less	frequently	in	W22.	Our	results	therefore	contain	a	cautionary	

tale	about	annotation	biases,	but	we	also	suspect	that	the	implication	of	knobs	as	a	

component	of	GS	loss	is	reasonable,	given	our	own	(Figure	S5)	and	previous	evidence	

that	knobs	contribute	to	maize	GS	variation	(Chia	et	al.,	2012,	Bilinski	et	al.,	2018).	

Importantly,	the	total	Mb	loss	explained	by	TEs	and	knobs	was	consistent,	regardless	of	

the	reference.	

Altogether,	our	results	support	the	claim	that	GS	loss	is	a	common	outcome	of	

selfing,	which	is	based	on	the	fact	that	genomes	are	smaller	in	selfers	versus	their	

outcrossing	sister	taxa	in	Caenorhabditis	(Fierst	et	al.,	2015,	Yin	et	al.,	2018)	and	across	
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plant	taxa	(Wright	et	al.,	2008).	And	yet,	if	GS	loss	is	common	during	selfing,	one	must	

wonder	why	8	of	our	11	lines	exhibited	no	detectable	loss.	The	lack	of	loss	is	probably	

not	a	question	of	statistical	power,	because	five	lines	were	estimated	to	have	slightly	

larger	GS,	on	average,	in	S6	relative	to	S1	(Figure	1).	Here	our	lack	of	the	parental	

genome	could	be	misleading,	because	our	experimental	design	could	not	monitor	loss	

from	the	Parent	to	S1.		Furthermore,	we	expect	the	greatest	loss	to	be	within	the	early	

generations,	since	two	of	the	three	GSΔ lines	lost	GS	exponentially	over	time.		We	can	

nonetheless	glean	some	predictive	insights	by	contrasting	data	between	GSΔ	and	GScon	

groups.	For	example,	neither	group	exhibited	particularly	low	growth	rates	or	high	

mortality	(Figures	S1	&	S2),	so	GS	loss	did	not	obviously	relate	to	these	fitness	proxies.	

The	three	lines	with	GS	loss	did	have	larger	S1	genomes	(Figure	1B),	with	significantly	

more	TEs	and	knobs	than	the	GScon	group	(Figure	2;	Table	1).	To	a	first	approximation,	

genomes	with	high	TE	and	knob	content	are	more	prone	to	loss.		

Heterozygosity,	recombination	and	the	fate	of	deleterious	SNPs:	Several	

previous	studies	have	shown	that	H	declines	at	lower	rates	than	expected	under	selfing	

(Hedrick	et	al.,	2016),	(Barrière	et	al.,	2009).	In	S1	eucalyptus	trees,	for	example,	average	

H	was	65.5%,	compared	to	the	expectation	of	50%	(Hedrick	et	al.,	2016).	We	also	find	

elevated	heterozygosity	in	our	lines.	In	S1,	for	example,	Hb	was	~	65%	for	MR09	and	

MR22	(Figure	4).	By	S6,	both	lines	retained	significantly	more	heterozygosity	than	the	

expected	value	of	1.5%.	Observed	values	of	Hb	in	S6	imply	that,	assuming	constancy	

across	generations,	the	rate	of	heterozygosity	retention	was	0.60	per	generation	(=	

e(log(0.048)/6))	for	MR09	and	0.72	per	generation	(=	e(log(0.142)/6))	for	MR22.		

What	can	account	for	this	remarkable	retention	of	heterozygosity?	One	prosaic	

explanation	is	errors	in	heterozygosity	assignments.	While	this	is	possible	with	our	low	

coverage	data,	features	of	our	design	and	analyses	suggest	that	genotyping	errors	are	

not	driving	the	results.	First,	if	heterozygotes	are	miscalled	as	homozygotes	in	S1	due	to	

low	coverage,	then	they	are	simply	ignored	and	do	not	affect	the	results.	Second,	we	

have	taken	advantage	of	the	unique	features	of	our	experiment	to	infer	heterozygosity	

in	blocks;	our	results	do	not	rely	on	heterozygosity	calls	at	single	SNPs.	Third,	we	found	
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no	correlation	in	the	location	of	heterozygous	windows	between	MR09	and	MR22	(r2	=	

0.03846,	p=	0.5871),	suggesting	that	underlying	genomic	features	(e.g.,	sets	of	paralogs	

that	can	cause	SNP	miscalls	(Brandenburg	et	al.,	2017))	did	not	consistently	inflated	

heterozygosity	between	lines.	Finally,	we	have	made	conservative	assumptions	about	

the	categorical	assignment	of	blocks	(see	Methods).		

We	are	left,	then,	with	the	need	to	find	biological	explanations	for	slower-than	

expected	rates	of	heterozygosity	decline.	Such	explanations	usually	invoke	either	

overdominance	or	associative	overdominance	(Ohta,	1971),	with	the	prevailing	view	

that	associative	overdominance	is	the	prevailing	force	maintaining	heterozygosity	in	

selfed	lineages	(Springer	and	Stupar,	2007,	Barrière	et	al.,	2009,	Charlesworth	and	Willis,	

2009,	Hedrick	et	al.,	2016).	Importantly,	associative	overdominance	should	hold	for	

deleterious	alleles	with	small	phenotypic	effects	(Thornton	et	al.,	2013).		

