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Abstract 20 

Background: Rhodosporidium toruloides is a basidiomycetes yeast that can accumulate large 21 

amount of lipids and natively produce carotenoids. To better assess this non-model yeast’s 22 

metabolic capabilities, we reconstruct a genome-scale model of R. toruloides IFO0880’s metabolic 23 

network (iRhto1108) using recent functional genomics and phenotypic data in literature or 24 

generated herein. 25 

Results: The model iRhto1108 accounts for 2,203 reactions, 1,985 metabolites and 1,108 genes. 26 

In this work, we integrate and supplement the current knowledge with in-house generated biomass 27 

composition and experimental measurements pertaining to the organism’s metabolic capabilities. 28 

Phenotype-genotype relationship predictions were improved through manual curation of gene-29 

protein-reaction rules for 543 reactions and validations with gene essentiality data leading to 30 

correct recapitulations of 84.5% of gene essentiality data (sensitivity of 94.3% and specificity of 31 

53.8%). Organism-specific macromolecular composition and ATP maintenance requirements 32 
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were experimentally measured for two separate growth conditions: (i) carbon and (ii) nitrogen 1 

limitations. Overall, iRhto1108 reproduced R. toruloides’s utilization capabilities for 18 alternate 2 

substrates, matched measured wild-type growth yield, and recapitulated the viability of 772 out of 3 

819 deletion mutants. As a demonstration to the model’s fidelity in guiding engineering 4 

interventions, the OptForce procedure was applied on iRhto1108 for the overproduction of 5 

triacylglycerol. Suggested interventions recapitulated many of the previously successfully 6 

implemented genetic modifications and put forth a few new ones. 7 

Conclusion: iRhto1108 offers a highly curated model for a non-model yeast supported by multiple 8 

layers of experimental data that can be used to inform genetic interventions. 9 

Keywords: Genome-scale model, Non-model yeast, Rhodosporidium toruloides, Triacylglycerol 10 

production 11 

 12 

Background 13 

Rhodotorula genus species are found in various habitats including soil, water, air, on animals and 14 

plants, and even in extreme environments such as arctic ice sheets [1]. Among them, 15 

Rhodosporidium toruloides (or Rhodotorula toruloides) is a basidiomycete yeast generally found 16 

in soil [2] containing carotenoid compounds giving the organism its characteristic pink color [3, 17 

4]. R. toruloides is an attractive metabolic engineering host for producing lipid and fatty acid-18 

derived products due to its ability to accumulate lipid (predominantly triacylglycerols [5]) as high 19 

as 76% of the cell dry weight [6] and maintain lipid production in biomass hydrolysate containing 20 

growth inhibitory compounds [7]. It can also grow in high density cell cultures [8] and utilize a 21 

wide variety of substrates and glucose-xylose mixtures without catabolic repression [9, 10]. It has 22 

a rather compact genome (i.e., haploid genome of 20 Mb with 20% being intergenic sequence) that 23 
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is tractable for genetic interventions [11–13]. Extensive metabolic engineering efforts have been 1 

focused on lipid production in R. toruloides by exploiting the organism’s ability to accumulate 2 

lipid under NaCl-enriched glucose-based media [14], nitrogen-limitation [15], sulfur-limitation 3 

[16], and phosphate-limitation conditions [17]. R. toruloides can accumulate lipids utilizing 4 

multiple substrates [9] and substrate mixtures [18]. Genetic interventions aimed at enhancing lipid 5 

accumulation have also been explored [11, 19] to overproduce fatty acid derived compounds (e.g., 6 

fatty alcohols and esters), used in surfactants, paints, and cosmetics [20, 21]. In addition to lipids, 7 

R. toruloides has also been used as a host for carotenoid [22] and D-arabitol production [23]. 8 

 9 

R. toruloides has recently been the target of significant research effort including genome 10 

(re)sequencing [3, 11, 13], functional genomics analyses [13], differential ‘omics characterization 11 

[3], determination of macromolecular composition [15], and growth kinetics in a continuous 12 

culture [24]. Collectively, these experiments have ushered an improved understanding of R. 13 

toruloides metabolism and provided the basis for the reconstruction of a metabolic model with 14 

genome-wide coverage. A comprehensive genome-scale metabolic reconstruction for R. 15 

toruloides would facilitate the integration of various heterogeneous datasets [25, 26] in making 16 

predictions of cellular phenotypes under various environmental and genetic perturbations and 17 

model-driven knowledge discovery [26], exploration of organism production potential [27–29], 18 

and extensions towards kinetic descriptions of metabolism [30, 31]. A successively improving 19 

sequence of metabolic models for S. cerevisiae have ushered significant insight into the organism’s 20 

physiology and offered many clues for re-engineering [32, 33]. Metabolic reconstruction of non-21 

model yeasts have recently received significant attention, starting with Pichia pastoris for its use 22 

in production of recombinant protein [32] and the model oleaginous yeast Yarrowia lipolytica  [20, 23 
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34] for which five genome-scale models of iteratively higher level of detail have been 1 

reconstructed [32, 35]. They were used to suggest fed-batch strategies to improve lipid 2 

accumulation and elucidate the regulation mechanism of lipid accumulation [36, 37]. We 3 

anticipate that similar advances would be spearheaded for R. toruloides facilitated by the genome-4 

scale model described herein. In addition, to the benefits for guiding re-engineering efforts, a 5 

genome-scale model for R. toruloides will fill in a significant knowledge gap as the Basidiomycota 6 

phylum is highly under-represented in terms of metabolic model reconstructions. As of today, only 7 

a small metabolic model containing 85 reactions (without gene associations) [10, 18], and a 8 

genome-scale model associating with 897 genes [38] exist. In contrast, there exist numerous 9 

genome-scale models [32, 39] for eight organisms in the closely related Ascomycota phylum.  10 

 11 

We hereby introduce the comprehensive genome-scale metabolic model of R. toruloides strain 12 

IFO0880, referred to hereafter as iRhto1108. It contains 2,203 reactions, 1,985 metabolites and 13 

spans 1,108 genes from the latest version of the genome [13]. The strain IFO0880 has been shown 14 

to be a robust host for lipid overproduction [11]. We used the model yeast 7.6 for S. cerevisiae 15 

[40] as the reconstruction process’ starting point and refined the draft reconstruction of the model 16 

by incorporating biochemical information from the latest genome annotation [13], biochemical 17 

(KEGG) information and the KBase database [41, 42]. By drawing from the gene essentiality 18 

results from a genome-wide functional genomic study [13], iRhto1108’s recapitulates 84.5% of 19 

the gene essentiality data. It contains highly curated gene-to-protein (GPR) associations including 20 

updates for 543 reactions (involving 373 genes) and confirmations of GPR assignments from S. 21 

cerevisiae. Using the conventions from GrowMatch procedure for benchmarking gene essentiality 22 

prediction [43], growth (G) and non-growth (NG) agreements or disagreements between model 23 
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predictions and gene essentiality data are classified into four groups: G-G, G-NG, NG-G, and NG-1 

NG; the first entry refers to the in silico result while the second part is the in vivo. The model 2 

achieved a sensitivity level of 94.3% (G-G / (G-G + NG-G)), a specificity level of 53.8% (NG-NG 3 

/ (NG-NG + G-NG)), and an accuracy level of 84.5% ((G-G + NG-NG) / Total). Quantitative 4 

model predictions are also enhanced by organism-derived biomass compositions determined in 5 

this study under both carbon and nitrogen limited conditions revealing a much higher proportion 6 

of lipids in R. toruloides biomass compared to S. cerevisiae. ATP maintenance requirements were 7 

derived from a study on R. toruloides’s growth kinetics [24]. Metabolites present in the biomass 8 

reaction were extracted from both the original biomass equation of yeast 7.6, biomass constituent 9 

compendium [44] and the literature on S. cerevisiae biomass (see Methods). This compilation 10 

results in the addition of three cell wall components, nine cofactor and prosthetic groups, and seven 11 

metal ions. iRhto1108 contains 328 unique metabolic reactions (out of a total of 1,398 reactions) 12 

compared to both yeast 7.6 and the recent genome-scale model for R. toruloides strain NP11 13 

version 1.1.0 [38]. The model predicts growth on all thirteen carbon substrates and five amino 14 

acids (as nitrogen source) that have been experimentally confirmed (see Supplementary Materials 15 

2). Under nutrient starvation, iRhto1108 successfully captured R. toruloides’s lipid accumulation 16 

phenotype. As a demonstration of iRhto1108’s appropriateness to guide strain design, the 17 

OptForce procedure [45] was used on the model to pinpoint genetic interventions that led to an 18 

triacylglycerol overproducing phenotypes. Strain design solutions were in line with in vivo 19 

implemented flux “push-pull” strategy [46] that increased lipid production by approximately two-20 

fold in R. toruloides [11]. Overall, iRhto1108 has undergone a detailed range of testing and 21 

validation studies promising to aid in future investigations of R. toruloides. 22 

 23 
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Results and Discussion 1 

Model attributes and refinement of draft reconstruction 2 

iRhto1108 is a comprehensive genome-scale model that integrates yeast biochemistry information 3 

from (i) previously built genome-scale models (S. cerevisiae yeast 7.6 [40], (ii) KBase fungal 4 

models [42]), and (iii) R. toruloides specific information extracted from the primary literature [13, 5 

23, 47] or generated herein. The model statistics are summarized in Table 1. Genes included in 6 

iRhto1108 cover 13% of the organism’s chromosomal and 6% of mitochondrial genome. 7 

Throughout this article, genes named will be referred to by the corresponding S. cerevisiae’s 8 

homolog name (if available) (e.g., HOM6 for homoserine dehydrogenase) or otherwise using R. 9 

toruloides gene IDs (e.g., rt6880 for serine O-acetyltransferase). R. toruloides protein IDs are not 10 

used herein (e.g., RTO4_15248 for serine O-acetyltransferase) to retain consistency in gene 11 

identification. iRhto1108 shares 65% of genes, 70% of reactions, and 67% of metabolites with the 12 

