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Abstract9

CRISPR technology has enabled large-scale cell lineage tracing for complex multicellular organisms10

by mutating synthetic genomic barcodes during organismal development. However, these sophisti-11

cated biological tools currently use ad-hoc and outmoded computational methods to reconstruct12

the cell lineage tree from the mutated barcodes. Because these methods are agnostic to the13

biological mechanism, they are unable to take full advantage of the data’s structure. We propose a14

statistical model for the mutation process and develop a procedure to estimate the tree topology,15

branch lengths, and mutation parameters by iteratively applying penalized maximum likelihood16

estimation. In contrast to existing techniques, our method estimates time along each branch, rather17

than number of mutation events, thus providing a detailed account of tissue-type differentiation.18

Via simulations, we demonstrate that our method is substantially more accurate than existing ap-19

proaches. Our reconstructed trees also better recapitulate known aspects of zebrafish development20

and reproduce similar results across fish replicates.21

Introduction22

Recent advancements in genome editing with CRISPR (clustered regularly interspaced short palin-23

dromic repeats) have renewed interest in the construction of large-scale cell lineage trees for24

complex organisms [McKenna et al., 2016,Woodworth et al., 2017, Spanjaard et al., 2018, Schmidt25

et al., 2017]. These lineage-tracing technologies, such as the GESTALT method [McKenna et al.,26

2016] that we focus on here1, inject Cas9 and single-guide RNA (sgRNA) into the embryo of a27

transgenic organism harboring an array of CRISPR/Cas9 targets separated by short linker sequences28

(barcodes). These barcodes accumulate mutations because Cas9 cuts are imperfectly repaired29

by non-homologous end joining (NHEJ) during development while Cas9 and sgRNA are available.30

The resulting mutations are passed from parent cell to daughter cell, which thereby encodes the31

ontogeny. Mutated barcodes are later sequenced from the organism, and computational phyloge-32

netic methods are then used to estimate the cell lineage tree. Because these barcodes have great33

diversity, GESTALT provides researchers with rich data with the potential to reveal organism and34

disease development in high resolution.35

The most common phylogenetic methods used to analyze GESTALT data are Camin-Sokal (C-S)36

parsimony [Camin and Sokal, 1965] and the neighbor-joining distance-based method [Saitou and37

Nei, 1987]. However these methods are blind to the operation of the GESTALT mutation process, so38

the accuracy of the estimated trees are poor [Salvador-Martínez et al., 2018]. In addition, existing39

methods supply branch length estimates in terms of an abstract notion of distance rather than time,40

limiting their interpretability. Therefore, these estimated trees only provide ordering information41

between nodes on the same lineage, but not for nodes on parallel lineages. In addition, C-S42
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parsimony is unable to distinguish between equally parsimonious trees, so obtaining a single tree43

estimate is difficult in practice: We find over ten thousand parsimony-optimal trees for existing44

datasets. To address these challenges, we set out to develop a statistical model of the mutation45

process, allowing us to estimate branch lengths that correspond to time as well as the mutation46

parameters.47

No appropriate likelihood model is currently available for GESTALT because CRISPR arrays48

violate many classical statistical phylogenetic assumptions. First, Cas9 enzymes may cut two targets49

simultaneously with the entire intervening sequence deleted during NHEJ. In addition, once the50

nucleotide sequence for a target is modified, Cas9 is no longer able to cut the target. Thus sites51

are not independent, the mutation process is irreversible, and cuts can introduce long insertion52

and/or deletions. In contrast, the classical phylogenetic assumptions are that individual nucleotide53

positions are independent and that the mutation process is reversible and only introduces point54

mutations [Felsenstein, 2004, Yang, 2014]. Finally, these types of methods assume that there are55

many independent observations— their estimates are unstable when the effective sample size56

is much smaller than the number of parameters to estimate [Goolsby, 2016, Adams and Collyer,57

2018, Julien et al., 2018].58

In this paper, we introduce GAPML (GESTALT analysis using penalized Maximum Likelihood), a59

statistical model for GESTALT and tree-estimation method (including topology and branch lengths)60

by an iterative procedure based on maximum likelihood estimation. We model barcode mutations61

as a two-step process: Targets are cut according to a continuous time Markov chain, immediately62

followed by random insertions or deletions of nucleotides (indels). Our method does not rely on63

the aforementioned assumptions. Instead we introduce the following assumptions tailored to the64

GESTALT setting:65

• (outermost-cut) an indel is introduced by cuts at the outermost cut sites66

• (target-rate) the cut rates only depend on which targets are active (i.e. able to be cut)67

• (indel-probability) the conditional probability that an indel is introduced only depends on which68

targets were cut.69

From these assumptions, we show that the Markov process is “lumpable“ and the aggregated70

process is compatible with Felsenstein’s pruning algorithm, thereby enabling efficient computation71

of the likelihood [Kemeny and Laurie Snell, 1976, Felsenstein, 1981]. Since only a small number of72

barcodes are usually available in practice, we propose a regularization method on the branch length73

and mutation parameters to stabilize and improve estimates. Our method extends maximum-74

likelihood phylogenetic methods with branch-length penalties [Kim and Sanderson, 2008] to the75

setting where the tree topology is unknown.76

We validate our method on simulated and empirical data. In simulations, our method is77

more accurate than current tree-estimation methods. In addition, we reconstruct cell lineage78

trees of transgenic zebrafish from McKenna et al. [2016] and show that our trees better reflect79

the known biology of zebrafish development. Based on these results, we conclude that with80

appropriate statistical techniques it is possible to reconstruct an accurate cell lineage tree with81

current GESTALT technology, which addresses some concerns raised in Salvador-Martínez et al.82