If	higher-than-expected	levels	of	heterozygosity	are	caused	in	part	by	linkage	to	

deleterious	variants,	then	heterozygosity	should	be	higher	in	regions	of	low	

recombination,	where	selection	against	deleterious	variants	is	inefficient	because	loci	

are	coupled.	Consistent	with	this	prediction,	heterozygosity	is	elevated	in	regions	of	low	

recombination	in	the	maize	Nested	Association	Mapping	(NAM)	population	(Gore	et	al.,	

2009,	McMullen	et	al.,	2009).	In	contrast,	a	study	of	deleterious	variants	in	247	inbred	

maize	lines	found	little	correlation	between	recombination	rates	and	the	proportion	of	

deleterious	SNPs,	suggesting	low	recombination	regions	have	enough	recombination	to	

purge	deleterious	variants	over	longer	time	periods	(Mezmouk	and	Ross-Ibarra,	2014).	

Here,	over	the	short-term	timescale	of	our	experiment,	we	find	more	nuanced	and	

complex	relationships	with	recombination.	Overall,	heterozygosity	is	lower	in	regions	of	

low	recombination,	which	probably	reflects	background	selection	(Charlesworth	et	al.,	

1993).	In	our	experiment,	we	suspect	that	selection	has	acted	against	highly	deleterious,	

recessive	variants,	potentially	removing	heterozygosity	along	large	swaths	of	the	

genome.	It	is	worth	emphasizing	that	the	correlation	between	heterozygosity	and	

recombination	is	not	due	to	inherently	lower	genetic	diversity	in	low	recombination	

regions	of	the	parent,	because	our	metrics	focus	only	on	the	fate	of	inferred	
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heterozygous	sites	in	the	parent,	not	on	diversity	per	se.		

Another	feature	of	recombination	is	that	it	has	the	capacity	to	uncouple	linked	

variants,	making	selection	more	efficacious.	We	find	clear	evidence	for	selection	in	our	

data,	because	putatively	deleterious	variants	are	purged	from	our	lines	more	rapidly	

than	presumably	neutral	variants	(Figure	3A),	and	they	are	purged	more	rapidly	from	

high	vs.	low	recombination	regions	in	S6	(Figure	3B).	Under	this	scenario,	recombination	

separates	deleterious	variants	from	linked	variation,	permitting	the	independent	loss	of	

the	deleterious	variant	and	allowing	neutral	diversity	to	remain	(Bersabé	et	al.,	2015).	

Similarly,	subtle	relationships	were	recently	discovered	within	hybrid	genomes(Schumer	

et	al.,	2018).	In	the	hybrids,	high	recombination	regions	retained	heterozygosity	because	

recombination	broke	up	incompatibilities	that	otherwise	contribute	to	hybrid	load.		

Outstanding	Questions:	At	least	three	questions	remain.	First,	what	is	the	

mechanism	of	TE	(and	knob)	removal?	One	potential	explanation	is	ectopic	and/or	

unequal	recombination,	which	removes	TE	insertions	(Kalendar	et	al.,	2000,	Ma	and	

Bennetzen,	2006,	Vitte	and	Bennetzen,	2006).	These	recombination	events	can	leave	a	

signature	of	increased	numbers	of	solo	to	intact	LTR	elements	(Devos	et	al.,	2002),	but	

we	found	no	evidence	that	TE	loss	was	driven	by	numerous	unequal	recombination	

events	among	LTRs.	It	is	possible,	of	course,	that	unequal	recombination	caused	a	small	

number	of	large	deletion	events,	with	only	minor	effects	on	the	ratio	of	solo:intact	

elements.	We	nonetheless	favor	a	non-exclusive	mechanism	for	GS	loss	in	this	

experiment,	which	is	that	selection	tends	to	act	against	the	larger	haplotype	when	there	

is	a	size	difference	in	a	heterozygote.	Under	this	scenario,	selfed	plants	with	the	best	

collection	of	small(er)	haplotypes	are	favored	by	the	selfing	process,	leading	to	GS	

reductions.	If	true,	we	expect	the	resolution	of	selfing	to	be	a	contest	between	

haplotypes,	with	recombination	occasionally	reducing	interference	and	combining	

linked	structural	variants	from	different	haplotypes	onto	a	single	chromosome.	Under	

this	model	we	can	make	two	predictions:	i)	parental	plants	of	higher	heterozygosity	and	

larger	differences	in	size	between	haplotypes	are	more	likely	to	lose	GS	and	ii)	regions	of	

higher	recombination	will	tend	to	lose	more	Mb,	due	to	more	efficient	selection	against	
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large(r)	haplotypes.	These	predictions	remain	to	be	tested,	underscoring	just	how	little	

we	know	about	the	process	of	selfing	and	its	effects	on	genomic	variants.		

