
1 

 

 

 

StanDep: capturing transcriptomic variability 1 

improves context-specific metabolic models  2 

Chintan J. Joshi1, Song-Min Schinn1, Anne Richelle1, Isaac Shamie2,3, Eyleen J. O’Rourke5, Nathan E. 3 
Lewis1,2,4* 4 

 5 

1 Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093 6 
2 Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, 7 
School of Medicine, La Jolla, CA 92093 8 

3 Bioinformatics and Systems Biology Program, University of California, San Diego, United States 9 

4 Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093 10 

5 Department of Biology, University of Virginia, Charlottesville, VA 22903 11 

 12 

*Corresponding author: 13 

Name: Nathan E. Lewis 14 

Address: 9500 Gilman Drive MC 0760, La Jolla, CA 92093 15 

E-mail: nlewisres@ucsd.edu 16 

 17 

Keywords: omics data, systems biology, metabolism, data integration 18 

 19 

Abstract 20 

Diverse algorithms can integrate transcriptomics with genome-scale metabolic models (GEMs) to build 21 
context-specific metabolic models. These algorithms require identification of a list of high confidence 22 
(core) reactions from transcriptomics, but parameters related to identification of core reactions, such as 23 
thresholding of expression profiles, can significantly change model content. Importantly, current 24 
thresholding approaches are burdened with setting singular arbitrary thresholds for all genes; thus, 25 
resulting in removal of enzymes needed in small amounts and even many housekeeping genes. Here, we 26 
describe StanDep, a novel heuristic method for using transcriptomics to identify core reactions prior to 27 
building context-specific metabolic models. StanDep clusters gene expression data based on their 28 
expression pattern across different contexts and determines thresholds for each cluster using data-29 
dependent statistics, specifically standard deviation and mean. To demonstrate the use of StanDep, we 30 
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built hundreds of models for the NCI-60 cancer cell lines. These models successfully increased the 31 
inclusion of housekeeping reactions, which are often lost in models built using standard thresholding 32 
approaches. Further, StanDep also provided a transcriptomic explanation for inclusion of lowly expressed 33 
reactions that were otherwise only supported by model extraction methods. Our study also provides novel 34 
insights into how cells may deal with context-specific and ubiquitous functions. StanDep, as a MATLAB 35 
toolbox, is available at https://github.com/LewisLabUCSD/StanDep 36 

Introduction 37 

Integration of omics data with genome-scale metabolic models (GEMs) has facilitated insights into 38 
diverse questions, spanning from the elucidation of disease mechanisms [1,2] to the identification of drug 39 
targets [3–5]. Furthermore, a recent rise in comprehensively quantified omics data for many tissues and 40 
cell types [6–9] presents an opportunity to study context-specific behavior (i.e., tissue, cell type, 41 
environmental conditions, or other variations to which cells are exposed) [10–12]. Such studies depend on 42 
the omics-integrated models to include context-relevant genes and reactions. Unfortunately, due to over 43 
simplified assumptions of which genes are expressed or not, current omics-integration methods may fail 44 
to include important genes, leading to less-predictive models [13]. Here we present an improved method 45 
to identify context-relevant genes robustly, leading towards models that better describe context-specific 46 
metabolism.  47 

The integration of omics data and GEMs is complicated by the complexity of cellular metabolism and 48 
enzyme regulation. Metabolic phenotypes are driven by not gene expression alone but also other 49 
orthogonal processes, including enzyme assembly, post-translational modifications, localization, and 50 
substrate concentration. In other words, gene expression data provide considerable, but partial, insight 51 
into metabolic activity. To address this, data integration efforts often infer a ‘core’ set of active reactions 52 
from gene expression data. This ‘core reaction set’ is then used to produce a context-specific model via 53 
various model-extraction algorithms [14–20], which take into account network topology, model objective 54 
function or additional data (Fig. 1, grey). Inference of the ‘core reaction set’ typically involves defining a 55 
gene expression level as a threshold parameter – genes expressed above the defined threshold are 56 
interpreted to be active and part of the ‘core’. This threshold parameter has a large influence on the data 57 
integration process and its resulting model, according to recent systematic benchmarking studies [13,21].  58 

Despite this importance, thresholds have often been poorly defined. Most often a single threshold value is 59 
used to evaluate all genes, disregarding complex and pathway-specific regulations over metabolism. 60 
Furthermore, such thresholds are often left to be defined by the user with little guidance or 61 
standardization, leading to varying and arbitrary model parameterization. Lastly, such single, catch-all 62 
thresholds often fail to identify lowly expressed but biologically important genes, including 63 
‘housekeeping’ genes which are constitutively expressed for tissue maintenance functions [22]. A limited 64 
number of such housekeeping reactions can be ‘rescued’ by the model-extracting methods. Specifically, 65 
housekeeping reactions involved in the central carbon metabolism or tied to the biomass objective 66 
function are particularly favored to be ‘rescued’ by these algorithms. Despite this, a sizeable portion of 67 
housekeeping genes are seldom included into the resulting model, preventing context-specific models 68 
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from describing important cellular functions [13]. Such challenges could be addressed by a thresholding 69 
method that better captures the complex relationship between gene expression and metabolism.  70 