[2018]. Our simulation engine and estimation method are available on Github (https://github.com/83

matsengrp/gestaltamania).84

Results85

Brief description of our probabilistic GESTALT evolution model86

We model the GESTALT barcode (see Figure 1) as a continuous time Markov chain where the state87

space is the set of all nucleotide sequences. A state transition is an instantaneous event where88

either (1) an unmodified target is cut then the repair process inserts/deletes nucleotides around the89

cut site, or (2) two unmodified targets are cut, the intervening sequence is removed, and the repair90

process inserts/deletes nucleotides around the cut sites. The transition rate between barcode91
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Figure 1. An unmodified array of CRISPR/Cas9 target sites (i.e., a GESTALT barcode) is engineered into an

organism’s genome. CRISPR/Cas9 enzyme complex with corresponding guide sequences are directed to make

double-stranded breaks in the barcode. These breaks are repaired in an error-prone fashion resulting in

insertions and deletions at target sites. These insertions and deletions will accumulate in a lineage specific

fashion, passed from mother to daughter cell, and further insertions and deletions can add additional

information. These integrated barcodes can then be recovered by DNA sequencing at the timepoint of interest.

sequences depends on the entire sequence and each target is associated with a separate cut rate.92

If multiple copies of the barcode are used, we assume the barcodes are on separate chromosomes93

or are sufficiently far apart that they act in an independent and identically distributed (iid) manner.94

We use this Markov model for GESTALT barcodes evolving along a cell lineage tree where the95

vertices represent cell divisions and the edge lengths represent time between cell divisions. The96

full cell lineage tree describes the relationships of all cells in the organism. Since we only collect a97

small sample of all the cells, our goal is to recover the subtree describing the development of the98

observed sequences.99

To estimate this subtree, our method needs to calculate the likelihood of possible trees and100

model parameters, which requires an enumeration of the possible barcodes at each internal node.101

However a full enumeration is infeasible. For example, a double cut (transition (2) described above)102

could remove one or more targets, which could have themselves been modified in an infinite103

number of possible ways before the double cut erased this history.104

We have carefully chosen our assumptions to make this likelihood tractable yet maintain105

biological realism. Briefly, under the target-rate and indel-probability assumptions, we can group106

states together if they share the same set of unmodified targets to calculate the likelihood more107

efficiently, a property known more formally known as “lumpability” (Figure 2). Since the number108

of targets in a barcode is typically small (e.g. 10 targets per barcode in McKenna et al. [2016],109

Schmidt et al. [2017]), calculating the likelihood becomes computationally feasible. In addition, the110

outermost-cut assumption allows us to exclude many groups from the likelihood computation so111

that the number of enumerated groups at most internal nodes is typically linear in the number of112

unique indels.113

A maximum-likelihood tree estimation procedure114

We follow current best practice for maximum-likelihood phylogenetics by optimizing the tree and115

mutation parameters of our model using a hill-climbing iterative search over tree space. First, we116

initialize the tree topology by selecting a random parsimony-optimal tree from C-S parsimony. At117

each subtree prune and regraft (SPR) iteration, we select a random subtree and regraft where the118

penalized log likelihood is highest (Figure 3c). The method stops when the tree no longer changes.119

At each iteration, we only consider SPR moves that preserve the parsimony score as we have120

found that the parsimony-optimal trees tend to have the highest likelihoods (Figure 18). The entire121

algorithm is presented in Algorithm 1. We discuss some important details of our method below.122

We maximize a penalized log likelihood as opposed to the unpenalized version since the latter123

tends to give unstable and inaccurate estimates when the dataset is generated by a small number124

of barcodes. In particular, the length of the leaf branches and the variance of the target rates125

tend to be overestimated in such settings. Thus we use a penalty function that discourages large126
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Figure 2. An example of lumping together barcodes that share the same target activity. The two outer boxes

correspond to two of the lumped states. The left box is the grouped state for possible ancestral barcode states

where the second target is no longer active, while the right box represents when the second, fourth, and fifth

targets are no longer active. The arrows represent possible transitions and the color represents the transition

rates. Notice that each barcode in the left box has the same set of outgoing arrows. To show that the states are

lumpable, we show that the total transition rate out of a barcode in the left box to the right box is the same for

all barcodes in the left box.

differences in branch lengths and target cut rates. Penalization introduces a slight complication127

since certain candidate SPR moves have naturally larger penalties. In order to make the penalty128

comparable between candidate SPR moves, we randomly select a leaf in the subtree and apply the129

candidate SPR moves only to that single leaf. When scoring the SPR moves, the penalty is calculated130

for the shared subtree, i.e. the tree where we ignore the random leaf. Finally, we regraft the entire131

subtree where the penalized log likelihood is highest.132

Our method is able to estimate the tree at a finer resolution than existing methods (Figure 3a).133

The most commonly used method, C-S parsimony, produces estimates at the coarsest resolution:134