S. cerevisiae yeast 7.6 model [40]. KBase entries contributed 8% of genes, 5% of reactions, and 13 

7% of metabolites of iRhto1108. KBase was used to identify additional homologous genes and 14 

extract reactions from metabolic reconstructions for non-model yeasts. The remainder of the model 15 

content (i.e., 27% of genes, 25% of reactions, and 26% of metabolites) was directly culled from 16 

the genome annotation and subsequently manually curated. Many of these model additions do not 17 

necessarily capture R. toruloides-only biochemistry but instead unpack aggregated yeast 7.6’s 18 

reaction content or replace redundant yeast 7.6’s features. For example, using KBase, a lumped 19 

palmitoyl-CoA synthesis (fatty acid C16:0) reaction in yeast 7.6 is detailed into 28 steps catalyzed 20 

by fatty acid synthase in iRhto1108 (seven elongation cycles, each cycle contains four elementary 21 

steps). In addition, a set of aggregated reactions simplified lipid metabolism in yeast 7.6 [40, 48]. 22 

For example, a single generalized reaction for diacylglycerol acyltransferase (DGAT_rm) replaced 23 
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32 copies of DGAT_rm in yeast 7.6 operating on 32 variants of triacylglycerol. Overall, gene-1 

protein-reaction associations were assigned for 93% of metabolic reactions in iRhto1108. Not 2 

surprisingly, identification of genes coding for transporters remained a challenge as was the case 3 

for yeast 7.6. Missing GPR assignments in iRhto1108 are mostly in intracellular transport between 4 

compartments (i.e., 364 from a total of 456 GPR-lacking reactions). Throughout the reconstruction 5 

process, we manually curated the GPR of 543 reactions associated with 373 genes. Determination 6 

of metabolic role of a gene(s) in GPRs was assisted using NCBI’s Conserved Domain Database 7 

(NCBI’s CDD) [49]. For example, initially no reaction enabling the synthesis of spermidine, a 8 

biomass constituent, was found as no spermidine synthase gene was identified via bidirectional 9 

BLAST. However, subsequent analysis by NCBI’s CDD revealed a catalytic domain on rt8465 10 

(homolog of S. cerevisiae’s LYS9). Notably, this catalytic domain does not overlap with 11 

saccharopine dehydrogenase domain identified by bidirectional BLAST. Thus, the spermidine 12 

synthase reaction was subsequently determined to associate to rt8465 and thereby fill the gap in 13 

spermidine synthesis. Furthermore, using the more recent version of the consensus yeast model 14 

available at (https://github.com/SysBioChalmers/yeast-GEM, yeast 8.3.3), GPR assignments for 15 

22 reactions in iRhto1108 were updated. For example, drawn from yeast 8.3.3’s GPR assignment, 16 

isozyme rt1542 (homologous to YOR283W) was added to the glycolysis reaction phosphoglycerate 17 

mutase’s GPR. 18 

 19 

Table 1. R. toruloides iRhto1108 genome-scale model statistics 20 

Properties Statistics 

Genes 1,108 

Identified from yeast 7.6 717 

Identified from KBase 86 

From chromosome (% of chromosomal ORFs) 1,087 (13%) 

with S. cerevisiae homolog identified 908 

From mitochondrial genome (% of mitochondrial ORFs) 21 (6%) 
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with S. cerevisiae homolog identified 7 

  

Reactions 2,203 

From yeast 7.6 1,514 

From KBase 118 

Metabolic reactions 1,398 

With GPR assigned 1,306 

Unique number of metabolic reactions 1,129 

Transport reactions 619 

Extracellular transport 163 

with GPR assigned 75 

Intracellular transport 456 

with GPR assigned 92 

Exchange reactions 185 

  

Metabolites 1,985 

From yeast 7.6 1,328 

From KBase 145 

Unique metabolites 1,043 

Formula and charge assignments from database 1,535 

  

Compartments 14 

 1 

 2 

The classification of iRhto1108 genes shown in Table 1 quantifies the extent of contribution from 3 

previous yeast reconstructions and the significant expansion in iRhto1108 (Figure 1). Eukaryotic 4 

orthologous group (KOG) assignments [50], a Eukaryotic-specific Cluster of orthologous groups 5 

of protein (COG) provided by the updated genome annotations [13], were used in classifying genes 6 

and the associated reactions. Most of the genes in iRhto1108 are homologous to S. cerevisiae’s 7 

genes (Figure 1), in agreement with the relative phylogenetic proximity between the two species 8 

of yeasts (i.e., their respective divisions, Ascomycota and Basidiomycota, are grouped to the sub-9 

kingdom Dikarya). Highly conserved metabolic functions (i.e., 80-98% genes with homologs 10 

identified per KOG class) between the two are observed in all the core metabolic functions (listed 11 

in decreasing degree of conservation): nucleotide, inorganic ion, cell wall, coenzyme, amino acid, 12 

carbohydrate, energy production, and lipid metabolism. Nevertheless, R. toruloides has a number 13 
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of unique metabolic capabilities compared to S. cerevisiae. These new functionalities, 328 1 

metabolic reactions out of 1,398, are not predominantly localized in any specific pathway but 2 

rather span multiple KOG classifications. In terms of genome coverage, iRhto1108 is able to 3 

account for 66-77% of genes in KOG classes, namely energy nucleotide, coenzyme, amino acid, 4 

and energy production metabolism. The category with the lowest genome coverage (i.e., 25%) is 5 

inorganic ion transport and metabolism. A significant fraction of iRhto1108’s genes fell into the 6 

“Unassigned” category due to KOG’s inability to identify genes with non-homologous sequences 7 

that perform core metabolic functions. For example, R. toruloides fatty acid synthase subunit I and 8 

II were not classified by KOG annotation into the lipid metabolism group, possibly due to irregular 9 

arrangement of catalytic sequence motifs compared to S. cerevisiae and other types of yeast [6]. 10 

 11 

The majority of the novel metabolic functions captured in iRhto1108 are extracted directly from 12 

the genome annotation or open literature. For example, included in the model are reactions and 13 

associated genes for both the carotenoid [47] and D-arabitol production pathways [23] which were 14 

absent in yeast 7.6. Most of the novel functions belong to lipid and carotenoid metabolism. Some 15 

examples in lipid metabolism are ATP citrate lyase in acetyl-CoA production [51], cytoplasmic 16 

malic enzyme [11], and stearoyl-CoA desaturase in polyunsaturated acyl-CoA production [19]. 17 

The carotenoid biosynthesis pathway whose products are responsible for the organism’s 18 

characteristic pink color [4] is captured in iRhto1108. In addition, an NADH oxidoreductase 19 

reaction (complex I in electron transport chain) is included in iRhto1108 which is known to be 20 

absent in S. cerevisiae [52]. Non-essential metabolic functions found in the genome annotation 21 

with an unclear physiological role such as a peroxisomal D-amino acid oxidase [53] are also 22 

recorded in the model. 23 
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 1 

Model annotation and network consistency are important properties for testing genome-scale 2 

model quality [54]. We evaluated iRhto1108 using standardized tests provided by the memote test 3 

suite and updated the model based on detected issues. Under the independent section (scored tests), 4 

iRhto1108 received a high score of 87% on biochemical annotation and network consistency tests. 5 

Since R. toruloides genome is recorded on JGI Mycocosm and not on memote-verified databases 6 

such as KEGG, we only provide the S. cerevisiae homologs as genes’ annotation. iRhto1108 also 7 

achieve a score of 99.7% on network consistency tests. Some lost points are from memote’s 8 

mistaken identification of reaction imbalances, namely generalized reactions that set the 9 

composition of generic acyl-CoA (using “Acyl” as a group in the formula) and biochemical 10 

reactions associated with that generic acyl-CoA group. Detected by memote, unbounded fluxes 11 

that can form a thermodynamically infeasible cycle [55] were fixed by restricting the directionality 12 

of transporters and/or reactions. For example, the tyrosine importer (AVT1), exporter (AVT3), and 13 

efflux transporter (ATG22) from cytosol to vacuole can shuttle tyrosine in and out of the vacuole 14 

with no driving force leading to an unbounded flux. To remedy this, the efflux transporter was 15 

allowed to only import (not export) tyrosine to the vacuole. Export function can be re-activated if 16 

needed (e.g., under autophagy-induced protein degradation [56]). In addition, under network 17 

topology tests, memote reported a high number of blocked reactions (677 out of 2,203). These 18 

reactions and metabolites were retained in iRhto1108 as they are based on assignments from 19 

homologous genes and genome annotation. They cause no problems in flux balance analyses and 20 

may serve in the future as gapfilling targets. 21 

 22 
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 1 
Figure 1. Classifications of genes in iRhto1108. Eukaryotic orthologous groups (KOG) 2 

annotations are provided in the genome annotation and used for classifying genes to the 3 

corresponding functions. Group abbreviations are in the parentheses. A gene with multiple KOG 4 

groups assignments were added to all the groups. A gene without KOG annotation was manually 5 

assigned to a KOG group. Other groups include B, D, J, K, L, N, O, S, T, U, V, Z, W, Y, and A 6 

(see https://genome.jgi.doe.gov/Tutorial/tutorial/kog.html). 7 

 8 

 9 

Update of biomass composition and revision of ATP maintenance requirements 10 

In addition to differences in pathways, an important contribution in iRhto1108 is the expansion of 11 

the list of biomass constituents by 23 components from the original 45 taken from yeast 7.6 (Table 12 

2). Four new fatty acid species, C18:2, C18:3, C20:0, and C24:0, are added to the biomass reaction 13 

based on their detection by mass spectrometry measurements (see Methods). Seven metal ions are 14 

added based on biomass measurements for S. cerevisiae [57]. We identified three cell wall 15 

components and nine cofactors and prosthetic groups that must be added to match measured 16 

phenotypes [13] (see Methods). For instance, lethal knockouts of dephospho-CoA kinase (gene: 17 