 71 

Figure 1: Basic methodology of extracting context-specific metabolic models (CSMMs) using StanDep and model 72 
extraction methods (MEMs). In grey panel, metabolic gene expression data is converted to enzyme expression data which are 73 
subjected to thresholds using a given approach (for e.g. global, localT1, localT2, or StanDep) and tailored for a given MEM to 74 
extract and evaluate CSMMs. In purple extension, StanDep is applied to enzyme expression data by clustering enzyme 75 
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expression values followed by subjecting each cluster to thresholds calculated by eqns (1-4). In green extension, StanDep outputs 76 
are tailored (colored equations) to integrate with different MEMs. The extracted CSMMs are then evaluated using housekeeping 77 
genes/reactions and gene essentiality screens. 78 

Here we propose a novel thresholding approach called StanDep, which clusters gene expression data 79 
based on their expression pattern across conditions (Fig. 1, purple). This enables genes that are expressed 80 
similarly to be interpreted together by common thresholds. In other words, StanDep better accounts for 81 
regulatory complexity via a group of heuristically derived thresholds rather than a single one-size-fits-all 82 
threshold. Using this finer-grained thresholding approach, StanDep captures more housekeeping genes 83 
into context-specific models compared to other thresholding methods for a wide variety of model-84 
extraction algorithms. We further validated this method by predicting essential genes in cancer cells [23–85 
26], and analyzing 32 human tissue models and 27 C. elegans cell type models. Thus, StanDep provides a 86 
novel approach to obtain more complete context-specific models of metabolism from transcriptomics 87 
data. 88 

Results 89 

Preprocessing transcriptomics data using StanDep 90 

Established data integration methods have struggled to consistently capture housekeeping features [13], 91 
likely because the method rely on only one or few thresholds to interpret thousands of metabolic genes. 92 
We hypothesized that interpreting similarly expressed genes together would improve the thresholding 93 
process. Accordingly, we developed a novel thresholding method that involves two steps: (1) cluster 94 
distribution of individual gene expression, considering multimeric or isozyme relationships, (2) calculate 95 
and apply thresholds for each cluster of similarly expressed genes to identify a core reaction set (see 96 
Methods for additional detail). These steps (Fig. 1, purple) work in tandem with a variety of model-97 
extracting methods (Fig. 1, yellow), and fit compatibly into the existing general workflow for 98 
constructing context-specific metabolic models (Fig. 1, grey).  99 

An important parameter in evaluating hierarchical clustering is the number of clusters (N). Here, the 100 
number of clusters were selected in two steps. First, we calculated the Jaccard similarity between core 101 
reaction list between any pairs of N and N+1, and then, we chose N after which Jaccard similarity 102 
between core reaction lists is over 90% (Fig. S13). As we increase the number of clusters, the weaker 103 
clusters break into smaller clusters while stronger clusters will remain. Thus, by increasing to sufficiently 104 
large number of clusters, we stabilize the selection of core reaction lists. 105 

StanDep seeds core reaction lists with housekeeping reactions 106 

Currently, the common approach to identifying core reactions is to define a single ‘global’ threshold on 107 
gene expression [27]. All genes that are expressed above this global threshold are considered to be 108 
metabolically active, and their associated reactions constitute the core reactions. Conversely, genes that 109 
are expressed below the threshold are unconditionally interpreted as inactive. Alternatively, a recently 110 
proposed thresholding method seeks to define ‘local’ thresholds tailored to each gene, which is derived 111 
from the gene’s average expression level across tissues [21,28]. Exceptionally high or low expression 112 
may still be unconditionally interpreted as active or inactive, respectively.  113 
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To compare these thresholding methods to StanDep, we applied the methods to a comprehensive 114 
transcriptomic profile of human cancer cell-lines [29]. From these gene expression data, core reaction sets 115 
were calculated using StanDep and the following three different thresholding methods: (1) Global 75th: 116 
genes expressed above the top 25th percentile are considered active, (2) localT2: local thresholds are 117 
derived from cross-tissue mean expression; genes expressed above the top 25th percentile and below the 118 

bottom 25th percentile are interpreted unconditionally active and inactive, respectively, and (3) localT1: 119 
threshold settings are similar to localT2, but genes are never considered unconditionally inactive, even if 120 
they are below the bottom 25th percentile.    121 

Figure 2: StanDep enriches core reaction lists with housekeeping (HK) reactions including those lowly expressed. (A) 122 
Housekeeping reactions are enriched in clusters 1, 2, 11, 22, 23, and 25 (big blue dots). (B) Housekeeping reactions which were 123 
captured only by StanDep (not in localT2) core reaction lists mainly belong to clusters 2 and 11. (C) Reactions which are 124 
captured by only StanDep mainly belong to low but tightly expression clusters. (D) Standard deviation and means for each 125 
cluster. The clusters which distinguish StanDep and LocalT2 are shown with colored dots. The colors are the same as that used in 126 
(B) and (C). 127 
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Core reactions resulting from these thresholding methods were compared to  929 housekeeping reactions 128 
associated with metabolic housekeeping genes [22] in Recon 2.2 [30]. We found that StanDep resulted in 129 
the core reaction lists with the largest fraction of metabolism-related housekeeping reactions retained 130 
(Table 1, Fig. S1).  131 