Second,	what	is	the	proximal	cause	of	GS	loss?	The	primary	effect	of	selfing	is	to	

uncover	deleterious	recessive	mutations,	leading	to	selection	against	homozygote	

recessives.	But	is	there	a	phenotype	that	drives	this	selection?	GS	is	known	to	correlate	

with	several	traits,	including	reproductive	rates,	growth	rates,	flowering	time,	cell	sizes	

and	other	factors	(Rayburn	et	al.,	1994,	Knight	et	al.,	2005,	Beaulieu	et	al.,	2008,	Hu	et	

al.,	2011,	Tenaillon	et	al.,	2016,	Bilinski	et	al.,	2018).	Selection	on	one	or	several	of	these	

diverse	characteristics	may	have	occurred	during	the	formation	of	the	inbred	lines.	

However,	we	cannot	find	any	pattern	among	our	lines	that	suggest	selection	was	more	

pronounced	on	the	GSΔ	vs.	GScon	groups.		For	example,	each	of	the	members	of	GSΔ	

group	(MR01,	MR08	and	MR18)	originated	from	landraces	in	the	tropical	lowlands,	and	

they	were	bred	in	lowland	tropical	nurseries,	but	the	same	is	true	of	MR05,	MR09,	

MR11,	M22	and	MR23,	none	of	which	exhibited	obvious	GS	loss.	

Finally,	what	bearing	do	these	results	have	on	broader	questions	about	plant	

evolution?	First,	it	informs	on	processes	of	genome	evolution	and	shows	that	selection	

on	uncovered,	deleterious,	putatively	recessive	alleles	can	have	several	effects	even	

over	the	very-short	term.	These	include	removing	linked	variation	in	regions	of	low	

recombination,	purging	deleterious	alleles	in	high	recombination	regions	more	

efficaciously,	and	hinting	that	interference	between	deleterious	variants	contributes	to	

the	retention	of	heterozygosity,	because	regions	of	high	heterozygosity	tended	to	be	

enriched	for	deleterious	variants	in	S6.	Second,	this	work	relates	to	the	finding	that	

indirect	selection	for	recombination	modifiers	can	be	favored	under	selfing	

(Charlesworth	et	al.,	1979,	Roze	and	Lenormand,	2005).	Our	results	clearly	demonstrate	

that	high	recombination	rates	are	advantageous	for	purging	genetic	load.	This	

relationship	may	drive	the	observed	trend	toward	higher	chiasmata	frequencies	in	

selfing	plants	compared	to	outcrossers	(Charlesworth	and	Charlesworth,	1979,	Roze	and	

Lenormand,	2005).	
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MATERIALS	and	METHODS	

Plant	materials	and	phenotypic	analyses:	Our	experiment	is	based	on	11	maize	

landraces	(Table	S1)	that	were	inbred	by	J.	Doebley	(U.	Wisconsin)	and	maintained	

through	single-seed	descent	for	several	generations	(Wills	et	al.,	2013).	The	parents	

represent	outcrossed	landraces	of	unknown	genotype.	For	each	line	and	generation,	

one	seed	was	grown	and	selfed,	and	the	remaining	sibling	seeds	were	stored.	We	grew	

the	sibling	seeds	in	the	UC	Irvine	greenhouses	after	germination	on	petri	dishes.	Ten	

seeds	per	cultivar	were	sown	in	individual	pots	on	22	July	2014	and	grown	in	a	growth	

chamber	under	controlled	conditions	of	12	h	light	at	26ºC,	12	h	dark	at	20ºC,	a	relative	

humidity	of	70%	and	500-600	cal/cm2	of	radiation	per	day.	The	third	and	fourth	leaves	

of	each	plant	were	harvested	when	12-13	cm	long	and	then	frozen	in	liquid	nitrogen	and	

stored	at	-80	ºC.	The	11	cultivars,	with	a	subset	of	6	plants	per	cultivar	per	generation,	

were	grown	in	four	completely	randomized	blocks,	with	B73	as	the	control	across	

blocks.	Measures	for	height	were	taken	on	9,	17,	30	and	45	days	after	sowing;	mortality	

was	also	noted	throughout	the	duration.	Mortality	and	growth	rates	were	compared	

among	lines.	We	estimated	the	exponential	growth	rate	for	each	individual	and	used	a	

one-way	ANOVA	to	test	whether	the	estimate	growth	rates	differed	between	lines.	A	

logistic	regression	model	was	applied	to	mortality,	and	a	likelihood	ratio	test	was	used	

to	compare	mortality	between	lines.	We	did	not	measure	fitness	via	fecundity,	because	

none	of	the	lines	produced	seed	under	our	experimental	conditions.	

	

Flow	cytometric	data	and	analyses:	To	estimate	GS,	leaf	samples	were	sent	to	Plant	

Cytometry	Services	(Schijndel.	Netherlands).	Following	a	previous	reference	(Diez	et	al.,	

2013),	flow	cytometry	used	4’6-diamindino-2-phenylindole	(DAPI)	staining.	Both	Ilex	

crenata	‘Fastigiata’	(2C	=	2.2pg)	and	maize	B73	(2C	=	5.64	pg)	(Diez	et	al.,	2013)	were	

employed	as	internal	standards.	Three	technical	replicates	were	performed	for	each	

plant	(Table	S2).	To	assess	whether	GS	had	changed	as	a	consequence	of	selfing,	we	

performed	linear	regressions,	exponential	decay	analyses,	and	Wilcoxon	rank	sum	tests	
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in	R,	combining	biological	and	technical	replicates	for	each	time	course.	Flow	

cytometeric	data	were	converted	to	picograms	assuming	that	the	maize	B73	reference	

had	a	value	of	5.64	pg/2C	(Diez	et	al.,	2013);	picograms	were	translated	to	Mb	assuming	

1pg	=	978	Mb	(Dolezel	et	al.,	2003).	To	infer	a	significant	trend	toward	genome	loss,	we	

estimated	that	the	probability	of	loss	was	3	lines	out	of	11	trials	(p=0.273)	and	

calculated	the	probability	of	observing	zero	GS	increases	over	11	trials	with	a	two-sided	

binomial.		