CAB5) or GPI anchor biosynthesis (gene: GPI13) (KEGG reaction R05923) are unresolvable 18 

without the additions of coenzyme-A and GPI anchor to the biomass reaction, respectively. These 19 

validations are provided in Supplementary Materials 2. The revised list of biomass constituents 20 

and the experimentally determined macromolecular composition are provided in Table 2. The full 21 

description of the biomass reaction is detailed in the Supplementary Materials 1. Moreover, we 22 
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experimentally determined R. toruloides macromolecular composition separately under both 1 

carbon and nitrogen limitation (see Table 2 and Methods section). Protein, carbohydrate, DNA, 2 

RNA, and lipid composition were measured for cells growing on glucose in a chemostat at the 3 

dilution rate of 0.1 hr-1. Further improvements include DNA base composition update based on 4 

GC content [58], RNA bases composition informed from RNA-Seq data, and lipid’s acyl group 5 

composition measured by mass spectrometry (see Methods). Both biomass reactions for R. 6 

toruloides in carbon and nitrogen limited conditions imply a higher proportion for lipid than S. 7 

cerevisiae (in comparison to yeast 7.6’s biomass reaction) and a lower proportion of carbohydrate 8 

(and protein under carbon limitation). The DNA fraction for R. toruloides is also higher under both 9 

conditions compared to S. cerevisiae. Both the lipid and DNA fractions are higher while the RNA 10 

fraction is lower for cells growing under nitrogen limitation. Importantly, the combined 11 

coefficient-weighted molecular weights of all constituents were standardized to 1 g.mmol-1 to 12 

ensure consistency of growth yield prediction [59]. The biomass composition listed in Table 2, 13 

follows the core biomass definition [60, 61] consisting of growth-essential metabolite 14 

requirements. The inclusion of these metabolites in the biomass reaction was based on gene 15 

essentiality results [13] and experimental data from S. cerevisiae (Supplementary Materials 2). 16 

Compared to rhto-GEM model v. 1.1.0 [38], iRhto1108’s biomass reaction contains 23 additional 17 

constituents. In addition, iRhto1108 offers a nitrogen limited version (viz., conditions applicable 18 

for lipid production) underpinned by a significant biomass compositional difference. 19 

 20 

In addition to the updated biomass composition derived for two separate growth conditions, we 21 

also revisited the ATP maintenance requirements (both growth and non-growth). Non-growth 22 

(NGAM) and growth associated maintenance (GAM) values were estimated by assessing the 23 
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model’s optimal ATP production under glucose uptake restriction and growth yield requirement 1 

and experimentally recorded glucose uptake rates and growth rates. Correctly assessing ATP 2 

maintenance is important for properly quantifying energetic needs and growth yield [61]. ATP 3 

maintenance requirements for iRhto1108 were calculated from available chemostat data for growth 4 

on glucose for both carbon and nitrogen limitation, respectively [24] (see Methods). An NGAM 5 

value of 1.01 mmol gDW-1 hr-1 for both conditions was recovered. In contrast, the growth 6 

associated maintenance (GAM) was condition-dependent with a value of 140.98 mmol gDW-1 7 

under carbon limited and 276.37 mmol gDW-1 under nitrogen limited conditions. In yeast 7.6, 8 

NGAM is not modeled (though an earlier S. cerevisiae model [62] reported an NGAM value of 1 9 

mmol gDW-1) and the GAM value is 59.28 mmol gDW-1. The GAM value quantifies growth-10 

associated energy costs that are not captured in the biomass equation, alluding to higher energy 11 

demands for R. toruloides growth compared to S. cerevisiae. Under nitrogen limitation, GAM is 12 

even higher (1.9-fold increase). Note that growth kinetics of R. toruloides under nitrogen limitation 13 

follows a different trend compared to under carbon limitation [24]. It appears that the assumption 14 

of constant GAM value across all growth rates may not hold under nitrogen limitation. However, 15 

higher ATP cost under nitrogen limitation is generally accepted (see Supplementary Materials 2). 16 

In rhto-GEM model v. 1.1.0 [38], a non-condition-specific GAM value of 131 mmol gDW-1 and 17 

NGAM value of 3 mmol gDW-1 hr-1 were reported. These values generally match the iRhto1108’s 18 

corresponding entries under carbon limitation. 19 

 20 

Table 2. Summary of iRhto1108’s biomass composition. 21 
Constituents   Composition (%) 

   C-lim N-lim yeast7.6 

Proteina   43.31 30.71 35.71 

L-Alanine L-Arginine L-Asparagine    

L-Aspartate L-Cysteine L-Glutamine    

L-Glutamate Glycine L-Histidine    

L-Isoleucine L-Leucine L-Lysine    
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L-Methionine L-Phenylalanine L-Proline    

L-Serine L-Threonine L-Tryptophan    

L-Tyrosine L-Valine     

      

Carbohydrate   32.61 12.50 52.27 

1,3-beta-D-Glucan 1,6-beta-D-Glucan Chitin    

N-Glycan b O-Glycanb GPI-anchor b    

      

Lipid   12.33 44.84 0.74 

Episterol Free fatty acids (7 species) c Inositol-P-ceramide    

Phosphatidylcholine Phosphatidylethanolamine Phosphatidylinositol    

Phosphatidylserine TAG     

      

RNAd   6.73 4.69 5.85 

ATP CTP GTP    

UTP      

      

DNAd   1.12 3.36 0.34 

dATP dCTP dGTP    

dTTP      

      

Cofactors and prosthetic groups 0.06 0.06 0.03 

S-Adenosyl-L-methionine Biotin Coenzyme-A    

FAD Heme A NAD    

NADP Riboflavin Spermidine    

Tetrahydrofolate Thiamine diphosphate     

      

Inorganic ions   3.85 3.85 5.06 

Calcium Copper Iron    

Magnesium Manganese Phosphate    

Potassium Sulphate Zinc    

Biomass constituents absent from yeast 7.6 are shown in boldface type. Different representations 1 

of yeast 7.6 biomass constituents are listed in the notes below. A detailed analysis of iRhto1108’s 2 

biomass composition is provided in the Methods section and the full description in the 3 

Supplementary Materials 1. 4 
a Identical to those in yeast 7.6, amino acids in the biomass objective function are in charged-tRNA 5 

form. 6 
b The generic mannan (mannose-containing) metabolite in yeast 7.6 was replaced with three 7 

specific essential cell wall components [63]. 8 
c Seven free fatty acid species were abundant (>1% weight) in growth experiments detailed in the 9 

Methods section. These are palmitate (C16:0), stearate (C18:0), oleate (C18:1), linoleate (C18:2), 10 

linolenate (C18:3), docosanoate (C22:0), and tetracosanoate (C24:0). 11 
d Monophosphate ribonucleic and deoxyribonucleic acids in yeast 7.6 were replaced with the 12 

corresponding triphosphate ones. 13 

 14 

Gene essentiality, growth viability, and phenotype predictions 15 

iRhto1108 predictions were contrasted against gene essentiality and mutant auxotrophy data 16 

derived from the functional genomics study [13] and growth yield and viability data from multiple 17 

literature sources (see Supplementary Materials 2). The data collected and corresponding 18 
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predictions are summarized in Table 3. Gene sequence disruptions with T-DNA insertions were 1 

carried out leading to evaluation of gene essentiality for 1,079 of the 1,108 genes in the model 2 

[13]. Gene essentiality predictions are shown in Table 3. iRhto1108 achieved 84.5% accuracy (i.e., 3 

correct prediction of gene essentiality and non-essentiality over all predictions) for gene 4 

essentiality prediction which is similar to that of yeast 7.6 (i.e., 89.8%). The model is particularly 5 

adept at recovering mutant growth, measured by the sensitivity level of 94.3% Positive mutant 6 

growth misses (NG-G) (i.e., 5.5%) by iRhto1108 were mainly due to differences in protein subunit 7 

assignments between S. cerevisiae and R. toruloides. For example, consistent with S. cerevisiae 8 

but in contrast to R. toruloides, GPI2 and GPI15 knockouts were predicted by iRhto1108 to be 9 

lethal since they are subunits of the enzyme catalyzing the first step of GPI anchor biosynthesis. 10 

The resolution of this mismatch would require customizing the GPR relationship for R. toluloides 11 

instead of simply carrying the one from S. cerevisiae. iRhto1108 relatively inaccurate predictions 12 

of negative mutant growth (G-NG) (i.e., specificity of 53.8%) matches the corresponding 13 

specificity for yeast 7.6 (i.e., 52.5%) as the GPR assignments were directly ported from yeast 7.6. 14 

For example, for L-methionine auxotrophic (i.e., rt6880 and rt3663) mutants upon knocking out 15 

cysteine biosynthesis via serine [13], iRhto1108 predicted growth without the need for L-16 

methionine supplementation by allowing sulfur assimilation via the homoserine pathway. The lack 17 

of observed growth suggests the possible inactivity of the homoserine pathway (encoded by MET2, 18 

6, and 17). 19 

Table 3. Summary of phenotype predictions by iRhto1108. 20 

Prediction Statistics 

Gene essentialitya 

G-G 772 (72%) 

G-NG 120 (11%) 

NG-G 47 (4%) 

NG-NG 140 (13%) 

Accuracy 84.5% 
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Sensitivity 94.3% 

Specificity 53.8% 

Growth viability 

As carbon source 13 

As nitrogen source (positive) 5 

As nitrogen source (negative) 1 

Mutant auxotrophy 

Arginine and/or methionine 18 / 22 

Growth yield prediction  

D-Glucose 5 validations 

D-Xylose 9 validations 

Production yield prediction  

D-Arabitol 6 validations 
a Agreements or disagreements between model predictions and gene essentiality data are classified 1 

into four groups: G-G, G-NG, NG-G, and NG-NG; the first part of the group is in silico result, the 2 

second part is in vivo result, “G” stands for growth, and “NG” stands for non-growth. Accuracy = 3 