Thresholding method Mean fraction of housekeeping reactions in core 
reaction lists across 44 NCI-60 cancer cell lines 

Global 75th (global) [27] 0.57 

Local T2 (25th, 75th) (localT2) [21,28] 0.70 

Local T1 25th (localT1) 0.44 

StanDep 0.80 

Table 1. Core reaction lists from StanDep contain highest fraction of housekeeping reactions compared to those from  existing 132 
thresholding methods. 133 

We then analyzed the clustering captured housekeeping reactions, and how such captured reactions 134 
differed between  StanDep and the other methods. Housekeeping reactions were enriched in 6 clusters; 135 
out of which, clusters 1, 2, and 11 had the largest number of housekeeping reactions (Fig. S2, Fig. 2A). 136 
We found that StanDep selected genes from clusters with moderate expression (10-100 FPKM), such as 137 
cluster 1 and low expression (1-10 FPKM), such as clusters 2 and 11 (Fig. 2C&D, S6). Indeed, we also 138 
found that housekeeping reactions that were captured by StanDep but not by the localT2 approach mostly 139 
belonged to clusters 2 and 11 (Fig. 2B). By contrast, the global approach favored reactions in clusters 140 
with fewer housekeeping reactions and reactions with higher expression (>100 FPKM) (Clusters 9 and 141 
10; Fig. S3,S6). Altogether, the results suggest that StanDep seeds core reaction lists with housekeeping 142 
reactions that are not captured by existing methods. 143 

StanDep-derived core reaction lists are more self-consistent than localT2  144 

Using StanDep, we built hundreds of models of the NCI-60 cell lines by varying 4 model uptake/secretion 145 
constraint types [31] and 6 model extraction methods [14–19]. The resulting models were strongly 146 
influenced by model extraction method used (Fig. S11A), but not by constraint type (Fig. S12A). As 147 
shown in Table 1, the largest number of housekeeping reactions were captured by localT2 and StanDep. 148 
Therefore, we compared StanDep models with localT2 models. Further, given that constraint types did 149 
not have strong influence over the model content, we decided to compare only the models that that were 150 
built using the exometabolic constraints. 151 

StanDep-based core reaction lists were larger than those from other thresholding methods (Fig. S18). We 152 
wondered if StanDep provided better support for inclusion of reactions by MEMs; thus, making them 153 
more self-consistent and independent from the extraction methods. We compared the overlap between 154 
models and their respective core reaction lists. Indeed, we found that for most MEMs, except MBA and 155 
GIMME, StanDep produced core reaction lists that were more self-consistent than localT2 (Fig. S7). 156 
Thus, models built using StanDep-derived core reactions had fewer unsupported reactions compared to 157 
localT2. Further, we found that reactions that were supported by only the extraction methods but not by 158 
localT2 belonged to low expression clusters such as clusters 2 and 11 (Fig. 3E). These are the same 159 
clusters that were differentially captured by StanDep (Fig. 2C). Thus, these results indicate that self-160 
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consistency of StanDep should be interpreted as its ability to provide transcriptomic support for low 161 
expression reactions that were otherwise added by the MEMs.  162 

StanDep models accurately capture housekeeping functions 163 

We have shown, so far, that StanDep-derived core reaction lists (Fig. S1) contained significantly more 164 
housekeeping reactions than localT2. To see if this is true for the models as well, we compared the 165 
coverage of housekeeping genes and housekeeping reactions between StanDep and localT2 models. 166 
Overall, we found that StanDep contained more housekeeping reactions than localT2 models  (Fig. 167 
3A&B). We then wondered if the housekeeping reactions which are differentially present in StanDep 168 
models belong to specific pathways. The housekeeping reactions which were differentially present in the 169 
StanDep-derived core reaction list (Fig. S25) and models (Fig. S26,S27) belonged to glycan synthesis and 170 
metabolism, metabolism of cofactors and vitamins, and fatty acid oxidation. 171 

Biotin metabolism is part of the metabolism of cofactors and vitamins. We found that the housekeeping 172 
reactions belonging to biotin metabolism were differentially present in the StanDep-derived models 173 
compared to global or localT2 regardless of extraction method (Fig. S28). There are two genes part of this 174 
pathway: HLCS (reaction ID: BTNPL, Gene ID: 3141) and biotinidase (reaction ID: BTND1, Gene ID: 175 
686 (BTD)) (Fig. 3C). Among these BTND1 was identified as the housekeeping reaction. Absence of 176 
biotinidase has been identified as an inherited disorder [32] and a lifelong treatment is required. BTND1 177 
is responsible for recycling biotin from biocytin; and low expression has also been identified as a marker 178 
for breast cancer [33,34] and thyroid cancer [35]. Out of 4 breast cancer cell lines, global-derived models 179 
were least likely to include BTND1 in breast cancer cell lines, followed by localT2-derived breast cancer 180 
cell lines. However, StanDep predicted them in over 90% of the models, regardless of extraction method.  181 