	

Whole-genome	Sequencing	and	Genomic	Composition:	We	selected	six	landraces	and	

33	individuals	for	whole-genome	sequencing	(Table	S1),	focusing	on	the	S1	and	S6	

generations.	DNA	was	extracted	from	frozen	leaf	tissue	using	the	QIAGEN	DNeasy	Plant	

Mini	kit.	DNA	was	multiplexed	into	libraries	with	Illumina	TruSeq	PCR	Free	kit.	The	

libraries	were	sequenced	on	the	HiSeq2500	(100	bp	read	length,	paired-end,	2	lanes)	in	

the	UCI	High	Throughput	Genomics	Facility	in	2015	(landraces	MR01,	MR08,	MR18,	and	

MR19)	and	on	the	HiSeq3000	(150	bp	read	length,	paired-end,	1	lane)	in	the	UC	Davis	

DNA	Technologies	Core	in	2016	(landraces	MR09	and	MR22).	Individuals	were	

sequenced	to	an	average	coverage	of	~2.5x	per	individual	(Table	S16).	Note,	however,	

that	we	had	>6x	coverage	for	each	generation	for	each	of	the	lines	investigated	given	

the	inclusion	of	siblings.		

Sequencing	reads	were	processed	by	Trimmomatic	(v0.35)	to	remove	barcodes	

and	low	quality	reads	(<20),	with	a	minimum	read	length	of	36.	Processed	reads	were	

mapped	simultaneously	onto	maize	genome	AGP	version	4.37	(AGPv4)	(Jiao	et	al.,	2017)	

and	B-specific	chromosomal	repeats	using	BWA-MEM	(v0.7.12)	(Li,	2014).	To	prevent	

double	counts	of	a	feature,	only	one	of	the	paired	reads	was	mapped	and	only	the	

primary	alignment	was	kept	for	each	multi-mapping	read,	based	on	Samtools	v1.3	(Li	et	

al.,	2009).		

We	counted	mapped	reads	for	five	annotated	genomic	components:	genes,	B-

chromosome	specific	repeats,	chromosomal	knobs,	rDNA	and	TEs.	The	annotation	

features	for	protein	coding	genes	and	for	TEs	were	obtained	from	the	Gramene	
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database	on	1/5/17	for	B73	AGPv4	(Table	S17).	To	annotate	regions	containing	knob	

(plus	CentC)	regions	and	rDNA	(plus	tDNA)	sequences,	a	series	of	fasta	files	(Table	S17)	

representing	both	features	were	mapped	to	the	v4	genome	using	blat	(v36).	The	regions	

of	B73	that	mapped	to	either	knobs	or	rDNA	were	then	added	to	gff	files	(blattogff	v3)	

for	read	count	analyses.	To	count	reads,	all	features	were	merged	(bedtools	merge	

v.2.25.0)	to	avoid	double	counting	(Quinlan,	2014).	Bedtools	coverage	was	used	to	

count	reads	that	overlapped	at	least	90%	with	each	feature.	An	identical	approach	was	

used	for	W22	annotations	(Table	S17).		

We	used	BUSCO	genes	to	normalize	between	libraries,	on	the	expectation	that	

these	highly	conserved	genes	represent	an	invariant	component	of	the	genome.	To	

identify	a	conserved	set	of	BUSCO	genes,	we	ran	BUSCO	(v3)	(Simão	et	al.,	2015)	on	

AGPv4.	From	the	resulting	set	of	1309	BUSCO	genes,	we	eliminated	any	that	appeared	

to	be	multi-copy	or	that	overlapped	with	TE	annotations	in	B73	AGPv4,	leaving	a	final	

set	of	761	genes.	A	similar	procedure	in	W22	yielded	918	BUSCO	genes.	In	both	

references,	any	gene,	knob,	or	rDNA	annotation	that	overlapped	with	a	TE	was	not	

considered	further.	Within	any	sequencing	run,	normalized	counts	for	a	genomic	feature	

were	calculated	as	the	observed	number	of	sequence	counts	to	that	feature	divided	by	

the	total	number	of	counts	that	mapped	to	BUSCO	genes.	To	verify	that	our	use	of	

BUSCO	genes	was	accurate,	we	simulated	datasets	with	BUSCO	normalizations	based	on	

Chromosome	10	(see	below).		