(G-G + NG-NG) / Total. Sensitivity = G-G / (G-G + NG-G). Specificity = NG-NG / (NG-NG + 4 

G-NG). 5 

 6 

iRhto1108 was also tested in terms of its ability to predict growth on alternative substrates (see 7 

Table 3). The simulations were performed using the model with substrate uptake rate and secretion 8 

rate as inputs. R. toruloides can grow on D-glucose, D-xylose, acetate, glycerol, fructose, mannose, 9 

sucrose, cellobiose and fatty acids as carbon sources. Amino acids such as L-threonine, L-serine, 10 

L-proline, L-alanine, and L-arginine can support R. toluloides nitrogen needs. Growth experiments 11 

on cellobiose, mannose, sucrose, and amino acids were performed in this study whereas the other 12 

findings are collected from the literature (see Supplementary Materials 2). iRhto1108 predicts 13 

growth with these substrates upon activating the corresponding transporters. The activation of 14 

L-threonine transporter is seemingly in conflict with gene essentiality results since knockouts in 15 

de novo L-threonine biosynthesis are lethal in rich media (five steps from L-aspartate each encoded 16 

by HOM3, HOM2, THR1, THR4, and HOM6) [13]. Further study on L-threonine biosynthesis 17 

pathway is necessary to explain why ex vivo L-threonine supplementation was insufficient to 18 

rescue those mutants. Other growth phenotypes such as mutant auxotrophy and quantitative growth 19 
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yields are collected and used in model validations. Arginine and methionine auxotrophy 1 

predictions for 22 mutants are largely consistent with experimental findings [13] and explanations 2 

for inconsistencies (4 mutants) can be offered based on the model predictions such as the 3 

hypothesis of homoserine pathway being repressed under L-methionine abundance conditions, as 4 

mentioned above. Furthermore, iRhto1108 quantitative prediction of wild-type growth yield in 5 

exponential phase are close to the experimental numbers (see Supplementary Materials 2). 6 

 7 

Phenotypic change under nutrient starvation conditions 8 

Nutrient starvation is a common strategy for enhancing lipid accumulation in oleaginous yeasts. It 9 

has been successfully implemented in R. toruloides [15], Y. lipolytica [37], and Lipomyces starkeyi 10 

[64]. R. toruloides also over-accumulates lipid under phosphate [17] and sulphate [16] limitation. 11 

Triacylglycerol (TAG), the major compound in lipid accumulation, is stockpiled in lipid particles 12 

thus sequestering excess carbon substrate. We sought to recapitulate lipid accumulation in 13 

response to nutrient limitation conditions in iRhto1108 using two separate maximization problems. 14 

First, biomass production was prioritized by setting the flux balance analysis objective function to 15 

be maximization of growth yield given a nutrient-limited input. Second, lipid accumulation under 16 

low nitrogen was imposed to iRhto1108 by setting the model objective function to be maximization 17 

of TAG production. This optimization posture is hypothesized to be the regulatory outcome 18 

involving the TOR signaling pathway in R. toruloides NP11 [3]. Using these two maximization 19 

problems both growth and TAG yield were calculated under varying degrees of limitation for 20 

inorganic ions (i.e., ammonium, phosphate, and sulphate) and oxygen. Dissolved oxygen is an 21 

experimentally controllable variable that has been shown to affect lipid accumulation [65]. In an 22 

experiment in which ammonium was limited for Y. lipolytica, reduced aeration rate was shown to 23 
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enhance lipid production [36]. Phenotype phase plane analysis [66] has been used to examine 1 

growth and TAG yield with respect to these two sources of variation. 2 

 3 

Under nutrient limitation, iRhto1108 predicts an increase in TAG yield and decrease in biomass 4 

yield which is in qualitative agreement with experimental observations for R. toruloides and other 5 

oleaginous yeast. The same trend is observed under nitrogen, phosphate, and sulphate limitation 6 

This suggests that cell proliferation is the primary cellular objective for R. toruloides in the absence 7 

of nutrient limitation whereas TAG storage becomes the objective function for iRhto1108 in 8 

response to nutrient limitation conditions. The effect of oxygen limitation on TAG production in 9 

iRhto1108 follows a more complex trend depending on the degree of nutrient limitation. Moderate 10 

reduction in oxygen availability decreased growth yield with no effect on TAG yield. However, 11 

when oxygen level is reduced below a threshold (see the diagonal gradient region on Figure 2, 12 

column A), TAG production is also compromised and growth yield is directly proportional to 13 

oxygen level (Figure 2, column B). Note that reduction in TAG yield was also observed 14 

experimentally in Y. lipolytica under severe oxygen limitation with N2 aeration [36]. This is not 15 

surprising as oxygen is necessary to provide enough energy through oxidative phosphorylation for 16 

TAG synthesis. TAG biosynthesis requires one NAD(P)H for dihydroxyacetone reduction and an 17 

ATP plus two NADPH molecules for every two-carbon elongation step of the acyl groups. Acetyl-18 

CoA biosynthesis required for fatty acid biosynthesis also consumes an ATP. Moderate reduction 19 

of oxygen availability did not improve TAG yield based on the phenotype phase plane analysis 20 

(Figure 2). The result is in agreement with experimental results for R. toruloides [18] but it is in 21 

contrast with results for Y. lipolytica [36]. Overall, TAG accumulation appears to be insensitive to 22 

moderate oxygen availability reduction but becomes highly bottlenecked under very low oxygen 23 
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availability. In contrast, growth is affected by both oxygen and ammonium availability reaching a 1 

maximum when both are in excess. 2 

 3 
Figure 2. Phenotype phase planes of TAG production (column A) and maximal growth yield 4 

(column B) in nutrient (i.e., ammonium, phosphate, sulphate) and oxygen limited conditions. 5 

Values on the figure are percentage of maximal allowed flux for nutrients uptake and maximal 6 

yield for TAG production and growth rate. Determined by the model, upper bounds of uptake 7 

values are minimal amount required to sustain maximal growth (oxygen 12.78, ammonium 2.43, 8 

phosphate 0.20, and sulphate 0.03 mmol.gDW-1.hr-1). Maximal TAG production is 0.31 g/g 9 

glucose and maximal growth rate is 0.38 hr-1. 10 

 11 
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 1 

As described above, iRhto1108 captures changes in phenotype for R. toruloides under nutrient 2 

starvation. We next explored whether the corresponding flux changes for a new phenotype 3 

quantitatively match gene upregulation/downregulation data [3] under the carbon and nitrogen 4 

limited version of the model (iRhto1108C and iRhto1108N, respectively). We used as a criterion 5 

of gene-reaction correlation that the change in gene expression level and associated reaction flux 6 

change is within a factor of two. In addition, genes with a p-value of less than 0.05 and a false 7 

discovery rate of less than 0.001 were excluded from the analysis as proposed in Zhu et al., 2012 8 

[3]. We identified 12 upregulated and 11 downregulated genes under nitrogen starvation that 9 

quantitatively matched changes in metabolic fluxes predicted by iRhto1108. Overall, we find very 10 

few genes (23 out of 1,064) where the change in mRNA level quantitatively tracks the shift in 11 

model-predicted metabolic fluxes. Gene expression levels (taken from Zhu et al., 2012 [3]) and 12 

metabolic flux values are reported in Supplementary Materials 2. Increased energy demands under 13 

nitrogen limitation, was accompanied by upregulation for subunits of ATP synthase (ATP14, 16, 14 

and VMA9), NADH:ubiquinone oxidoreductase (complex I) (NDE2, rt0331, rt4846, rt1642, and 15 

rt2984), and ferrocytochrome-c:oxygen oxidoreductase (complex III) (rt2984). In addition, 16 

increased lipid fraction of biomass under nitrogen limitation, is consistent with upregulation of 17 

genes in sterol (ERG7, 12) and sphingolipid synthesis (rt3023). In contrast, a gene in phospholipid 18 

synthesis were downregulated (i.e., CHO1) which is consistent with the lower phospholipid 19 

fraction among lipid species under nitrogen limitation [15]. The reduced biomass fraction towards 20 

carbohydrate fraction was accompanied by downregulations in cell wall biosynthesis (GSC2, 21 

ALG1, GFA1, GPI13, GPI14, SEC53, rt1388, CHS1/2, and MNT3). Overall, only a few genes (23 22 

out of 1,064) quantitatively tracked the corresponding flux changes. This re-emphasizes that flux 23 
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distribution does not simply track changes in gene expression but rather are affected by many other 1 

factors such as transcriptional regulation, translation efficiency, substrate level regulation, 2 

metabolite pools, etc. [67]. 3 

 4 

Predicting metabolic engineering strategies for enhanced triacylglycerol production 5 

In this section, we explore the effectiveness of iRhto1108 to guide strain design by contrasting 6 

predictions for TAG overproduction with successful experimental interventions. A number of 7 

re-engineering strategies have been recently implemented in R. toruloides by mimicking effective 8 

interventions in Y. lipolytica [68]. These interventions include upregulation of acetyl-CoA 9 

carboxylase, diacylglycerol transferase, malic enzyme, and stearoyl-CoA desaturase [11, 19].  We 10 

used the OptForce procedure [45] using iRhto1108 as the metabolic map and contrasted with 11 

existing solutions. The goal was not necessarily to find new interventions but rather to assess 12 

whether iRhto1108 can indeed steer strain design algorithms towards promising designs. The 13 

OptForce procedure was applied for TAG overproduction using glucose as the carbon substrate 14 

(see Methods). 13C metabolic flux analysis (MFA) data for Y. lipolytica under nitrogen limitation 15 

[69] was used as a stand-in to determine the reference flux distribution for wild-type strain as no 16 

such data is currently available for R. toluloides. Y. lipolytica is a closely related oleaginous yeast 17 

with similar metabolic capability such as utilizing ATP citrate lyase for cytoplasmic acetyl-CoA 18 

production. Nitrogen availability level of 33% (of the maximum needed) was inferred from the 19 