In mammalian cells, glycosylation performs essential functions such as protein folding, targeting, 182 
stabilization, and adhesion [36]. Further, changes in glycosylation have also been reported to contribute to 183 
cancer cell physiology [37,38]. Phosphatidylinositol phosphate metabolism, part of glycan biosynthesis 184 
and metabolism, involves glycosylphosphatidylinositol (GPI)-anchor proteins which form into a complex 185 
and serves to anchor proteins to the cell surface. An example of such a complex is H8/H7/M4B 186 
transamidase (reactions IDs: H7-TAer, H8TAer, and M4BTAer; Gene IDs: 94005 (PIGS), 51604 (PIGT), 187 
128869 (PIGU), 8733 (GPAA1), and 10026 (PIGK)). PIGT and either gene products have been 188 
hypothesized to play a role in growth of breast cancer via paxillin phosphorylation [39]. Further, 189 
overexpression of PIGT protein has also been observed in several other cancer types [40]. As with 190 
BTND1, reactions associated with PIGT had a higher coverage in StanDep-derived models than localT2- 191 
or global-derived models (Fig. S31), except in fastCORE (Fig. S29). Further, for global and localT2-192 
derived models, housekeeping reactions from this pathway were included because of the extraction 193 
methods (Fig. S32) rather than the core reaction lists. 194 

Given this successful application of StanDep in capturing housekeeping genes and reactions in cancer cell 195 
lines, we also applied it to transcriptomics data from Human Protein Atlas (HPA) data [6]. We found that, 196 
across 32 human tissues in HPA, the models of human tissues extracted using StanDep resulted in 92% of 197 
housekeeping genes in fastCORE and 88% of housekeeping genes in mCADRE. The models of human 198 
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tissues have been discussed in Supplementary Text. Thus, StanDep can be easily extrapolated across 199 
datasets. 200 

 201 

Figure 3: Performance of StanDep models (purple) compared to localT2 models (orange) using a list of housekeeping 202 
(HK) genes/reactions, CRISPR-Cas9 essentiality screens. Coverage of (A) housekeeping genes and (B) housekeeping 203 
reactions in StanDep and LocalT2 are shown. BHFDR correction for Wilcoxon rank-sum test p-values are reported on the x-axis. 204 
(C) Biotinidase (shown in red arrows, BTND1), a housekeeping reaction in Biotin metabolism, is differentially present in the 205 
StanDep-derived models. StanDep-derived models have improved coverage of this reaction compared to localT2- or global-206 
derived models (pie plots in inset), regardless of extraction method (Fig. S28). Housekeeping reactions are given in red, gene-207 
associated reactions are in black, and reactions with no gene associated are given in dashed arrows. The pie plots show 208 
percentage of models (cell line-extraction method = 120 models in each pie plot) that contained (red) or did not contain (blue) the 209 
reaction. (D) StanDep models are more predictable than localT2 models. BHFDR correction for left-tailed F-test for comparison 210 
of gene essentiality predictions using CRISPR-Cas9 essentiality screens are plotted. (E) StanDep provides transcriptomic 211 
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explanation (besides network connectivity evidence) for inclusion of lowly expressed reactions by MEMs. Each point on the plot 212 
represents the p-value of reactions belonging to a given cluster which were part of both StanDep and localT2 models but were 213 
supported by only StanDep core reaction lists. 214 

StanDep-extracted models accurately capture essential genes 215 

In addition, we analyzed the content of the extracted models and evaluated their capacity to predict gene 216 
essentiality, as experimentally measured by CRISPR-Cas9-mediated loss-of-function screens. [23,24,26]. 217 
In these predictions, StanDep-derived models performed comparably to models from other methods. In 218 
fact, prediction accuracies from StanDep had lower variance (Fig. 3D; Fig. S17), suggesting that 219 
StanDep-derived models may be more reliable in such predictions.  220 

Lastly, we compared the list of essential genes in the two sets of fastCORE models, and then analyzed 221 
accurate predictions of matches and mismatches among the two thresholding methods. Among accurate 222 
matching predictions, we found that 113 genes were accurately predicted in at least one cell line by both 223 
models. Among these, 22.12% were ubiquitously essential while 26.54% were cell line-specific (black, 224 
Fig. S5). Among 58 genes that were accurately predicted by StanDep-derived models only, 22.41% were 225 
essential in at least ten cell lines, while 39.66% were essential in exactly one cell line (blue dotted, Fig. 226 
S5). Interestingly, among 46 genes that were accurately predicted by localT2-derived models only, none 227 
were essential in more than seven cell lines while 58.7% were essential in only one cell line (orange dash, 228 
Fig. S5).  229 

We also extended gene essentiality analysis for models of 27 C. elegans cell types using previously 230 
published animal-level RNAi screens [25], transcriptomics data [7] and metabolic model [41]. However, 231 
due to the lack of systemically identified housekeeping genes for C. elegans or cell type-specific essential 232 
genes, we could compare only the genes which ubiquitously essential. Here, too, we found that StanDep 233 
models contained information not only about animal-level essential genes but also cell type-specific 234 
pathways were enriched in respective tissues; for e.g. peroxisomal fatty acid beta oxidation in neurons, 235 
hypodermis and intestine. The models of C. elegans cell types have been discussed in Supplementary 236 
Text. These results suggest that StanDep-derived models are not only able to predict ubiquitously 237 
essential genes but also cell line-specific essential genes.   238 