For nodes where the ordering is ambiguous, the method simply groups them under a single parent135

node. This commonly results in tree estimates with many multifurcating nodes (nodes with 3+136

children) that have ten or more children. Our method uses the estimated model parameters to137

estimate the order and time of ambiguous nodes by projecting the subtree onto the space of138

caterpillar trees (Figure 3b). By producing tree estimates at a finer resolution, our method allows139

researchers to learn more about the structure of the true cell lineage tree. In addition, taking140

advantage of the irreversibility property, we efficiently estimate the branch ordering within the141

caterpillar trees by solving a single optimization problem, rather than considering each possible142

ordering separately.143

Simulation engine and results144

We built a simulation engine of the GESTALT mutation process during embryonic development.145

Since cell divisions during embryonic development begin in a fast metasynchronous fashion and146

gradually becomemore asynchronous [Moody, 1998], the simulation engine generates a cell lineage147

tree by performing a sequence of synchronous cell divisions followed by a birth-death process148

where the birth rate decays with time. We mutate the barcode along this cell lineage tree according149

to our model of the GESTALT mutation process. The simulation engine can generate data that150

closely resembles the data collected from zebrafish embryos inMcKenna et al. [2016] (Figure 4a).151

We can input different barcode designs into the simulation engine to understand how they affect152

our ability to reconstruct the cell lineage tree.153

We used our simulation engine to assess the validity and accuracy of the estimated model154

parameters and tree. Because our method infers branch lengths, we evaluate the accuracy using155

two metrics that include branch length information: BHV distance [Billera et al., 2001] and internal156

node height correlation (see Figure 15). We compare our method to a simpler model-free approach:157

estimating the tree topology using C-S parsimony [Camin and Sokal, 1965] or neighbor-joining158

(NJ) [Saitou and Nei, 1987] and then applying semiparametric rate smoothing (chronos in the R159
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Cell lineage subtree Collapse subtrees into

caterpillar trees

Collapse subtrees into

star trees

Full cell lineage tree

(a)We show the subtree of a full cell lineage tree (top) at different resolutions. The highest resolution preserves

the bifurcating tree structure (left). The lowest resolution preserves very coarse order information by collapsing

a subtree into a multifurcating node (right). In between these two resolutions, we can project the tree onto the

space of caterpillar trees and preserve the ordering information between nodes (middle).

…

(b)We resolve each multifurcation in the tree into

a caterpillar tree, which places all the children

nodes along a central path. This central path,

called a caterpillar spine, is indicated by the bold

lines in the trees on the right. There are many

possible orderings in a caterpillar tree. Here we

show two such orderings. Our method chooses

the ordering that maximizes the penalized log

likelihood.

SPR1 score = -100.1

SPR2 score = -98.9

SPR3 score = -101.2

Original tree
New tree

(c) To tune the tree topology, we select a random

subtree (left) and score possible SPR moves that

preserve the parsimony score by selecting a

random subleaf and calculating the maximized

penalized log likelihood of the resulting tree

(middle). We then update the tree by applying the

SPR move with the highest score (right).

Figure 3. Overview of our tree estimation method.
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Algorithm 1 Cell lineage tree reconstruction for penalty parameter �

Initialize tree T . Let the sequenced GESTALT barcodes be denoted D.
for Iteration k do
Pick a random subtree from T . Select one of the leaves C of the subtree.
for each possible SPR move involving the subtree that doesn’t change the parsimony score

(including the no-op) do

Construct T ′ by applying the SPR to leaf C; let T ′shared be the subtree of T
′ when excluding C

Set the score of the SPR move as the penalized log likelihood maximized with respect to

the branch length parameters l and deactivation and indel process parameters � and �,
respectively:

max
l,�,�

log Pr(D, the barcode is constant along all caterpillar spines; T ′,l, �, �)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Approximation to the likelihood

+ Pen�(T ′shared,l, �, �)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Penalty on branch lengths and mutation parameters

end for

Update the tree T by performing the SPR move on the subtree that maximizes the score
end for

package ape) to estimate branch lengths [Sanderson, 2002]. We will refer to these two approaches160

as “CS+chronos” and “NJ+chronos.” We do not compare against the original tree estimates from161

C-S parsimony and neighbor-joining since those branch lengths correspond to edit distance and162

have very poor performance according to our two metrics. Our method consistently outperforms163

these alternative methods (Figure 4c). We note that previous in silico analyses of GESTALT measure164

accuracy in terms of the Robinson-Foulds (R-F) distance, which only depends on the tree topology165

[Salvador-Martínez et al., 2018]. However the R-F distance does not recognize that different tree166

topologies can be very similar depending on their branch lengths, and is therefore too coarse as a167

performance metric.168

We find, based on the simulations, that our likelihood-based method improves in performance169

as the number of independent barcodes increases (Figures 4b). In a simulation with a six-target170

barcode, the estimated tree from a single barcode has internal node height correlation of 0.5 with171

the true tree whereas using four barcodes increases the correlation to 0.9. Even though other172

analyses of GESTALT have recommended increasing the number of targets in a single barcode173

to improve tree estimation [Salvador-Martínez et al., 2018], it is more effective to increase the174

number of targets by introducing independent (and identical) barcodes (Figure 16).175