MFA flux data by calculating the minimal amount of ammonium uptake. The model built for 20 

nitrogen limited conditions, iRhto1108N, was used throughout the OptForce simulation. 21 

 22 
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First, sets of candidates for overexpression (MUSTU), downregulation (MUSTL), and knockout 1 

(MUSTX) were determined by contrasting the flux ranges of wild-type and overproducing strain. 2 

We excluded in vivo essential reactions [13] from MUSTX and transport, exchange, and 3 

generalized reactions from all MUST sets. For a sequence of reactions in series only the first step 4 

was considered as a perturbation candidate. For example, among 31 reactions of the fatty acid 5 

synthase’s chain elongation, only the first step ACP S-acetyltransferase (ACOATA_c) was 6 

retained in MUSTU. For the MUSTL set, downregulations of biomass-coupled reactions (i.e., 119) 7 

were excluded from further analysis since those perturbations reduce cellular growth for 8 

production gain. No flux pairs that considered sums and differences were identified by the analysis 9 

(MUSTUU, MUSTLL and MUSTLU for overexpressed sum, downregulated sum, and overexpressed 10 

flux difference, respectively) [45]. This is due to the linearity of the acyl-CoA (from acetyl-CoA) 11 

and TAG synthesis pathways (i.e., sequential attachment of acyl-CoA to dihydroxyacetone 12 

backbone) and the absence of converging paths towards TAG. Overall, few perturbations (i.e., 13 

fourteen in MUST-single and none in MUST-pair) were suggested because under nitrogen 14 

limitation the reference wild-type fluxes already achieve a TAG production phenotype (though 15 

less than overproducing strain) and resemble the overproducing state. Surprisingly, we found that 16 

two key overproduction targets [70], (i) ATP citrate lyase and (ii) cytoplasmic malic enzyme 17 

(ME2_c), were not included in the MUSTU set. ATP citrate lyase is the key enzyme in producing 18 

cytoplasmic acetyl-CoA. However, acetyl-CoA synthetase can functionally replace ATP citrate 19 

lyase thus both reactions form a MUSTUU pair. However, since acetyl-CoA synthetase can 20 

participate in a high-flux thermodynamically infeasible cycle that transports acetyl-CoA to 21 

mitochondria, hydrolyzes it to acetate, exports to cytoplasm, and re-synthesizes acetyl-CoA, the 22 

ranges of the flux sum of the pair for wild-type and overproducing strain overlapped. This 23 
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discovered cycle was subsequently removed from the model by turning off the ethanol-induced 1 

acetyl-CoA transport via carnitine shuttle [71] and ATP citrate lyase and acetyl-CoA synthetase 2 

were added to the MUSTUU set. Malic enzyme can participate in a transhydrogenase cycle 3 

involving malate dehydrogenase and pyruvate carboxylase and produce cytoplasmic NADPH for 4 

acyl-CoA synthesis. The model contains three mechanisms for cytoplasmic NADPH production 5 

hence the malic enzyme contribution can only be detected by looking at non-overlapped flux 6 

triplets. The other two mechanisms are oxidative pentose phosphate pathway (PPP) and glycerol 7 

dehydrogenase. All three NADPH production mechanisms were added to the MUSTU set and their 8 

overexpression levels were found by minimizing the reaction flux in the overproducing strain with 9 

the other two knocked out. Overall, there were ten candidates for overexpression (MUSTU), three 10 

candidates for downregulation (MUSTL), and no candidates for knockout (MUSTX). All reactions 11 

in MUST sets are provided in Supplementary Materials 2. OptForce was used to search for 12 

combinations of candidates in MUST sets that can lead to enhanced TAG overproduction and 13 

recorded these combinations into the FORCE set (Table 4). Without the lipid degradation 14 

knockout, no combinations could be identified since OptForce min-max objective function 15 

identified the worst-case scenario of TAG synthesis-degradation cycle. beta-Oxidation was not 16 

originally placed in the MUSTX set since both wild-type and overproducing strains can run (to 17 

some extend) TAG and fatty acid synthesis-degradation cycles. The PEX10 knockout [19, 68] was 18 

manually added along with the removal of fatty acid secretion since this phenotype was not 19 

observed in both wild type and engineered strains [11] and OptForce was rerun (see Table 4). 20 
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 1 
Figure 3. Visualization of triacylglycerol production pathway. Interventions identified by 2 

OptForce and implemented in vivo were annotated. Reaction abbreviations are listed in Table 4 3 

and detailed in Supplementary Materials 1. Metabolite abbreviations: DHA – dihydroxyacetone, 4 

DHAP – DHA phosphate, Ficyt – ferricytochrome, Focyt – ferrocytochrome, Pyr – pyruvate, Mal 5 

– malate, AcCoa – acetyl-CoA, Oaa – oxaloacetate, Cit – citrate, Acon – aconitate, Akg – alpha-6 

ketoglutarate, Sucdhl – S(8)-succinyldihydrolipoamide, SucCoA – succinyl-CoA, TAG – 7 

triacylglycerol. 8 

 9 

Table 4. Combinations of genetic perturbations suggested by OptForce procedure for 10 

triacylglycerol production under nitrogen limitation. 11 
Intervention a 

 
WT 

Mutant strains 

k=2 k=3 k=4 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

↑ DGAT_rm P (Rt)   X X X X X X X         

↑ ACCOAC_c P (Rt)          X        

↑ ACOATA_c P (O)           X     X X 

↑ ACOADS180_rm P (Rt)            X X X X   

↑ ME2_c C (Rt)    X         X     

↑ G6PDH2i_c C     X         X  X  

↑ GLYCDy_c C      X         X  X 
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↓ FECOOR_m R       X           

↓ ACONTa_m R        X          

↓ AKGDa_m R         X         

Δ beta-Oxidation b D (O)          X X X X X X X X 

Δ Lipid degradation c D (O)  X X X X X X X X X X X X X X X 

TAG production flux 

(mmol/gDW/hr) 0
.1

8
5
 

0
.5

6
8
 

0
.5

7
0
 

0
.5

7
0
 

0
.5

6
9
 

0
.5

7
2
 

0
.5

7
2
 

0
.5

7
2
 

0
.5

6
6
 

0
.5

6
6
 

0
.5

6
7
 

0
.5

6
9
 

0
.5

6
9
 

0
.5

6
9
 

0
.5

6
9
 

0
.5

6
8
 

a Reaction abbreviations are listed in the table and annotated in the text. Reactions are described 1 

in Supplementary Materials 1. These interventions are classified into types of strategies: P – “push-2 

pull”, C – cofactor regeneration, R – respiratory disruption, D – degradation knockout. Successful 3 

implementations in R. toruloides (Rt) [11, 19] or other oleaginous yeast (O) [68, 72] are reported. 4 
b beta-Oxidation knockout was applied manually prior to finding FORCE set for strains #8-15 in 5 

order to block fatty acid degradation. Fatty acyl-CoA ABC transporter (encoded by PXA1 and 6 

PXA2) was knocked out and it is the first step in beta-oxidation. A passive diffusion transport 7 

reaction of C14:0 from the cytosol to the peroxisome was also removed. 8 
c Lipid degradation knockout was applied to all designs to produce TAG, including TAG lyase 9 

(encoded by TGL5, TGL2, YJU5, and ATG15) and acyltransferase cycling via 10 

phospholipid:diacylglycerol acyltransferase (encoded by LRO1). 11 

 12 

OptForce identified a total of 15 sets of interventions (see Table 4). Several identified genetic 13 

interventions match successfully implemented strategies in R. toruloides (4 out of 12) [11, 19] and 14 

other oleaginous yeasts (3 out of 12) [68, 72]. Identified TAG overproducing strategies can be 15 

divided into three group: upregulation of precursor production and TAG production (“push-pull” 16 

strategies) [46], cofactor regeneration, and respiratory disruption (see Table 4). “Push-pull” 17 

interventions which directly increase the flux throughput present in all combinations. Cofactor 18 

regeneration and respiratory disruption interventions, which indirectly support TAG production, 19 

by themselves do not lead to robust TAG overproducing phenotypes. However, those interventions 20 

when applied in combination further increased TAG production for strains with “push-pull” 21 

interventions. When predicting the quantitative effectiveness of interventions, stoichiometric 22 

models cannot always capture the synergy of interventions strategies. For example, overexpression 23 

of diacylglycerol acyltransferase (DGAT_rm, DGA1) (Table 4) alone could achieve 89% of 24 

theoretical yield. However, both interventions, DGA1 and ACC1 (ACCOAC_c), were needed to 25 
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derive a high-yield strain [11]. Overall, a maximum of two interventions per FORCE set 1 

(excluding manually applied degradation knockout interventions) were suggested by OptForce 2 

(see Table 4). Supplying NADPH for acyl-CoA synthesis via overexpressing cytoplasmic malic 3 

enzyme (ME or rt4393) has shown improvement as a single intervention but decreased lipid yield 4 

in the triple overexpression of ACC1 DGA1 ME [19]. Predictions with iRhto1108 showed a 5 

different trend where single interventions had little effect thus requiring double interventions 6 

following a “push-pull” strategy (e.g., DGA1) to improve yield. As discussed in Zhang et al., 2016 7 

[11], a hypothesis for the counterintuitive behavior under ME overexpression is that increasing the 8 

flux through malic enzyme might disrupt cellular balance affect lipid biosynthesis and the 9 

transhydrogenase cycle. Knocking out fatty acid and lipid degradation pathways is another strategy 10 

that was proven effective in Y. lipolytica [68] and subsequently tested in R. toruloides [19]. This 11 

knockout was implemented by deleting gene PEX10 required for peroxisome biogenesis. While 12 

the degradation pathway knockout is essential for robust TAG production using OptForce, in vivo 13 

implementation of ΔPEX10 decreased both lipid fraction and biomass and lipid titer in R. 14 

toruloides [19]. Why peroxisome biogenesis contributes to cellular growth and lipid production is 15 

beyond the purview of a stoichiometric model such as iRhto1108. 16 

 17 

We also compared the OptForce results with interventions that were implemented in other 18 

oleaginous organisms. As mentioned before, lipid and fatty acid degradation knockouts were 19 

effective in Y. lipolytica [68]. Overexpression of fatty acid synthase (with ACOATA_c being the 20 

first step) in the oleaginous fungus Aspergillus oryzae was found to increase fatty acid and TAG 21 

production by more than two-fold [72]. OptForce identified five new interventions that can 22 

increase TAG production when being applied in combination with a “push-pull” intervention. Two 23 
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additional mechanisms for NADPH generation, glucose 6-phosphate dehydrogenase 1 