Discussion 239 

Several methods exist for building context-specific models by integrating transcriptomic data into genome 240 
scale models [14–19]. Previous work identified thresholding as the most influential parameter impacting 241 
the resulting model content and quality [13,21]. Despite this, established thresholding methods have 242 
struggled to reflect biological complexity. Here, we present StanDep, a novel heuristic approach for 243 
determining thresholds. We made hundreds of models using StanDep and evaluated them against models 244 
constructed using an existing thresholding methods [28]. 245 

Existing thresholding methods assume that all genes have the same expression patterns, regulation, and 246 
stabilities. This, however, is not true; in particular, for some genes, their metabolic products are needed in 247 
lower quantities, or the proteins may be more stable, so the necessary mRNA levels may be low; e.g. 248 
glycosylation related genes have low transcript abundance [42]. A thresholding method dependent on a 249 
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single arbitrary expression threshold may therefore exclude such genes. One example of such class of 250 
genes are lowly expressed housekeeping genes, consistently expressed across all cellular contexts as their 251 
gene products are required for cellular maintenance or the production of essential enzyme prosthetic 252 
groups. Indeed, classification of housekeeping genes is an important part of this study. In the literature, 253 
we found only one study that explicitly provided a list of housekeeping genes [22]. Recently a novel tool, 254 
GeneGini, has been shown to be an effective way of identifying housekeeping genes [43,44]. 255 
Housekeeping genes and reactions identified using this tool (Fig. S33) reproduced the results presented in 256 
this study (Fig. S34-35). 257 

We were able to show that StanDep core reaction lists (Fig. S25) and models (Fig. S26,S27) better 258 
captured housekeeping reactions in processes such as glycan and cofactor metabolism. Our study 259 
identified cluster 2 and cluster 11 (mean expression less than 10 FPKM, Fig. S6A; standard deviation less 260 
than 2 FPKM, Fig. S6B) as containing enzymes catalyzing over 300 housekeeping reactions (Fig. S2). 261 
Indeed, the success of StanDep in capturing more housekeeping reactions is primarily attributed to 262 
considering: (i) patterns of variability in gene expression, and (ii) standard deviation as a measure of 263 
biological variability in the formulation of cluster-specific thresholds. Thus, we showed that gene-specific 264 
variability is an important determinant when preprocessing transcriptomics data.  265 

Apart from the MEMs, there can be two potential reasons for reactions to be included in the extracted 266 
model: (i) presence of reactions in core reaction list calculated using a thresholding method, or (ii) 267 
demanded by the exometabolomic constraints applied. In cases such as that of biotin metabolism for 268 
which exometabolomic constraints were not available, the reactions had to come from the selection by 269 
StanDep. Further, as shown for StanDep, increased inclusion of reactions due to core reaction list will 270 
result into a method that is more self-consistent. In cases such as that of phosphatidylinositol phosphate 271 
metabolism, the inclusion was attributed to the MEMs in localT2 and global models; and to core reaction 272 
list in StanDep models (Fig. S32). It serves as an example for reactions which make StanDep core 273 
reaction lists more self-consistent. Thus, model extraction methods are not entirely reliable in 274 
recapitulating critical cellular functions [13], highlighting the importance of accurately identifying core 275 
reactions during data integration.  276 

Housekeeping reactions of both these pathways showed high coverage in not only MBA-like methods but 277 
also GIMME-like methods [45] (Fig. S28, S29). Inclusion of such reactions also explains why the Jaccard 278 
similarity for StanDep-derived models is higher across extraction methods than localT2- or global-derived 279 
models (Fig. S30). Thus, inclusion of such housekeeping reactions is an important criterion that the 280 
models of human cells must satisfy as they not only capture the biology of human cells but also provide 281 
better agreement regardless of extraction method. Thus, it is an important observation that the StanDep-282 
derived core reaction lists captured >100-200 additional housekeeping reactions per cell line compared to 283 
those derived by global or localT2 approaches. Using global thresholding of top 25th percentile, the 284 
selection was favored from clusters where enzyme expression values were higher (Fig. S3).  However, 285 
without direct experimental evidence (which would be context dependent) there is no way to determine an 286 
exact threshold above which a gene and the associated enzyme can be classified as active. StanDep avoids 287 
using a single threshold by calculating and applying cluster-specific thresholds. Of course, our rationale 288 
for using cluster-specific thresholds was that some clusters are enriched in housekeeping reactions. 289 
Nevertheless, applying cluster-specific thresholds was possible because of diversity of the gene 290 
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expression profiles across cancer cell lines and human tissues used in this study and availability of 291 
datasets with larger samples. However, since StanDep requires larger datasets with higher diversity of 292 
gene expression, a global approach may still be an appropriate choice when integrating highly 293 
homogenous or small transcriptomics data sets.  294 

We also benchmarked StanDep using six of the existing MEMs to build models for the NCI-60 cancer 295 
cell lines. This showed that StanDep works best with MBA-like extraction methods. Besides using 296 
housekeeping genes/reactions and CRISPR-Cas9 gene essentiality screens for validation and comparison 297 
with localT2-derived models. In light of StanDep-derived models being at least comparable to localT2-298 
derived models in accuracy (Fig. 3D), we can say that StanDep provided a transcriptomic explanation for 299 
why a reaction needs to be included within the model making self-consistency an important quality 300 
metric. 301 