Further	analyses	considered	different	families	and	types	of	TEs.	These	analyses	

were	performed	only	in	B73.	For	these,	we	first	identified	TEs	from	the	AGPv4	gff	file	

and	employed	their	TE	family	designations	for	additional	analyses.	To	examine	the	ratio	

of	solo	LTRs	to	complete	LTRs,	we	de	novo	annotated	Sireviruses	based	on	the	MASiVE	

algorithm	(Darzentas	et	al.,	2010).	The	application	of	MASiVE	produced	22,530	full-

length	elements	with	defined	boundaries	between	LTRs	and	internal	regions.		

To	assess	relationships	between	GS	and	genomic	components,	we	used	both	

linear	regression	and	ANOVA,	using	the	lm	and	aov	modules	in	R	(v.3.34).	ANOVA	p-

values	were	FDR	corrected.	To	estimate	the	Mb	of	the	genome	explained	by	various	
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component,	we:	i)	translated	the	GS	of	each	plant	from	pg/2C	to	Mb,	using	the	

conversion	rate	of	1pg	=	978	Mb	(Dolezel	et	al.,	2003),	ii)	equated	Mb	for	each	individual	

to	the	total	number	of	reads	mapped	to	the	five	genomic	components,	and	iii)	

calculated	the	number	of	Mb’s	explained	per	sequencing	read.	Finally,	note	that	in	

addition	to	mapping	to	our	W22	and	B73	databases,	for	completeness	we	also	mapped	

to	a	database	consisting	only	of	knob	repeats,	which	avoided	the	complication	of	

reference	TE	annotations.	These	analyses	also	detected	a	moderate	group*generation	

effect	(p=0.015)	(Table	S18),	suggesting	again	that	knob	repeats	contribute	to	GS	shifts.	

	

Testing	BUSCO	normalization	via	simulation:	To	compare	counts	among	individuals,	it	is	

important	to	assess	the	accuracy	of	our	normalization	approach.	We	tested	BUSCO	

normalization	via	simulations	of	TE	loss	and	gain.	For	the	simulations,	we	used	the	

smallest	chromosome	10	for	computational	efficiency.	We	randomly	removed	either	

10%	or	20%	of	TEs	from	the	chromosome,	duplicated	10%	of	TEs,	or	did	not	change	the	

chromosome.	Each	treatment	was	repeated	five	times	with	different	random	TEs	

removed	or	gained.	The	short-read	simulator	wgsim	was	used	to	simulate	datasets	with	

~2x	and	10X	coverage,	mimicking	the	potential	for	different	coverages	among	our	

libraries.	For	each	simulation,	reads	were	mapped	to	chromosome	10,	counted	across	

annotation	features	(non-BUSCO	genes,	TEs,	knobs	and	rDNA)	and	then	normalized	by	

dividing	by	the	total	counts	for	BUSCO	genes	on	chromosome	10.	We	simulated	each	set	

of	parameter	1000	times.	Based	on	these	simulations,	we	were	able	to	recover	the	

expected	decrease	in	genomic	components	(Figure	S1),	but	it	did	not	recapitulate	

genome	gain	in	TEs	as	accurately.	It	is	likely	that	the	inability	to	estimate	TE	gains	is	a	

feature	of	our	simulations,	because	we	duplicated	TEs	as	exact,	tandem	copies	of	

chromosomal	TEs,	which	would	lead	to	systematic	undercounting	of	the	duplicated	TEs.	

Nonetheless,	our	simulations	indicate	that	our	normalization	approach	is	sufficient	to	

compare	TE	loss	among	datasets	with	different	coverages	and	different	degrees	of	TE	

loss.		
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Identification	of	SNPs	and	deleterious	variants:	To	identify	SNPs,	paired-end	

sequencing	reads	were	evaluated	for	quality	using	FastQC	V0.11.2,	and	were	further	

processed	to	remove	adapter	contamination	and	low	quality	bases	using	Trimmomatic	

V0.35	(Bolger	et	al.,	2014),	with	the	parameters	of	LEADING:3,	TRAILING:3,	

SLIDINGWINDOW:4:20,	and	MINLEN:50.	Trimmed	reads	were	then	mapped	to	the	B73	

reference	genome	(AGPv4.37;	(Jiao	et	al.,	2017)	

ftp://ftp.ensemblgenomes.org/pub/plants/release-37/fasta/zea_mays)	using	the	MEM	

algorithm	implemented	in	Burrows-Wheeler	Aligner	(BWA)	V0.7.12	(Li,	2014)	with	the	

parameters	“-M	-k	9	-T	25”.	Mapping	alignments	from	one	individual	were	merged	using	

Picard	tools	V1.96	(http://broadinstitute.github.io/picard/)	MergeSamFiles,	and	

potential	PCR	duplicates	were	filtered	from	alignments	using	SAMtools	V1.1	(Li	et	al.,	

2009)	rmdup.	To	minimize	the	number	of	mismatched	bases,	local	realignment	of	reads	

around	indels	were	performed	using	the	Genome	Analysis	Toolkit	(GATK)	V3.7	(DePristo	

et	al.,	2011)	RealignerTargetCreator	and	IndelRealigner.	Only	uniquely	mapped	reads	

were	kept	for	downstream	SNP	calling.	

To	detect	SNPs,	we	used	HaplotypeCaller,	CombineGVCFs	and	GenotypeGVCFs	

from	GATK	V3.7	(DePristo	et	al.,	2011)	separately	on	each	of	the	six	resequenced	lines.	