(G6PDH2i_c) in oxidative PPP or glycerol dehydrogenase (GLYCDy_c), are analogous to malic 2 

enzyme overexpression. Glycerol dehydrogenase upregulation is theoretically possible but 3 

introduces the toxic metabolite dihydroxyacetone [73]. On the other hand, glucose 6-phosphate 4 

dehydrogenase and more broadly oxidative PPP was found to be upregulated natively under 5 

nitrogen limitation in Y. lipolytica (two-fold flux increase in 13C-MFA study [69]) and R. 6 

toruloides (inferred by mutant phenotypes [19]). Thus, OptForce correctly identified the 7 

importance of oxidative PPP upregulation though a directed intervention may not be necessary. 8 

Finally, downregulation perturbations were suggested for aconitase (ACONTa_m), oxoglutarate 9 

dehydrogenase (AKGDa_m), or ferrocytochrome-c:oxygen oxidoreductase (FECOOR_m). These 10 

downregulations decrease cellular respiration, repress growth, and indirectly allow more carbon to 11 

be used in TAG production. Growth repression can also be achieved using nutrient limitation and 12 

culture optimization [68] while allowing the cell to maintain its growth robustness trait. Overall, 13 

iRhto1108-driven strain redesign using OptForce identifies many “push-pull” strategies. Not all 14 

strategies are in agreement with the experimental findings but upon careful interpretation of the 15 

desired metabolic redirections, alternative ways of achieving the same goal can be designed that 16 

bypass the specified interventions. 17 

 18 

Conclusions 19 

In this work, we collect and organize functional genomics data [13] and prior knowledge into the 20 

genome-scale metabolic model iRhto1108. Essential cellular metabolism and growth capability of 21 

the model was validated extensively with experimental results, including gene essentiality [13] 22 

and growth data. iRhto1108 was also able to recapitulate experimentally-observed lipid 23 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2019. ; https://doi.org/10.1101/594846doi: bioRxiv preprint 

https://doi.org/10.1101/594846
http://creativecommons.org/licenses/by/4.0/


 

28 

 

accumulation phenotypes [15–17]. We showed that iRhto1108 can comprehensively capture R. 1 

toruloides’s metabolism and provide meaningful predictions that were validated with experimental 2 

data including suggestion of genetic perturbations leading to triacylglycerol overproducing strains. 3 

We envision that in the future iRhto1108 will aid in exploring the metabolic potential of R. 4 

toruloides, following in the footsteps of the model organisms Saccharomyces cerevisiae [74]. 5 

 6 

Despite careful curation, a large number of blocked reactions (i.e., 677 out of 2,203) remained in 7 

the model spanning multiple pathways. Most of them are transport reactions (i.e., 194 reactions) 8 

connecting the network. The rest participate in secondary metabolism and degradation of amino 9 

acid, fatty acid, and lipid. We chose to keep them in the hope that they would aid in gap filling 10 

attempts in the future. Stoichiometric models can capture all known interconversion routes from 11 

substrates to biomass components and products and globally balance cofactor needs. However, 12 

they inherently cannot mechanistically link enzyme levels with metabolite concentrations and 13 

metabolic fluxes. To this end, kinetic models offer a promising formalism for integrating such 14 

heterogeneous datasets [75]. Efforts towards this direction will require 13C-derived information 15 

on internal fluxes under a variety of genetic and environmental perturbations along with secreted 16 

products and biomass yield [76]. To this end, atom mapping models for all reactions in the R. 17 

toruloides model [77] will have to be constructed and robust methodologies for flux elucidation 18 

and kinetic model parameterization will have to be developed accounting for the 19 

multi-compartment nature of metabolism. 20 

 21 
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Methods 1 

Draft reconstruction from existing fungal genome-scale reconstruction and model refinements 2 

In general, the workflow used in this study followed an established protocol described in Mueller 3 

et al., 2013 [78] for generating a metabolic model utilizing a previously built metabolic model for 4 

a closely related organism. This protocol provides a priority structure for assigning functions to 5 

genes with multiple annotations. The most recent genome sequence and gene annotations of R. 6 

toruloides was used for this reconstruction [13]. The unannotated sequence of mitochondrial 7 

genome of R. toruloides was annotated using RAST [79] and MAP [80] on the KBase platform 8 

[42] (see Supplementary Materials 1). An initial draft reconstruction was assembled by mapping 9 

genes and reactions from the S. cerevisiae genome-scale model yeast 7.6 [40] with updated 10 

information from Chowdhury et. al., 2015 [81]. Briefly, first, homologous genes were determined 11 

by a bidirectional protein BLAST procedure [78] with an e-value cutoff of 10-5. The Boolean logic 12 

given by each gene-protein-reaction association (GPR) in yeast 7.6 was then evaluated using these 13 

bidirectional hits. A reaction was next added to the draft model only if its GPR satisfied can be 14 

satisfied with the present gene homologs necessary for a functional protein. This draft 15 

reconstruction was further extended with KBase’s “build fungal model” application [42] which 16 

extracts homologous genes and associated reactions from a library of fungal genome-scale models 17 

using similar homologous genes identification schematics. We prioritized building the initial 18 

scaffold using yeast 7.6 model rather than KBase because the biochemical information in yeast 7.6 19 

was experimentally verified whenever possible. Next, additional reactions and GPRs were 20 

manually added using the annotated genome and validated with NCBI’s Conserved Domain 21 

Database [49]. Missing assignments of reaction compartments were resolved using the protein 22 

subcellular localization prediction software DeepLoc [82]. Adjustments made to reactions 23 
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reversibility and activation in the default model are commented in Supplementary Materials 1 1 

whereas other adjustments made specifically to model simulations are stated in the main text. 2 

 3 

In addition to the biologically relevant additions and curations made to iRhto1108 (see Results and 4 

Methods), additional validations and refinements were performed to improve the model quality. 5 

Specifically, the GPRs of S. cerevisiae yeast 7.6 reactions that were recently updated in the yeast 6 

model repository (https://github.com/SysBioChalmers/yeast-GEM, version 8.3.3) were evaluated 7 

and modifications were made to the GPRs of 22 reactions. Furthermore, we ensured that every 8 

reaction is mass and charge balanced and as a result we updated 663 metabolite formulae (i.e., 9 

33.5%) and 94 reaction stoichiometries (i.e., 4.4%) using standardized metabolite formulae from 10 

MetaCyc [83] and ModelSEED [84] databases. Database verification for metabolite formulae was 11 

at 77.8% coverage and we manually assigned the formulae assignments for the remainders to 12 

ensure all reactions were mass and charge balance (excluding pseudo and exchange reactions). 13 

Further model curation involved identifying and fixing thermodynamically infeasible cycles. For 14 

instance, cycles that allowed the unbounded production of ATP were eliminated by blocking the 15 

reverse direction of the ATP hydrolysis reactions [85]. iRhto1108 model structure was checked 16 

using the memote test suite [54] with the model annotations standardized to the MIRIAM 17 

namespace [86], which is used by memote. The final version of the model passed all memote tests. 18 

 19 

Generation of biomass reactions 20 

Both experimental data from literature and those generated in this study (see Methods, 21 

Determination of biomass composition), alongside the original yeast 7.6 biomass reaction, were 22 

used to determine the metabolite coefficients in the biomass objective functions for carbon and 23 
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nitrogen limitation conditions (Supplementary Materials 1). The macromolecular composition was 1 

measured for R. toruloides (see Methods, Determination of biomass composition). Other 2 

experimentally determined biomass specifications for R. toruloides were also incorporated, 3 

including genome GC content [58], lipid composition in nitrogen limitation conditions (i.e., 4 

natural, phospho, and glycolipids composition) [15], relative abundances of RNA nucleotide (this 5 

study), and relative abundance of acyl groups and free fatty acids in lipid (this study). 6 

Experimentally determined specifications taken from S. cerevisiae used in this model were amino 7 

acid, inorganic compound (phosphate, sulphate, and metal ions), and cell wall compositions [87], 8 

as corresponding data for R. toruloides was not available. Additional data adopted from the yeast 9 

7.6 model were lipid subspecies composition (e.g., phosphatidylinositol, phosphatidylcholine, 10 

phosphatidylethanolamine, and phosphatidylserine composition). These data from experiments on 11 

S. cerevisiae and yeast 7.6 were deemed acceptable as R. toruloides and S. cerevisiae are closely 12 

related. The list of biomass constituents was reviewed and validated with relevant literature and 13 

experimental gene essentiality results (see Results). Without the measurement of the soluble 14 

metabolite pool, the coefficients of twelve cofactors and prosthetic groups were set to a small 15 

number of 10-4 so as to impose a biosynthesis requirement on the in silico model, resulting in 16 

0.06% of the total biomass by weight. A similar measure was also adopted for the biomass 17 

reactions in other models such as those for S. cerevisiae models, including yeast 7.6 [62]. 18 

Metabolite coefficients associated with growth-associated ATP maintenance were also updated 19 

(see Methods, Determination of ATP maintenance requirements). Calculations and detailed 20 

listings of metabolites and coefficients in the biomass reaction are provided in the Supplementary 21 

Materials 1. 22 

 23 
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A total of 68 metabolites were included in the biomass component list for the R. toruloides model. 1 