The level of diversity in gene expression across cancer cell lines and human tissues helped in the 302 
identification of housekeeping genes. The models of cancer cell lines and C. elegans cell types were also 303 
able to predict essential genes. Furthermore, we showed that StanDep can capture relevant aspects of cell 304 
type-specific metabolism, such as the presence of peroxisomal fatty acid �-oxidation in neurons, intestine, 305 
and hypodermis cell types of C. elegans and NCI-60 cell line-specific essential genes. In conclusion, 306 
StanDep demonstrates that in addition to considering the expression level of a gene, the use of its 307 
variability across tissues and cell types can help to better define context-specific cellular function.  308 
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Methods  312 

Datasets used 313 

For this study, we used gene expression data for NCI60 cancer cell lines [29], HPA gene expression data 314 
for tissues [6], and gene expression data for C. elegans cell types [7]. For validating our models, we used 315 
a list of housekeeping genes [22], CRISPR data for 20 NCI60 cancer cell lines [23,24,26], and RNAi 316 
phenotypic data for C. elegans [25]. For further details on data extraction, please see supplementary 317 
methods. 318 

Data processing 319 

We selected genes from the human metabolic reconstruction, Recon 2.2 [30]. This included for NCI60 320 
data, 1416 genes; for HPA data, 1661 genes out of 1673 genes in Recon 2.2; and for C. elegans cell type 321 
data, 1248 genes were part of the global expression datasets and C. elegans GEM [41]. We then converted 322 
gene expression values into enzyme expression values using gene mapping. Gene mapping involved 323 
extracting gene-protein-reaction (GPR) relationships from the model and calculating enzyme expression. 324 
The extraction of GPR was done using the COBRA function, GPRparser.m. For enzymes that have only 325 
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one subunit, the value of enzyme expression is same as the value of gene expression. For multimeric 326 
enzymes, these relationships share an “AND” relationship; thus, the minimum value amongst genes part 327 
of the enzymes were set as enzyme expression value. The assumption for multimeric enzymes was that 328 
gene with lowest expression will govern the amount of functional enzyme expressed. It should be noted 329 
that we did not resolve OR relationships representing isoenzymes and allowed all functional enzymes to 330 
be represented in the enzyme expression dataset. The enzyme expression data spanned 1325 enzymes 331 
(4133 reactions) for NCI60 data, 1792 enzymes for HPA data, and 2533 enzymes for C. elegans data.  332 

Hierarchical Clustering 333 

Clustering distribution patterns of gene expression 334 

We log10-transformed the calculated enzyme expression dataset and counted the number of samples 335 
expressed with each bin width. Bin width were set based on the log10-transformed minimum and 336 
maximum enzyme expression values. This resulted in a matrix with rows representing each enzyme, 337 
columns representing bins, the value within the matrix representing number of samples from the dataset 338 
which were expressed within each bin range. We then performed hierarchical clustering with Euclidean 339 
distance metric and complete linkage metric to cluster genes based on distribution pattern of gene 340 
expression. We also show the comparison between using other distance (Fig. S15) and linkage methods 341 
(Fig. S16, Supplementary Results). 342 

Deciding number of clusters 343 

Clustering in our work is used as a tool to divide genes into categories based on distribution patterns of 344 
their expression across different conditions. These clusters are then responsible for generating their own 345 
threshold. Therefore, number of clusters were determined such that all pathway is enriched in at least one 346 
cluster. The pathways were extracted from the GEMs, Recon 2.2 (for NCI60 and human tissues) and 347 
iCEL1273 (for C. elegans cell types). Only pathways which contained at least one gene-associated 348 
reaction were considered. For the NCI60 Klijn et al. dataset, we used 26 clusters; for HPA dataset, we 349 
used 19 clusters; and for C. elegans, we used 14 clusters for enzyme expression and gene expression data 350 
respectively. We also show the comparison of choosing different number of clusters (Fig. S13; 351 
Supplementary Results).  352 

Clustering core reaction sets or models 353 

For analysis of models, we calculated Jaccard similarity of reaction content across different models which 354 
were part of any given analysis. We then performed hierarchical clustering to see how tissues are 355 
grouped. Hierarchical clustering was performed with the Euclidean distance metric and complete linkage 356 
metric. The interpretation of clustering Jaccard similarity is that models that are most similar to each other 357 
are likely to be equally far from other models.  358 

Pathway enrichment 359 

Pathway enrichment was performed by calculating hypergeometric p-value (p-value < 0.05) for the 360 
number of enzymes belonging to a given pathway present within a given cluster. Pathway association of 361 
an enzyme was calculated based on pathway association of the reactions being catalyzed by an enzyme. 362 
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Identification of Core Reactions 363 

StanDep 364 

StanDep applies thresholds specific to each cluster of genes (Fig. 1). In the StanDep threshold 365 
formulation, we included two terms: (i) standard deviation, and (ii) mean term. Fine-tuned expression 366 
level of genes is represented as the Standard deviation term; and is dependent on the difference between 367 
standard deviation of the cluster and the dataset. Lower standard deviation favors the selection of 368 
enzymes in all contexts while higher standard deviation term reflects context-specificity of the enzymes. 369 
The mean term, interpretation of second assumption, is dependent on the magnitude of the expression of 370 
enzymes in that cluster. In both cases, we used the difference between cluster and overall data to address 371 
inconsequential variations that maybe occurring in expression. The standard deviation is always positive 372 
but logarithmic mean may be negative and sometime be even quite large. Therefore, we introduced 373 
normalization to make the standard deviation term and mean term at par. The threshold for each cluster is 374 
given by the following equations: 375 