Improved zebrafish lineage reconstruction176

To validate our method, we reconstructed cell lineages using our method and other tree-building177

methods on GESTALT data from zebrafish [McKenna et al., 2016]. As the true cell lineage tree is178

not known for zebrafish, we employed more indirect measures of validity. For each method, we179

asked (1) if similar conclusions could be made across different biological replicates and (2) if the tree180

estimates aligned with the known biology of zebrafish development. The dataset includes two adult181

zebrafish where cells were sampled from dissected organs. The organs were chosen to represent182

all germ layers: the brain and both eyes (ectodermal), the intestinal bulb and posterior intestine183

(endodermal), the heart and blood (mesodermal), and the gills (neural crest, with contributions184

from other germ layers). The heart was further divided into four samples— a piece of heart tissue,185

dissociated unsorted cells (DHCs), FACS- sorted GFP+ cardiomyocytes, and non-cardiomyocyte heart186

cells (NCs). In addition, datasets were collected from embryos before gastrulation (dome stage, 4.3187

hours post-fertilization (hpf)), at pharyngula stage (30 hpf), and from early larvae (72 hpf), where188
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(a) A comparison of summary statistics on the

simulated data (each thin line is a replicate; color

used only to aid in distinguishing between

replicates) vs. 250 randomly selected alleles from

the first dome fish (bolded line). We generated

data from our simulation engine and randomly

sampled leaves to obtain around 250 unique

alleles. The distribution of inactive targets and

allele abundances (the number of times an allele is

observed) are similar.

(b) Results for data simulated from a barcode with

six targets and randomly sampled to obtain

roughly 100 unique alleles. The performance of

GAPML improves with the number of barcodes.

GAPML performs significantly better than the

other methods in terms of BHV (top) and the

internal node height correlation metrics (middle).

The methods are hard to distinguish with respect

to the Robinson-Foulds (RF) metric (bottom).

Method BHV 1 - Internal node correlation

GAPML 5.68 (5.51, 5.85) 0.45 (0.42, 0.48)

CS + chronos 6.39 (6.20, 6.58) 0.58 (0.52, 0.64)

NJ + chronos 8.48 (8.38, 8.58) 0.66 (0.64, 0.68)

(c) Comparison of methods on simulated data using a single barcode with ten targets and around 200 leaves.

The 95% confidence intervals are given in parentheses.

Figure 4. Simulation results. We denote Camin-Sokal parsimony and neighbor-joining with nonparametric rate

smoothing as CS+chronos and NJ+chronos, respectively.
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Figure 5. The average distance between tissue sources from adult fish 1 (left) and 2 (right) for tree estimates

from GAPML. The distance between tissues is the average time from a leaf of one tissue to the closest internal

node with a descendant of the other tissue. The shading reflects distance, where bright means far and dark

means close. The tissue distances share similar trends between the two fish. For example, the top (brain and

eyes) and lower right (heart-related organs) tend to be the darker regions in both distance matrices.

Figure 5–Figure supplement 1. Distance matrices for the estimated trees from Camin-Sokal parsimony and

chronos

Figure 5–Figure supplement 2. Distance matrices for the estimated trees from neighbor-joining and chronos

the cell type assignments are unknown.189

GAPML captures more similar developmental relationships between tissue types across190

the two adult fish replicates.191

For each estimated tree, we calculated the distance between tissues— the average tree distance192

between a leaf of one tissue to the closest internal node leading to a leaf from the other tissue,193

weighted by the allele abundance (Figure 5). (All alleles that were found in the blood were removed194

since blood is found in all dissected organs and can confound the relationship between organs195

McKenna et al. [2016].) Recall that all of the fitting procedures are completely agnostic to any tissue196

source or cell abundance information. For a good method, we expect the correlation between197

tissue distances from the two fish to be close to one. We tested if the correlations were significant198

by permuting the cell types and abundances in the estimated trees. The correlation was 0.770199

(p < 0.001) using our method whereas ‘CS+chronos’ and ‘NJ+chronos’ had correlations of 0.306200

(p = 0.21) and -0.325 (p = 0.22), respectively. One might be concerned that our method is consistent201

across fish replicates because it returns very similar trees regardless of the data. However, this is202

not the case: When we re-run our method with randomly permuted cell types and abundances, the203

average correlation between the tissue distances drops to zero.204

GAPML estimates similar mutation parameters across fish replicates.205

For each time point, the fish replicates were traced using the same GESTALT barcode and processed206

using the same experimental protocol (Table 6a). We compared the estimated target rates from our207

method to those estimated using a model-free empirical average approach where the estimated208

target cut rate is the proportion of times a cut was observed in that target in the set of unique209

observed indels. The average correlation between the estimated target rates from our method were210

much higher than that for the alternate approach (Figure 6a). In fact, we can also compare target211

cut rates between fish of different ages that share the same barcode, even if the experimental212

protocols are slightly different. The 4.3hpf and 3day fish share the same barcode version and we213

find that the target rate estimates are indeed similar (Figure 6b). Again, a possible concern is that214
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Fish age n Barcode version GAPML Correlation Empirical average correlation

4 months 2 7 0.891 0.685

3 days 5 7 0.881 (0.839, 0.982) 0.688 (0.610, 0.923)

30 hpf 4 6 0.309 (0.309, 0.794) 0.052 (0.052, 0.727)

4.3 hpf 4 7 0.931 (0.931, 0.982) 0.743 (0.717, 0.976)

(a)Mean Spearman correlation between target lambda rates across fish replicates. 95% confidence intervals

(via bootstrap) shown in parentheses.