Variant	sites	having	a	minimum	phred-scaled	confidence	threshold	30	and	a	minimum	

base	quality	20	were	considered	as	SNP	candidates.	For	the	SNP	set	in	all	samples:	i)	

only	bi-allelic	SNPs	were	retained,	ii)	genotypes	with	genotype	quality	(GQ)	score	<	5	

were	assigned	as	missing,	and	iii)	the	filtration	“QUAL	<	30.0,	QD	<	2.0,	MQ	<	10.0,	DP	<	

3.0,	ReadPosRankSum	<	-8.0,	FS	>	30.0”	were	set	to	further	reduce	false	positives.	A	

python	program	parseVCF.py	(https://github.com/simonhmartin/genomics_general)	

was	adopted	to	extract	the	genotypes	of	every	sample	at	each	SNP	site.	

We	identified	putative	deleterious	SNPs	(dSNPs)	using	SIFT	(Kumar	et	al.,	2009),	

which	annotated	SNPs	as	non-coding,	synonymous	and	non-synonymous,	based	on	the	

gene	annotation	information	in	Ensembl	(https://plants.ensembl.org).	The	SIFT	

database	of	maize	(AGPv3.22)	was	downloaded	from	SIFT	4G	(http://sift.bii.a-

star.edu.sg/sift4g/public/Zea_mays/).	Our	SNP	coordinates	were	converted	to	AGPv3	
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using	CrossMap	V0.2.7	(Zhao	et	al.,	2014),	and	then	SIFT	4G	(Vaser	et	al.,	2016)	was	

launched	to	compute	scores	for	all	converted	SNPs.	Non-synonymous	SNPs	(nSNPs)	

were	then	predicted	as	deleterious	or	tolerated	according	to	their	computed	SIFT	scores.	

nSNPs	having	SIFT	score	<	0.05	were	predicted	as	deleterious;	they	were	considered	to	

be	tolerated	if	they	had	a	normalized	probability	value	≥	0.05.	For	SNPs	annotated	by	

SIFT,	the	derived	SNP	was	inferred	using	the	Sorghum	genome,	based	on	mapping	the	

raw	data	from	six	sorghum	varieties	from	the	NCBI	short	read	archive	(accession	

numbers	DRR045087,	DRR045074,	DRR045075,	DRR045082,	DRR045083	and	

DRR045081)	to	the	B73	reference.	For	our	analyses,	the	derived	allele	was	assumed	to	

be	the	deleterious	variant.	

	

Recombination	Data:	Crossover	data	for	maize	US	population	were	retrieved	from	

(Rodgers-Melnick	et	al.,	2015).	The	start	and	end	positions	of	crossover	intervals	were	

translated	from	Z.	mays	B73	AGPv2	to	the	AGPv4	reference,	using	CrossMap	0.2.7(Zhao	

et	al.,	2014).	The	number	of	crossover	events	in	each	non-overlapping,	5Mb	window	

was	computed	as	in	(Rodgers-Melnick	et	al.,	2015):	if	a	given	crossover	interval	fell	over	

>	1	window,	the	proportion	of	the	interval	present	in	each	window	was	added	to	the	

window	crossover	counts.	Genomic	windows	were	then	classified	into	highly	and	lowly	

recombining	using	the	cross-over	counts	quartiles.	

	

SNP	analyses:	We	focused	only	on	those	SNPs	for	which	the	parent	could	be	inferred	to	

be	heterozygous	–	i.e.,	H	=	1	in	the	parent.	Operationally,	this	implied	that	at	least	one	

heterozygote	was	detected	in	S1	or	that	there	were	two	homozygotes	with	alternative	

alleles.	The	derived	allele	was	inferred	by	comparing	SNPs	to	the	Sorghum	genome	and	

making	the	hypothesis	that	the	Sorghum	allele	is	ancestral.	SNPs	were	annotated	using	

SIFT	and	classified	into	four	categories	(see	main	text).	The	proportion	of	the	derived	

allele	was	computed	for	each	SNP	type	in	each	chromosome	separately	for	every	line.		

A	generalized	linear	model	with	mixed	effects	was	applied	to	the	proportion	of	

derived	allele	in	each	chromosome	of	every	line	using	the	R	function	glmer	in	the	lme4	
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package,	using	the	binomial	family	of	tests.	Two	fixed	effects	with	interaction	were	

considered	in	the	model:	the	type	of	SNP	as	defined	by	SIFT	and	the	inbreeding	

generation,	see	equation	(1)	below.	The	line	was	considered	a	random	effect.		

	
(number of derived alleles, number of ancestral alleles) ~ SNP type * 

Generation + (1|Line)   (1)	
 

Both	fixed	effects	and	their	interaction	were	significant	(all	p-values	<	2.2.10-16)	using	

comparison	of	the	fit	of	model	(1)	to	simpler	nested	models	(removing	one	effect	at	a	

time	in	model	(1)).	In	order	to	statistically	test	whether	there	was	a	significant	

difference	between	different	types	of	SNPs	and/or	generations,	we	computed	contrasts	

with	the	R	package	multcomp,	which	automatically	corrects	for	multiple	tests.		