�� � ��� � ��	���

 � 100/������ � ��	���

; �� � �0,100� (1) 

�� � ����
 � ����
; (2) 

����
 � ��� � �
/������ � �
; (3) 

����
 � ���� � �
; (4) 

In the above set of equations, �c is the processed threshold value for a given cluster c; θc is the raw value 376 
of threshold for cluster c; �c is the standard deviation of the cluster c; Δ is the standard deviation of the 377 
dataset; �c is the mean of the cluster c; and M is the mean of the dataset. The equation is derived by 378 
penalizing cluster-specific thresholds based on: (i) how low the cluster mean is compared to the mean of 379 
the dataset; (ii) how far the standard deviation of the cluster is from the standard deviation of the dataset. 380 
The final normalization was done to ensure that the clusters-specific thresholds are between 0 and 100. 381 
The � is the top percentile value of the cluster-specific data above which an enzyme in that cluster in a 382 
given context is qualified active. If the value of �c is 100, we set the threshold value of the cluster as the 383 
mean of the data. 384 

The current published literature on the below thresholding methods does not address how the threshold 385 
values should be derived. Therefore, we used some of the most commonly used percentile values in 386 
previously published studies [13,21,27,28]. 387 

Other thresholding methods 388 

We used three of the existing thresholding methods: (i) global [13,21,27], (ii) localT1 [21], and (iii) 389 
localT2 [21,28]. The implementation for each of them was same as in a previous study [21,28]. However, 390 
they have also been described in detail in supplementary methods.  391 
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Constraining Pre-extraction Models and Model reduction 392 

Exometabolomic constraints 393 

Exometabolomic data of the NCI60 cell line were obtained from previous work [31] and further 394 
processed as previously described [13]. After processing, we added 23 new demand reactions, wherein 395 
each reaction is secreting a different metabolite. These were added to reflect the experimental 396 
observations by Jain et al. The biomass reaction was changed to one that contains precursor molecules 397 
from the one that contains macromolecules like DNA, RNA, protein, lipids, carbohydrate, and others. The 398 
replacement of the  biomass reaction was done to all the models. The global lower and upper bounds for 399 
all reactions except biomass and ATP demand were set to -1000 and 1000 respectively. The lower bounds 400 
of the biomass reaction and ATP demand were constrained to relatively small values of the order of 1e-2 401 
and 1.833 mmol gDW-1 h-1 [46] respectively. The cell line specific constraints on 78 demand and 402 
exchange reactions were applied on the modified Recon 2.2, followed by making flux consistent 403 
constrained genome-scale models for each of the cell lines. This was done by identifying and removing 404 
flux-inconsistent reactions using fastcc.m in COBRA Toolbox. The flux tolerance was always set to 1e-8. 405 

No constraints 406 

To make unconstrained models, we did not apply exometabolomic constraints but only applied 407 
constraints on lower bounds of biomass and ATP demand reaction as described above. The global lower 408 
and upper bounds were set to -1000 and 1000 respectively. This was followed by identifying and 409 
removing flux inconsistent reactions. The flux tolerance was always set to 1e-8.  410 

Semi constrained 411 

To make semi-constrained models, we applied directional constraints on demand and exchange reactions 412 
of each cell line, applied constraints on lower bounds of biomass and ATP demand as described above. 413 
The global lower and upper bounds were set to -1000 and 1000 respectively. This was followed by 414 
identifying and removing flux-inconsistent reactions. The flux tolerance was always set to 1e-8. 415 

Relaxed constraints 416 

To make relaxed models, we constrained the direction of flow to 10 mmol gDW-1 h-1 on demand and 417 
exchange reactions as suggested by exometabolomic data. The order of magnitude of original constraints 418 
on these reactions was 1e-3 to 1e-6. The global lower and upper bounds were set to -1000 and 1000 419 
respectively. This was followed by identifying and removing flux-inconsistent reactions. The flux 420 
tolerance was always set to 1e-8. 421 

Implementation with model extraction methods (MEMs) 422 

In this study, we compared the models derived using localT2 and StanDep. This section describes the 423 
extraction of StanDep-derived models by tailoring each of the MEMs. Models derived using localT2 were 424 
not constructed in this study, rather we extracted those models from a previous study [28]. Therefore, for 425 
implementation of each of the extraction methods with these thresholding methods, please see the 426 
methods for that study.  427 
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To construct models using 6 of the extraction methods these inputs were common to all: (i) a flux-428 
consistent Recon 2.2 genome-scale model was used, and (ii) epsilon, a.k.a. flux tolerance, was set to 1e-8. 429 
Inputs specific to a given MEM are described below. 430 

FASTCORE 431 

To construct models using FASTCORE [19], we used fastcore.m in the COBRA toolbox. Other inputs 432 
needed for the algorithm are requires core reaction lists. Please see above on how we identified them. The 433 
biomass reaction was manually added to the core reaction list. 434 

iMAT  435 

To construct models using iMAT [18], we used iMAT.m in the COBRA toolbox. Other inputs needed for 436 
the algorithm are: (i) core reactions (i.e., list of reactions identified to be active, including the biomass 437 
reaction) and (ii) non-core reactions, which are not part of core reactions (reactions not associated to a 438 
gene were not included in non-core reactions). 439 