(b) Fitted target lambda rates for fish sampled at 4.3hpf (left), 3 days (middle), and 30 hpf (right), where each

colored line corresponds to the estimates for a single fish. The fish sampled at 4.3hpf and 3 days had the same

barcode and share similar target rates. The 30hpf fish used a different barcode and have different estimated

target rates.

Figure 6. Target cut rate estimates are consistent across fish replicates.

our method may have high correlation because it outputs very similar values regardless of the215

data. However, the estimated target cut rates were different for fish with different barcode versions.216

More specifically, the 30hpf fish used version 6 of the GESTALT barcode whereas the other fish used217

version 7. Visually, the target rates look quite different between those in the 30hpf fish and the218

other fish with the version 7 barcode (Figure 6b). Calculating the pairwise correlations between219

the estimated rates in 30hpf versus 3day fish, the average correlation, 0.416, is quite low and the220

bootstrap 95% confidence interval, (0.046, 0.655), is very wide and nearly covers zero.221

GAPML recovers both cell-type and germ-layer restriction.222

It is well known that cells are pluripotent initially and specialize during development. To evaluate223

recovery of specialization by tissue type, we calculated the correlation between the estimated224

time of internal tree nodes and the number of descendant tissue types; to evaluate recovery of225

specialization by germ layer, we calculated the correlation between the estimated time of internal226

nodes and the number of germ layers represented at the leaves. (As before, all the estimation227

methods do not use the tissue origin and germ layer labels.) Since any tree should generally228

show a trend where parent nodes tend to have more descendant cell types than their children,229

we compared our tree estimate to the same tree but with random branch length assignments230

and randomly permuted tissue types. Our method estimated much higher correlations compared231

to these random trees (Table 7a). We show an example of the node times versus the number of232

descendant cell types and germ layers in Figure 7b. The estimated correlations from the other233

methods tended to be closer to zero compared to those in GAPML in all cases, except when using234

‘NJ + chronos‘ to analyze the second adult fish. However upon inspection, the correlation is high for235

‘NJ + chronos‘ because it estimates that cells are pluripotent for over 90% of the fish’s life cycle and236

specialize during a small time slice at the very end.237

Analysis of the zebrafish GESTALT data238

In this section, we analyze the fitted trees of the adult zebrafish in more detail. Our primary goals are239

to (1) check if summaries concord with known zebrafish biology, (2) generate new hypotheses about240
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Adult Estimation # tissue types vs time # germ layers vs time

Fish Method Corr Random corr p-value Corr Random corr p-value

1

GAPML -0.492 -0.168 < 0.001 -0.421 -0.124 < 0.001
CS+chronos -0.182 0.037 0.002 -0.142 0.032 0.044

NJ+chronos -0.271 -0.126 0.003 -0.179 -0.094 0.084

2

GAPML -0.493 -0.220 <0.001 -0.410 -0.151 0.002

CS+chronos -0.389 0.070 0.001 -0.397 0.090 < 0.001
NJ+chronos -0.621 -0.236 <0.001 -0.475 -0.183 0.001

(a) Estimated correlations between the number of descendant cell types/germ layers vs. the time of internal

nodes in the tree. Since some tree topologies naturally have higher correlations, we also show the correlation

when cell types are shuffled and branch lengths are randomly assigned. The p-value for each tree is calculated

with respect to their respective randomly shuffled trees.

(b) Box plots of the internal node times in the estimated tree for the first adult fish using GAPML, where nodes

are grouped by the number of descendant cell types (left column) and the number of descendant germ layers

(right column).

Figure 7. Estimated relationships between node times and number of descendant cell types and germ layers in

the two adult fish for the different methods.

Figure 7–Figure supplement 1. Internal node times versus number of descendant cell types in the estimated

tree for the second adult fish using GAPML.

Figure 7–Figure supplement 2. Internal node times versus number of descendant germ layers in the estimated

tree for the second adult fish using GAPML.

Figure 7–Figure supplement 3. Internal node times versus number of descendant cell types in the estimated

tree for the first adult fish using Camin-Sokal parsimony and chronos.

Figure 7–Figure supplement 4. Internal node times versus number of descendant germ layers in the estimated

tree for the first adult fish using Camin-Sokal parsimony and chronos.

Figure 7–Figure supplement 5. Internal node times versus number of descendant cell types in the estimated

tree for the second adult fish using Camin-Sokal parsimony and chronos.

Figure 7–Figure supplement 6. Internal node times versus number of descendant germ layers in the estimated

tree for the second adult fish using Camin-Sokal parsimony and chronos.

Figure 7–Figure supplement 7. Internal node times versus number of descendant cell types in the estimated

tree for the first adult fish using neighbor-joining and chronos.

Figure 7–Figure supplement 8. Internal node times versus number of descendant germ layers in the estimated

tree for the first adult fish using neighbor-joining and chronos.

Figure 7–Figure supplement 9. Internal node times versus number of descendant cell types in the estimated

tree for the second adult fish using neighbor-joining and chronos.