The veracity of these inclusions was ascertained using data from single-gene knockout  essentiality 2 

experiments in R. toruloides [13] and S. cerevisiae (see Supplementary Materials 2). Overlaps and 3 

differences between yeast 7.6 and iRhto1108’s list of biomass constituents are summarized in 4 

Table 1. Among the differences were eight nucleotide monophosphates which were replaced in 5 

iRhto1108 by the corresponding nucleotide triphosphates and pyrophosphate in order to directly 6 

account for DNA and RNA polymerization. The generic mannan metabolite was likewise 7 

substituted with N-glycan, O-glycan, and the glycosylphosphatidylinositol anchor [63, 88]. 8 

Similarly, the “generic” free fatty acid designation in yeast 7.6 was replaced with seven distinct 9 

free fatty acid compounds found with abundances of >1% by weight in the measurement of 10 

saponified fatty acids using LC-MS (see Methods, Experimental determination of biomass 11 

composition). In addition to the substitutions detailed above, nine cofactors and prosthetic groups 12 

suggested initially by Xavier et al., 2017 [44] were added to the list of biomass constituents so as 13 

to improve iRhto1108’s gene essentiality predictions. Seven new inorganic ions were also included 14 

in the biomass reaction following the measurements for S. cerevisiae by Lange and Heijnen, 2001 15 

as these ions are known to be essential (Supplementary Materials 2). Although the biomass 16 

reaction in iRhto1108 is organism-specific, the list of biomass constituents is not unique to 17 

iRhto1108 and is applicable for the models of S. cerevisiae and possibly other closely related 18 

species such as Y. lipolytica. All newly added constituents in iRhto1108 were found to be essential 19 

for S. cerevisiae growth (see Supplementary Materials 2). 20 

 21 

 22 
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Modeling simulation 1 

Flux balance analysis (FBA) was used throughout the process for model validation and prediction 2 

[89]. Growth phenotypes were obtained using FBA with the objective of maximizing the biomass 3 

reaction (vbiom) whose flux is equivalent to the growth rate. In general, the substrate uptake rates 4 

such as glucose (vglc) were set to the experimentally determined values if available. Otherwise, 5 

carbon substrate (e.g., glucose, xylose, or glycerol) uptake rate for a simulation was set to 5 mmol 6 

gDW-1 hr-1 which was close to the highest physiological glucose uptake rate found by Wang et al., 7 

2018 [17]. For examining the model’s ability to utilize amino acid as nitrogen source, a specific 8 

amino acid uptake rate was set to 0.25 mmol gDW-1 hr-1 (i.e., 5% of default substrate uptake rate 9 

of 5 mmol gDW-1 hr-1). All simulations were performed using the carbon limitation condition 10 

model iRhto1108C unless iRhto1108N was specified to be used (i.e., for the nitrogen limitation 11 

condition). 12 

 13 

For gene essentiality and mutant auxotrophy predictions in rich media [13], supplementary 14 

compound uptake rates were set to 0.25 mmol gDW-1 hr-1 (i.e., 5% of default substrate uptake rate 15 

of 5 mmol gDW-1 hr-1). Rich media components were described in Coradetti et al., 2018 [13] and 16 

are listed in Supplementary Materials 1. The undefined composition of yeast extract in Yeast-17 

Peptone-Dextrose media was assumed to be that of YNB media plus 20 amino acids and D-glucose. 18 

The supplementary nutrients present in YNB included thiamine, riboflavin, nicotinate, pyridoxin, 19 

folate, (R)-pantothenate, 4-aminobenzoate, and myo-inositol. Oxygen and ammonium uptake rates 20 

were unconstrained in all simulations. Gene knockout was translated to the corresponding 21 

reaction(s) knockout by examining the Boolean gene-protein-reaction rules. A reaction was 22 

knocked out in the model by setting the corresponding upper and lower flux bounds to zero. A 23 
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gene was determined to be essential if the knockout mutant’s maximal growth rate calculated by 1 

FBA was less than 0.0001 hr-1. The criteria for experimentally determined gene essentiality are 2 

described in Coradetti et al., 2018 [13]. The calculations were performed using the COBRApy 3 

package (version 0.13.4) [90]. 4 

 5 

Determination of ATP maintenance requirements 6 

Non-growth (NGAM) and growth associated ATP maintenance (GAM) values were determined 7 

using continuous chemostat data from Shen et al., 2013 [24]. A functional draft model utilizing a 8 

biomass reaction without a GAM demand was used to determine the biomass synthesis 9 

requirement excluding ATP maintenance. To calculate the ATP maintenance requirement per 10 

experimental data point, glucose uptake rate (vglc) and growth rate (vbiom) were set to the 11 

experimentally determined values. Next, ATP maintenance requirement was given by the ATP 12 

hydrolysis rate (vatpm) which is the maximal through the following reaction: ATP + H2O → ADP 13 

+ H+ + HPO4
2-. An NGAM value of 1.01 mmol ATP gDW-1 hr-1 was found for no growth at vglc 14 

of 0.032 mmol gDW-1 hr-1, reported in Shen et al., 2013 [24]. GAM value was the slope of the line 15 

(found using linear regression) through all the maximal ATP maintenance rates constrained by the 16 

experimental vglc, vbiom, and NGAM (by setting the intercept to the NGAM value). For nitrogen 17 

limitation condition, because the lipid composition of the biomass varied with the growth rate [24], 18 

per chemostats data point, the coefficients of the biomass reaction were adjusted in order to account 19 

for the compositional change. Specifically, lipid composition was adjusted to the experimentally 20 

determined value and the other macromolecular compositions (such as protein, carbohydrate, 21 

RNA, and DNA) were adjusted while maintaining the original relative levels. For carbon limitation 22 

conditions, the compositional profile remained relatively constant across the growth rates [15, 24] 23 
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and thus no adjustments were made to the biomass reaction whilst determining the GAM value. 1 

Details of these simulations are provided in the Supplementary Materials 2. 2 

 3 

Phenotype phase plane and gene-flux correlation analysis 4 

Phenotype phase planes [66] were used to calculate the maximal triacylglycerol yield under growth 5 

optimization priority under nutrient scarcity. Minimal oxygen, ammonium, phosphate, and 6 

sulphate uptake rates necessary for growth were found by minimizing the respective uptake rate 7 

subjected to maximal growth yield. The uptake rates were 12.7, 2.4, 0.20, and 0.03 mmol gDW-1 8 

hr-1 for oxygen, ammonium, phosphate, and sulphate, respectively. Oxygen and ammonium (or 9 

phosphate or sulphate) uptake rates’ ranges were then discretized to 30 points between zero to the 10 

calculated minimal uptake value at maximal growth rate on the phenotype phase plane. For every 11 

point on the plane, a two-step procedure was applied. First, the growth rate was maximized subject 12 

to the limitation in oxygen and ammonium (or phosphate or sulphate) uptake rates. Second, 13 

triacylglycerol production was maximized subject to not only nutrient limitations but also first-14 

priority growth optimization by constraining the biomass production to be at least the maximal 15 

amount determined in the previous step. These model-predicted phenotypes were used to construct 16 

the contour plots shown in Figure 2. TAG’s molecular weight of 882.40 mg mmol-1 derived from 17 

lipid’s acyl group composition was used in calculating TAG yield (unit of g TAG / g Glucose). 18 

Next, to compare the in silico flux redistribution in iRhto1108 (constructed for strain IFO0880) to 19 

the experimentally-observed differential gene expression in strain NP11 [3], we first established 20 

the mapping between NP11 genes and model reactions using bidirectional BLAST hit [78]. Once 21 

a mapping was established, the fold-change of the in silico metabolic flux can be calculated. 22 

 23 
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Identification of genetic perturbation for triacylglycerol overproduction  1 

The OptForce procedure was used to identify sets of genetic perturbations that once implemented 2 

result in strain with overproducing phenotypes, hereby called overproducing strains. Detailed 3 

formulations and explanations were documented in Ranganathan et al., 2010 [45] and additionally 4 

in Chowdhury et al., 2015 [91]. Throughout the simulation, diacylglycerol acyltransferase in lipid 5 

particle (DGAT_l) was turned off to allow flux to go through only endoplasmic reticulum version 6 

of the reaction (DGAT_rm). The first step in the OptForce procedure is to contrast flux ranges of 7 

a wild-type to those of an overproducing strain, one reaction at a time. Flux data obtained from 8 

13C-MFA study of Y. lipolytica wild-type under nitrogen limitation [69] was used to constrain 9 

wild-type fluxes in this study. Specifically, 13C-MFA flux data for wild-type strain (among four 10 

sets of MFA fluxes) without separating cytoplasmic and mitochondrial malic enzyme fluxes were 11 

used because the study concluded that the compartmentalized malic enzyme fluxes were 12 

indistinguishable [69]. In the simulation, 13C-MFA flux range for malic enzyme were constrained 13 

on the sum of three reactions, namely cytoplasmic (ME2_c), mitochondrial with NAD+ (ME1_m), 14 

and mitochondrial with NADP+ (ME2_m) malic enzyme. The flux basis for this study was the 15 

glucose uptake of 10 mmol gDW-1 hr-1. We assess metabolic fluxes for both wild-type and 16 

overproducing strains under nitrogen limited conditions. Nitrogen availability level of 33% (0.7 17 

mmol gDW-1 hr-1 in the basis of glucose uptake) was used in all OptForce simulations and was 18 

calculated by minimizing ammonium uptake rate for the wild-type strain with respect to reaction 19 

fluxes constrained by 13C-MFA data. Reference fluxes for overproducing strain were constrained 20 

by forced production of TAG to 90% of theoretical yield, growth yield required at 10% of 21 

wild-type, and aforementioned nitrogen limitation. In this work, flux variability analysis (FVA) 22 