MBA 440 

To construct models using MBA [14], we used MBA.m in the COBRA toolbox. Other inputs needed for 441 
the algorithm are: (i) high expression set, list of reactions which are highly expressed and (ii) medium 442 
expression set, list of reactions which are moderately expressed. We generated 10% interval around 443 
threshold for each cluster. We defined high expression set as the list of reactions catalyzed by enzymes 444 
which are above 110% of the threshold value, and medium expression set as the list of reactions catalyzed 445 
by enzymes which are between 90% and 110% of the threshold value.  For instances where a reaction was 446 
present in both high and medium expression set, we interpreted it as at least enzyme associated to the 447 
reaction being able to express at high levels. Thus, we put these reactions in high expression sets. The 448 
biomass reaction was given the highest value. 449 

mCADRE 450 

To construct models using mCADRE [15], we used mCADRE.m in the COBRA toolbox. Other inputs 451 
needed for the algorithm are: (i) ubiquity score (i.e., how often a reaction is expressed across samples of 452 
the same context); (ii) confidence scores quantifying level of evidence for a reaction to be present in the 453 
model; (iii) protected reactions; and (iv) since we did not protect any reactions, we set the functionality 454 
check to 0. To calculate ubiquity score ( Uc,i ), we calculated threshold distances ( Dc,i ), here defined as 455 
distance of a given enzyme expression ( xi,c ) in the context i from the threshold ( �c ) of the cluster c 456 
where the enzyme belongs. The threshold distances and ubiquity scores were calculated using the eqs (5-457 
7). 458 

��,� � ��,� � ��  (5) 

�� ��,�  0; !�,� � 1 (6) 

�� ��,� " 0; !�,� � 1 � ���,�/��	���,�

 (7) 

We used the ubiquity score to quantify how often an enzyme is expressed in samples of the same context. 459 
For isoenzymatic reactions, the reaction ubiquity score was set to the enzyme with maximum ubiquity 460 
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score. For reactions which do not have an associated gene, the ubiquity score was set to -1. Since, we did 461 
not have confidence scores, we assigned a confidence of 0 to all reactions, as suggested in COBRA 462 
toolbox tutorial for mCADRE. However, we also tried using our list of core reactions as a binary vector 463 
specifying whether a reaction is in the core set and if it did not have any effect of the final model. The 464 
biomass reaction was manually assigned a ubiquity score of 1. The confidence score of 1 is associated 465 
with transcriptomics evidence and our metric ubiquity score already has this information. 466 

INIT 467 

To construct models using INIT [16], we used INIT.m in the COBRA toolbox. Other inputs needed for 468 
the algorithm are reaction weights, varying between -1 and 1. To calculate enzyme weights, we calculated 469 
the threshold distance for each enzyme as described previously, without normalizing. Weights for all 470 
reactions catalyzed by an enzyme were same as the enzyme weight. Here, we used a different normalizing 471 
scheme. We scaled our threshold distances to a maximum threshold distance for any of the enzymes 472 
within the data. For isoenzymatic reactions, the weights of each enzyme were added. We set the weights 473 
for non-gene associated reactions to 0. The biomass reaction was manually assigned a weight of 1. 474 

GIMME 475 

To construct models using GIMME [17], used GIMME.m in the COBRA toolbox. Other inputs needed 476 
for the algorithm are: (i) a reaction expression vector representing gene expression values associated with 477 
the reactions; and (ii) a threshold determining whether reaction expression is considered active. We 478 
calculated the reaction expression vector in the same way as we calculated enzyme weights for INIT. The 479 
thresholds were set to 1. The biomass reaction was given a value of 1. 480 

Gene essentiality in NCI60 481 

NCI60 data 482 

To test our essentiality predictions of NCI60 models with CRISPR screen data, we downloaded pooled 483 
CRISPR knockout screen data from DepMap.org [23,24,26] for 20 NCI-60 cell lines. Essential genes 484 
were identified based on the CRISPR score. The CRISPR score was calculated as the ratio of abundance 485 
of single guide RNA (sgRNA) of a knock out after and before growth selection. A negative CRISPR 486 
score suggests a higher probability that the gene is essential. The accuracy was estimated using the 487 
percentage of predicted essential genes that have a negative score [47]. We then used 1-tailed Wilcoxan 488 
rank sum test to identify if the CRISPR scores for genes predicted to be essential in the metabolic model 489 
and CRISPR scores of genes predicted to be non-essential are coming from the same populations.  490 

RNAi phenotypic data 491 

To get the list of essential genes in C. elegans, we extracted genes that presented a Nonv or Gro RNAi 492 
phenotype. As described by the authors [25], Nonv phenotype refers to all phenotypic classes that result in 493 
lethality or sterility (1170 essential genes); and Gro refers to phenotypic classes that result in growth 494 
defects, slow post-embryonic growth or larval arrest (276 essential genes). Out of these, the iCEL1273 495 
[41] model contained 187 genes. Similarly, we found 900 non-essential genes in iCEL1273. 496 

 497 
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