Figure 7–Figure supplement 10. Internal node times versus number of descendant germ layers in the esti-

mated tree for the second adult fish using neighbor-joining and chronos.
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zebrafish development, and (3) generate new hypotheses on how to improve the experimental241

procedure. Again, as our method is agnostic to the tissue types, our trees have no prior assumptions242

or particular biases regarding the relationships between cell types.243

Here we focus on the ordering and relative length of events. We ignore absolute estimated244

times since our fitting procedure for a single barcode heavily penalizes large differences between245

branch lengths. Though this procedure aids estimation accuracy, it also heavily biases the absolute246

time estimates. Thus in the figures, we scale time to be between 0 to T = 1 to draw focus away from247

the absolute times. (We anticipate the branch length estimates to be more accurate to improve248

with the GESTALT technology. According to our simulations, the absolute branch length estimates249

are much more reliable when the several barcodes are inserted into the organism.)250

We begin with a coarse summary of the cell lineage tree: We plot the average distance between251

a leaf node of one tissue type to the most recent ancestor of each different tissue type (Figure 5).252

This matrix recapitulates some well-established facts about zebrafish development. For example,253

we estimate that tissue types from the endoderm and mesoderm tended to have shorter shared254

lineage distances; these tissue types tended to separate from the ectodermal tissues earliest. This255

signal potentially captures the migration of the mesoderm and endoderm through the blastopore,256

isolating them from the ectoderm [Solnica-Krezel, 2005]. In addition, previous studies have found257

that gills are formed when the anterior part of the intestine grows toward and fuses with the body258

integument [Shadrin and Ozernyuk, 2002]. The distance matrix shows a large proportion of gill259

cells dividing late from the other endoderm and mesoderm layers.260

The distance matrix also shows that the GFP+ cardiomyocytes tend to be farthest away from261

other tissue types, which could be either a developmental signal or an artifact of the experimental262

protocol. GFP+ cardiomyocytes were sorted using fluorescence-activated cell (FACS) and this263

purity could drive their separation from the other more heterogeneous organ populations. An264

interesting biological speculation would be that the heart is the first organ to form during vertebrate265

embryo development and, in particular, the myocardial cells are the first to develop, driving this266

observed signal [Keegan et al., 2004]. These observations show GAPML’s improved lineage distance267

estimation provide a more refined measure of the developmental process, and as our simulations268

show, will only improve as experimental approaches becomes more sophisticated.269

The full cell lineage tree estimated using GAPML for the first adult zebrafish provides significantly270

more detail than the Camin-Sokal parsimony tree inferred for the original McKenna et al. [2016]271

publication (Figure 8). Our tree has estimated branch lengths whereas the branches were all272

unit-length in McKenna et al. [2016]. In addition, the dashed lines in our tree correspond to the273

caterpillar spines where we have estimated the ordering between children of multifurcating nodes.274

Since the original maximum parsimony tree estimate in McKenna et al. [2016] contained many275

multifurcating nodes and our method converts any multifurcating node to a caterpillar tree, our276

final tree contains many caterpillar trees. The longest caterpillar spine in our estimated tree starts277

from the root node and connects all the major subtrees that share no indel tracts. As the zebrafish278

embryo rapidly divides from the single-cell stage, these initial CRISPR editing events establish the279

founding cell in each subtree. GAPML estimates the target cut rates to order the events along280

the caterpillar trees, an impossible task in the original Camin-Sokal multifurcating trees. Lastly,281

we observe that the last three subtrees at the end of this spine (farthest away from the root) are282

primarily composed of alleles only observed in the intestinal bulb and the posterior intestine. This283

concords with our understanding of zebrafish development: Of the dissected organs, the digestive284

tract is the last to fully differentiate at day four [Moody, 1998]. In aggregate, these examples again285

show the power of a refined lineage tree to establish new interesting biological questions and a286

refined map in which to answer them.287
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Figure 8. Estimated cell lineage tree for 400 randomly selected alleles from the first adult zebrafish using GAPML. Editing patterns in individual alleles are represented as shown

previously. Alleles observed in multiple organs are plotted on separate lines per organ and are connected with stippled branches. Two sets of bars outside the alleles identify the organ

in which the allele was observed and the proportion of cells in that organ represented by that allele (log10 scale). The dashed lines correspond to the caterpillar spines.

Figure 8–source data 1. Raw data for estimated tree in Figure 8

Figure 8–source data 2. Raw data for estimated tree from Camin-sokal parsimony and chronos for the same alleles in Figure 8

Figure 8–source data 3. Raw data for estimated tree from neighbor-joining and chronos for the same alleles in Figure 8

Figure 8–Figure supplement 1. Estimated cell lineage tree for all alleles from the second adult zebrafish using GAPML.