In	order	to	study	the	effect	of	recombination	on	the	proportion	of	the	derived	

allele,	the	number	of	derived	and	ancestral	alleles	were	summed	for	each	chromosome	

of	every	line	when	considering	only	highly	or	lowly	recombining	genomic	windows	as	

previously	defined.	A	similar	linear	model	was	then	applied,	with	an	additional	fixed	

effect	for	recombination	which	interacts	with	the	other	two	previous	fixed	effects:	

(number of derived alleles, number of ancestral alleles) ~ SNP 

type * Generation * recombination + (1|Line)    (2)	
As previously, all three fixed effects and their interactions 

were significant when comparing model (2) to simpler nested models (all 

p-values < 0.007).	
	

	Heterozygosity	Analyses:	For	each	individual,	we	used	sliding	windows	of	100	SNPs	to	

infer	heterozygosity	for	genomic	regions,	focusing	only	on	SNPs	within	genes	to	avoid	

potential	misalignments	due	to	repetitive	elements.	Using	the	set	of	SNPs	inferred	to	be	

heterozygous	in	the	parents,	the	proportion	of	the	major	allele	P	was	calculated	as	

follows:	if	a	position	was	homozygous,	then	the	proportion	of	the	major	allele	was	1.	If	a	

position	was	heterozygous,	then	the	proportion	of	the	major	allele	was	0.5.	The	

proportion	P	was	then	averaged	across	the	100	SNPs	of	each	window	for	each	individual	

separately	to	calculate	𝑃.	We	assumed	that	the	limited	number	of	recombination	events	
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in	each	line	over	the	time	course	of	the	experiment	did	not	fully	homogenize	

chromosomes,	so	that	most	genomic	regions	were	either	heterozygous	or	homozygous.	

Based	on	this	approach,	the	genomic	regions	that	are	heterozygous	should	exhibit	a	𝑃	

close	to	0.5	while	genomic	regions	that	are	homozygous	should	have	𝑃	close	to	1.	Note,	

however,	that	real	heterozygous	loci	can	be	misgenotyped	as	homozygous	to	make	the	

𝑃>	0.5.	Also,	the	maize	genome	contains	a	high	number	of	duplicated	genes,	and	

erroneous	mapping	of	reads	from	duplicated	genes	can	cause	false	heterozygous	SNPs	

in	homozygous	regions	(Brandenburg	et	al.,	2017),	making	𝑃<1	in	homozygous	regions.	

Nonetheless,	when	coverage	is	high	enough	to	genotype	heterozygotes	correctly,	two	

peaks	of	𝑃 = 0.5	and	𝑃 = 1.0should	be	observed.		

The	distribution	of	𝑃	for	each	line	across	all	individuals	and	generations	is	

presented	in	Figure	S11.	Only	MR09	and	MR22	exhibited	the	expected	two	peaks.	These	

two	lines	have	the	highest	coverage	among	the	set	of	lines	(Table	S16),	and	they	were	

therefore	the	only	lines	we	studied	hereafter.	Given	the	distribution	of	𝑃	across	

genomic	regions,	the	R	package	Mclust	was	used	to	classify	each	window	of	each	

individual	as	homozygous	or	heterozygous	(Scrucca	et	al.,	2016)	by	forcing	the	number	

of	components	to	be	2	(G=2).	Windows	that	fell	between	the	two	peaks	of	the	𝑃	

distribution	were	classified	as	“uncertain”	if	the	Mclust	classification	uncertainty	was	>	

0.1	(Figures	S12	and	S13).		

For	each	individual,	the	heterozygosity	status	of	a	region	was	inferred	from	the	

clustering	of	overlapping	sliding	windows.	The	start	and	end	of	a	heterozygous	region	

were	defined	by	1)	the	start	of	the	first	window	that	had	the	given	heterozygosity	state	

and	2)	the	start	of	the	closest	next	“uncertain”	window.	All	SNPs	inside	the	region	were	

afterwards	considered	to	be	of	the	inferred	heterozygosity	type,	regardless	of	

genotyping	errors.	A	similar	procedure	was	applied	to	homozygous	regions.	Although	in	

principle	the	categorical	status	of	uncertain	regions	could	be	inferred	by	parsimony	

arguments,	we	adopted	the	conservative	approach	to	discard	these	blocks	of	

uncertainty	from	heterozygosity	calculations.	Heterozygosity	levels	could	then	be	
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averaged	across	individuals	of	the	same	line	and	generation	in	sliding	windows	

containing	100	SNPs	as	follows:	

	

Heterozygosity	 =	 number	 of	 inferred	 heterozygous	 SNPs	 /	 (number	 of	 inferred	 heterozygous	 SNPs	 +	

number	of	inferred	homozygous	SNPs)	

	

Average	heterozygosity	levels	across	individuals	were	plotted	along	chromosomes	for	

sliding	windows	of	100	SNPs	that	fall	within	genes	(Figure	4).	For	statistical	tests,	

chromosomes	were	considered	as	biologically	independent	units,	owing	to	the	small	

number	of	individuals	(n=2	or	3).	The	non-parametric	Wilcoxon	signed	rank	test	was	

used	to	compare	the	expected	heterozygosity	with	the	observed	heterozygosity	of	the	

ten	chromosomes	averaged	across	individuals	for	each	line	and	generation	separately.	