[92] were used on iRhto1108 to generate the flux ranges for both wild-type and overproducing 23 
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strains. Reactions with non-overlapping flux ranges were potential candidates for genetic 1 

perturbation. Reactions with FVA ranges being lower, higher, or equal zero (only) in 2 

overproducing strain compared to wild-type strain were put in MUSTL, MUSTU, or MUSTX set, 3 

respectively. Value ranges of flux sums (e.g., v1 + v2) and differences (e.g., v1
 – v2) were also 4 

evaluated using FVA. Reaction pairs with higher values of flux sums, lower values of flux sums, 5 

and higher value of flux differences were put in MUSTUU, MUSTLL, and MUSTLU set, 6 

respectively. Reaction in the pair are put in the respective MUSTU or MUSTL depending on their 7 

membership in MUST paired set. The combinations of overexpression (MUSTU), downregulations 8 

(MUSTL), or knockout (MUSTX) were determined using a bi-level mixed-integer linear 9 

programming optimization formulation and put in FORCE set [45]. Overexpression and 10 

downregulations were applied to the model by setting the reaction flux bound (lower and upper 11 

bound, respectively) to the level calculated in overproducing strain. Reaction knockout was 12 

applied by setting both the lower and upper bounds to zero. Because of the production 13 

minimization objective, OptForce could not suggest any overproducing strains due to lipid 14 

degradation pathways. To eliminate the TAG synthesis-degradation cycle that occurred under 15 

production minimization objective, TAG degradation and cycling pathways were knocked out in 16 

simulation, including neutral lipid lyase (6 reactions) and acyltransferase cycling via 17 

phospholipid:diacylglycerol acyltransferase (2 reactions). In addition, fatty acid secretions are not 18 

observed in R. toruloides in wild-type or engineered strains and thus were knocked out (12 19 

reactions). For strains #8-15, the fatty acid degradation pathway was also blocked by knocking out 20 

the first step, fatty acyl-CoA ABC transporter to peroxisome (12 reactions) and tetradecanoate 21 

diffusion. The list of these knocked-out reactions are provided in the Supplementary Materials 2. 22 
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 1 

Experimental determination of biomass composition 2 

Strains and cultivation 3 

Biomass composition was determined for R. toruloides IFO0880 cultivated in chemostat using two 4 

limiting nutrients (either glucose or nitrogen). An overnight stock was prepared in minimal 5 

medium that contains yeast nitrogen base without amino acid (YNB, Sigma Y0626) and 20g/L 6 

glucose. It was then inoculated into 250mL culture to grow in continuous mode in a 500-mL 7 

chemostat (Sixfors; Infors AG, Bottmingen, Switzerland). For the carbon limitation condition, 8 

YNB with 0.8g/L glucose was used. For the nitrogen limitation condition, 20g/L glucose and 9 

0.05g/L (NH4)2SO4 were supplemented to YNB without ammonium sulfate (Difco, 291940). For 10 

both conditions, the culture was stirred at 400rpm for sufficient oxygen, and was kept at 0.1h-1 11 

growth rate. After the culture had reached steady state (pH, oxygen, and cell density), it was 12 

harvested for the biomass measurement. 13 

 14 

Biomass component analysis 15 

DNA was measured using diphenylamine reagent. 7.5mL culture was pelleted and washed by 1mL 16 

cold 1 mM HClO4. Serial dilutions of 1mg/mL Calf thymus DNA (Sigma) were prepared for 17 

calibration. Samples were hydrolyzed in 500µL 1.6 M HClO4 for 30 min at 70˚C, and then reacted 18 

with 1 ml diphenylamine reagent (0.5 g diphenylamine in 50 mL glacial acetate, 0.5 ml 98% 19 

H2SO4, and 0.125 ml 3.2 % acetaldehyde water solution) at 50˚C for 3 hours. After centrifugation, 20 

the supernatant was taken for OD600 measurement.  21 

 22 
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RNA was measured by 260nm absorption. Basically, 2.5mL culture was pelleted and washed, and 1 

digested with 300µL 0.3M KOH at 37˚C for 60 min. DNA and protein were then precipitated by 2 

100 µL 3M HClO4. Supernatant was taken and precipitate was washed with 600µL 0.5M HClO4. 3 

Absorption of combined supernatant at 260nm, 900nm, and 977nm was measured. RNA 4 

concentration can be calculated as 5.6*(A260-A260blank)/(A977-A900) in µg/mL. RNA 5 

composition was calculated from the relative abundances of bases in RNA-Seq data. Extracted 6 

RNA was sequenced on a HiSeq2500 (Illumina). Fastq files were generated and demultiplexed 7 

with the bcl2fastq v1.8.4 Conversion Software Reads were trimmed by Trimmomatic [93] and 8 

analyzed using FastQC [94]. STAR version 2.5.4a [95] and featureCounts from the Subread 9 

package, version 1.5.2 [96] were used to map the reads to the R. toruloides strain 10 

IFO0880 reference genome [13] and obtain relative counts. 11 

 12 

Protein was measured using the Biuret method. Briefly, 2.5mL culture was pelleted, washed and 13 

boiled in 100 µL 3M NaOH at 98˚C for 5 min. After cool down, the mixture was reacted with 100 14 

µL CuCO4 for 5 min at room temperature. After centrifugation, supernatant was taken for 15 

determination of 555nm absorption, which was calibrated by serial dilution of BSA solutions 16 

(Thermo). 17 

 18 

Lipid was determined by measuring saponified fatty acids using LC-MS. Briefly, cell pellet from 19 

2.5mL culture was extracted and saponified in 1mL 0.3M KOH-MeOH solution at 80˚C for 60 20 

min, then neutralized by 100 µL formic acid, and then extracted by 1mL hexane 20nM. 20nM 21 

isotope-labeled fatty acid standards (U-13C-C16:0, U-13C-C18:1, U-13C-C18:2; Cambridge 22 

Isotope) were added before saponification as internal standards. Extracted fatty acids were dried 23 
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under N2 and redissolved in 200µL acetonitrile:methanol (1:1), and then analyzed by reversed-1 

phase C8 column chromatography coupled to negative-ion mode, full-scan high-resolution LC-2 

MS (Exactive, Thermo). 3 

 4 

Carbohydrate was determined by hydrolyzing cell pellet from 2.5mL culture in 100µL 2M HCl at 5 

80˚C for 1 hr. 0.4mg U-13C-glucose was added as internal control before hydrolyzation. The lysate 6 

was neutralized by 100µL 2M NH4HCO3, diluted in 1.8mL 80% MeOH and centrifuged. The 7 

supernatant was taken and analyzed by negative-ion mode LC-MS equipped with hydrophilic 8 

interaction liquid chromatography (Q Exactive Plus, Thermo). Mass peaks equivalent to C6H12O6 9 

were selected for quantification. 10 

 11 

Batch growth of R. toruloides IFO0880 12 

Strain, media, and culture conditions 13 

YPD medium (10 g/L yeast extract, 20 g/L peptone, and 20 g/L glucose) was used for routine 14 

growth of R. toruloides IFO0880. Growth rates of R. toruloides IFO0880 was tested in minimal 15 

medium (MM) using different C/N ratios. (20 g/L D-glucose, 1.7 g/L yeast nitrogen base without 16 

amino acids and ammonium sulfate, 0.4 - 7.1 g/L NH4Cl, C/N = 5:1 – 90:1, 25 mM Na2HPO4, 150 17 

mM KH2PO4, pH 5.6). Stationary phase R. toruloides IFO0880 seed cultures were obtained by 18 

inoculating single colonies from a YPD agar plate into 25 mL YPD liquid medium in 125 mL 19 

baffled flask. For growth, the seed cultures were then used to inoculate into 50 mL minimal 20 

medium in 250 mL baffled flask with a starting OD600 of 1. The cells were then grown at 30℃ 21 

and 250 rpm. All experimental conditions were performed with four replicates. Growth viability 22 

on amino acids was tested in minimal media with different amino acids as nitrogen source (11.9 23 
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g/L alanine, 14 g/L serine, 5.8 g/L arginine, 9.7 g/L lysine, 15.3 g/L proline, 15.9 g/L threonine 1 

and 7.1 g/L NH4Cl as control). The growth viability of cellobiose, sucrose, and mannose were 2 

tested in modified media (70 g/L of carbon source, 10 g/L yeast extract, 1.7 g/L yeast nitrogen 3 

base without amino acids and ammonium sulfate, 8 g/L (NH4)2SO4, and 1 g/L MgSO4, pH 5.6). 4 

 5 

Dry cell weight measurement 6 

Cell growth was measured by the absorbance at 600 nm using cell density meter. Dry cell weights 7 

(DCW) were determined as follows. The 1-5 ml of culture samples were collected into pre-8 

weighed tubes and centrifuged at 16,000 x g for 5 minutes. Supernatant was discarded, and pellets 9 

were then washed twice with 50 mM phosphate buffered saline. Washed pellets were dried till 10 

constant weight at 65℃ for 24 to 48 h. The tubes where then weighed. 11 

 12 

Declarations 13 

Availability of data and material 14 

The models are provided in the Supplementary Materials 3 in MS-Excel spreadsheets, JSON, and 15 

SBML (version 3, level 1). A visual metabolic network map reconstructed using the Escher 16 

toolbox [97] is also available. The formulation of biomass reaction is available in Supplementary 17 

Materials 1. In addition, gene essentiality predictions, phenotype predictions, and OptForce strain 18 

design suggestions are all provided in the Supplementary Materials 2. The models, visual map, 19 

experimental data, and relevant prediction results were also uploaded to a memote-created 20 

repository (https://github.com/maranasgroup/iRhto_memote) [54]. The model was curated to 21 

address reconstruction issues found by memote test suite and to follow memote standardization 22 

[54]. All flux balance analysis simulations were performed using the COBRApy package [90]. 23 
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OptForce [45] was performed using GAMS (version 24.8.5, GAMS Development Corporation) 1 

using IBM ILOG CPLEX solver (version 12.7.1.0) on the high-performance computing resource 2 

cluster of Pennsylvania State University’s Institute for CyberScience Advanced 3 

CyberInfrastructure (ICS-ACI). 4 
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