Figure 8–source data 4. Raw data for estimated tree from GAMPL for alleles from the second adult fish

Figure 8–source data 5. Raw data for estimated tree from Camin-sokal parsimony and chronos for alleles from the second adult fish

Figure 8–source data 6. Raw data for estimated tree from neighbor-joining and chronos for alleles from the second adult fish
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Analysis of GESTALT barcode mutation parameters288

Finally, our model’s estimated target cut rate parameters (Table 1) provide an interesting resource289

when considering redesigns of the GESTALT barcode. Here we focus on the GESTALT barcode in the290

adult fish. The estimated target cut rates were very similar across the two fish replicates.291

We estimated very different cut rates across the ten targets. Target 1 and 9 had the highest cut292

rates; target 3 had the lowest cut rate. The ratio between the highest and lowest cut rates is at least293

10 in both fish, i.e. a deletion at target 1 is at least 10 times more likely to occur than at target 3. In294

terms of the tree estimation, the targets with high cut rates mainly help capture early cell divisions295

whereas targets with low cut rates tend to capture late cell divisions. Having a broad spectrum of296

target cut rates is useful for capturing cell divisions throughout the tree, though the specific details297

depends on the true tree. Our simulation engine may be useful for understanding how variation in298

the target rates affects estimation accuracy under various conditions.299

The double cut rate is similar across the fish. The rate is quite high: For the first adult fish, the300

double cut rate of 0.076 means that the probability of introducing a single-target indel as opposed301

to an inter-target indel in an unmodified barcode is 59%. To counter this, we can decrease the302

number of long inter-target deletions (and the number of masked events) by placing high cut-rate303

targets closer together in the barcode. One potentially helpful barcode design is to place the highest304

cut-rate targets in the center and the lowest cut-rate targets on the outside. Alternatively, designers305

could arrange the targets from highest to lowest cut rate. Table 1 shows that the current barcode306

design is counter to our suggestion, as the two targets with the highest cut rates in the two adult307

fish are targets 1 and 9.308

The characterization of target efficiencies in a compact multi-target barcode is challenging309

problem. Our method can help steer the next generation of CRISPR-based lineage recording310

technologies to have increased recording capacity.311

Discussion312

In this manuscript, we have proposed a statistical model for themutation process for GESTALT, a new313

cell lineage tracing technology that inserts a synthetic barcode composed of CRISPR/Cas9 targets314

into the embryo. Our method, GAPML, estimates the cell lineage tree and the mutation parameters315

from the sequenced modified barcode. Unlike existing methods, our method estimates branch316

lengths and the ordering between children nodes that share the same parent. We demonstrate317

that our method outperforms existing methods on simulated data, provides more consistent318

results across biological replicates, and outputs trees that better concord with our understanding319

of developmental biology. We have answered the question "Is it possible to reconstruct an accurate320

cell lineage tree using CRISPR barcodes?” in Salvador-Martínez et al. [2018] in the affirmative: The321

cell lineage tree can be estimated to a high degree of accuracy as long as appropriate methods are322

used.323

Our method provides a number of technical contributions to the phylogenetics literature. The324

GESTALT mutation process violates many of the classical phylogenetic assumptions that existing325

methods rely upon for computational tractability. Thus we determined the most appropriate326

assumptions that are most suitable in this new setting and developed new methods so that the327

likelihood is computationally tractable and the estimated trees are accurate. We believe these328

techniques could be useful for other phylogenetic problems where the independent-site assumption329

does not hold. In addition, our methods may be useful as a jumping off point for analyzing other330

CRISPR-based cell lineage tracing technologies, such as that using homing CRISPR barcodes [Kalhor331

et al., 2017, 2018]. There are still many areas of improvements for the current method, such as332

quantifying the uncertainty of our estimates, estimating meta-properties about the cell lineage tree333

for organisms of the same species, and utilizing data sampled at multiple time points.334

Finally, the biological results were relatively limited since the goal of this manuscript was335

primarily on methods development and the data in McKenna et al. [2016] only provide tissue336
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Adult fish #1 Adult fish #2 3 day #1 30 hpf #5 4.3 hpf #1

Target 1 3.053 1.320 0.410 1.595 1.301

Target 2 1.232 0.317 0.155 0.697 0.474

Target 3 0.063 0.108 0.129 0.618 0.154

Target 4 1.234 0.821 0.223 0.561 0.399

Target 5 0.619 0.542 0.179 0.510 0.276

Target 6 1.329 0.652 0.182 1.155 0.385

Target 7 0.761 0.470 0.344 0.544 1.088

Target 8 0.090 0.136 0.141 1.171 0.151

Target 9 2.422 1.529 0.404 1.176 1.146

Target 10 0.285 0.371 0.132 1.150 0.155

Double cut rate 0.076 0.084 0.052 0.090 0.065

Left trim zero prob 0.015 0.028 0.015 0.258 0.025

Left trim length mean 6.330 6.634 5.165 12.000 6.405

Left trim length SD 4.956 5.184 4.245 6.633 4.998

Right trim zero prob 0.906 0.834 0.890 0.238 0.818

Right trim length mean 4.945 3.759 3.716 4.800 3.478

Right trim length SD 6.173 5.534 5.529 4.011 5.360

Insertion zero prob 0.400 0.411 0.401 0.520 0.419

Insertion length mean 5.085 4.540 5.786 5.446 4.589

Insertion length SD 5.798 5.533 5.219 7.291 4.708

Table 1. Fitted parameters in the adult fish as well as some other fish embryos. The parameters above the line

are related to target cut rates and the ones below the line are related to the nucleotide deletion and insertion

process.
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source information. In future work, we plan to apply our method to analyze data where each allele337

is paired with much richer information, such as single-cell gene expression data [Raj et al., 2018].338

Materials and Methods339

Data340

The data processed in this paper are all fromMcKenna et al. [2016] and are available at the Gene341