As	a	conservative	control,	this	analysis	was	repeated	when	considering	windows	with	

uncertain	heterozygosity	in	the	clustering	method	as	homozygous,	instead	of	discarding	

them.	A	similar	approach	with	non	overlapping	windows	of	100	SNPs	falling	within	

genes	was	used	to	correlate	heterozygosity	with	cross-over	number	using	R	lm	function.	

The	same	non-overlapping	windows	were	used	to	study	the	effect	of	the	proportion	of	

nonsynonymous	SNPs	on	heterozygosity	using	a	chi-squared	contingency	table	test	with	

R	function	chisq.test.	
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Table	1:	Estimates	of	the	variance	components	based	on	ANOVA	applied	to	read	count	
data.	Each	of	the	five	genomic	components	(TEs,	genes,	knob-repeats,	B	chromosome	
specific	repeats	and	rDNA)	was	tested	individually.		
	
	 Group	 landrace	 generation	 Group	X	gen	 Line	X	gen	
TEs	 14.72	***	 70.65***	 2.82*	 5.41*	 0.65	
Genes	 1.46	 21.49	 4.85	 0.017	 18.51	
Knobs	 35.60	***	 56.21***	 0.44	 0.50	 2.54	
bChr	 7.02	 25.80*	 7.27	 6.76	 25.53*	
rDNA	 2.00	 40.49*	 2.27	 1.53	 13.47	
1	Statistical	significance	is	indicated	by	*	<	0.05;	0.05>	**	>0.001,	***<0.001.		P-values	
were	FDR	corrected	based	on	all	tests	in	the	Table.		
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FIGURE	LEGENDS:	

Figure	1:	A)	A	schematic	of	the	study	design.	An	outcrossing	parent	was	selfed	to	make	
the	S1	generation	and	then	subsequently	selfed	to	S6	and	higher.	The	selfed,	single-seed	
descent	lineages	are	represented	by	black	arrows.	Our	study	used	sibling	seed	sampled	
from	each	generation,	represented	by	red	arrows.	B)	Estimates	of	genome	size,	in	
pictograms	per	2C	content,	across	generations	of	selfing.	Each	of	the	11	lines	is	
represented.	Dark	lines	represent	significant	decreases	of	GS.	Dotted	lines	did	not	have	
significant	changes	in	GS.	Mean	and	standard	error	are	plotted.	See	Table	S1	for	sample	
sizes,	Table	S2	for	raw	values	and	Figure	S3	for	a	detailed	plot	of	the	raw	data	per	line.		

Figure	2:	Various	components	of	the	genome	compared	between	the	GS	change	group	
(GSΔ)	and	the	GS	constant	(GScon)	groups	and	between	S1	and	S6.	Sample	sizes	are	
shown	in	Table	S1,	significance	values	are	provided	in	Table	S5,	and	Figure	S6	reports	
this	information	for	each	of	the	lines	separately.	The	boxplot	shows	the	median,	lower	
and	upper	quartiles.	The	whiskers	extend	to	the	largest	or	lowest	value	no	further	than	
1.5	*	IQR	from	the	hinge	(where	IQR	is	the	inter-quartile	range,	or	distance	between	the	
first	and	third	quartiles).	Outliers	are	plotted	as	dots	above	the	whiskers.	

Figure	3:	A)	The	proportion	of	the	derived	allele	for	the	four	mutational	classes	
predicted	by	SIFT	–	i.e.,	non-coding,	synonymous,	non-synonymous	tolerated	and	non-
synonymous	deleterious.	The	graph	reports	the	proportion	for	generations	S1	and	S6	
across	six	lines	(MR01,	MR08,	MR09,	MR18,	MR19	and	MR22).	PD	was	averaged	across	
individuals	for	each	chromosome	and	line	separately	(n=60	for	each	bar	of	the	plot,	
n=480	in	total).	B)	As	in	panel	A,	except	the	genome	was	separated	into	high	and	low	
recombination	quartiles	of	the	genome,	illustrating	that	purging	occurs	more	rapidly	in	
high	recombination	regions.	As	in	A),	n=60	for	each	bar	of	the	plot.	See	Figure	2	legend	
for	values	of	the	boxplot.	

Figure	4:	Inference	of	heterozygous	and	homozygous	genomic	regions,	based	on	SNPs	
inferred	to	be	heterozygous	in	the	Parent.	The	figure	shows	each	of	the	ten	
chromosomes	for	two	lines	(MR22	and	MR19).	Heterozygosity	was	averaged	across	
individuals	for	each	line	and	generation	separately.	For	each	chromosome,	the	x-axis	
represents	length	along	the	chromosome	and	the	y-axis	is	the	proportion	of	
heterozygous	sites	within	100	SNP	sliding	windows.	Red	and	blue	lines	represent	the	S1	
and	S6	generations.	Both	lines	have	more	regions	of	heterozygosity	than	expected	(see	
text	for	statistics).	Sample	sizes	are	shown	in	Table	S1	(n=2	or	3	depending	on	the	line	
and	generation).	
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