Expression Omnibus under GSE81713. We use the aligned data where each allele was described342

with the observed insertion/deletions (indels) at each target. Each CRISPR target can only be343

modified once and indels can only be introduced via a double-stranded break at a target cut site,344

so we further processed the aligned data accordingly: merging indels if there were more than one345

associated with a given target, and extending the deletion lengths and insertion sequences so that346

a target cut site was nested within each indel. For this paper, we assume that the processed data is347

correct and do not attempt to model the effects of alignment error.348

Methodological contributions349

Here we highlight the key methodological contributions that we needed to develop in order to350

analyze GESTALT. We needed to develop new methodology because the GESTALT mutation process351

violates many classical assumptions in phylogenetics.352

Since GESTALT is a new technology, we introduce new mathematical abstractions for the biologi-353

cal process. We then consider all statistical models that satisfy our proposed set of assumptions. We354

carefully designed these assumptions to balance biologically realism and computationally feasibility.355

We next show that such models are “lumpable” and use this to efficiently calculate the likelihood.356

Even though lumpability has been used to reduce computation time for general Markov chains, this357

idea is rarely used in phylogenetics. We show how lumpability can be combined with Felsenstein’s358

algorithm if the mutation process is irreversible.359

In addition, our method estimates trees at a finer resolution compared to other methods, which360

leads to better tree estimates. In particular, we resolve the multifurcations as a caterpillar tree and361

show how to efficiently search over caterpillar tree topologies. As far as we know, this is one of the362

few methods that tunes the tree topology, which is typically treated as a combinatorial optimization363

problem, by solving a continuous optimization problem. The closest equivalent appears in the364

Bayesian phylogenetics literature where local changes to the topology may be introduced via a365

Subtree-Slide operator [Hohna et al., 2008].366

To handle the small number of barcodes, we improve the stability of the method by maximizing367

the penalized log likelihood. Previous phylogenetic methods that penalize branch lengths assume368

that the tree topology is known [Kim and Sanderson, 2008, Zhang et al., 2018]. However, the tree369

topology is unknown in GESTALT. We show how penalization can be combined with tree topology370

search methods. Combining the two is not trivial since a naïve approach will bias the search towards371

incorrect topologies.372

Finally, we use an automatic differentiation framework to optimize the phylogenetic likelihood.373

Automatic differentiation software has accelerated deep learning research since they allow re-374

searchers to quickly iterate on their models [Baydin et al., 2018]. Likewise, we found that this tool375

greatly accelerated our progress and, through this experiment, we believe that this tool may greatly376

accelerate the development of maximum likelihood estimation methods in phylogenetics.377

GESTALT framework and definitions378

In this section, we present mathematical definitions for the many components in GESTALT, though379

begin in this paragraph by giving an overview in words. We begin with defining the barcode and380

the individual targets within it. A barcode is mutated when nucleotides are inserted and/or deleted,381

which is referred to as an indel tract. We then define a possibly-mutated barcode or allele as a382

collection of the observed indel tracts. Finally, we use all these abstractions to define the barcode383
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c(1)

pos(1)

c(2)

pos(2)

c(M)

pos(M)

c(M-1)

pos(M-1)

…

(a) A barcode withM targets. The cut site of the

targets, c(j) for j = 1, ...,M , are shown by the
bolded black lines. The positions associated with

each target are highlighted in the gray boxes.

p0,1 p1,1

c(j0,1),c(j1,1)

p0,2 p1,2

c(j0,2) c(j1,2)

s2

IT[p0,1,p1,1,s1,j0,1,j1,1] IT[p0,2,p1,2,s2,j0,2,j1,2]

(b) An example allele with two indel tracts. The

left indel tract was introduced by a cut at a single

target and does not have an insertion, i.e. s1 = ∅.
The right indel tract was introduced by cuts at two

targets. Red indicates deletion and blue indicates

insertion.

Figure 9. Illustration of GESTALT definitions

mutation process, which is framed as stochastic process where the state space corresponds to all384

possible alleles and the transitions correspond to indel tracts. To aid the reader, Table 2 briefly385

summarizes the definitions used in the paper.386

The unmodified barcode is a nucleotide sequence where M disjoint subsequences are des-387

ignated as targets (Figure 9a). The targets are numbered from 1 toM from left to right and the388

positions spanned by target j are specified by the set pos(j). Each target j is associated with a single389

cut site c(j) ∈ pos(j).390

A barcode can be modified by the introduction of an indel tract. An indel tract, denoted by391

IT[p0, p1, s, j0, j1], is a mutation event in which targets j0 and j1 are cut (j0 ≤ j1), positions p0, p0 +392

1, ..., p1 − 1 in the unmodified barcode are deleted, and a nucleotide sequence s is inserted. If j0 = j1,393

only a single target is cut. When p0 = p1, then no positions are deleted. If s is of length zero, then no394

nucleotides are inserted. We only consider indel tracts that modify the sequence, i.e. either p0 < p1395

or s has positive length, and nest at least one target cut site between positions p0 and p1.396

A possibly-modified barcode, also referred to as an allele, is a sequence of disjoint indel tracts

associated with a single barcode (Figure 9b)

a ≡
{

IT[p0,k, p1,k, sk, j0,k, j1,k] ∶ k ∈ {1, ..., m}
}

(1)

where m ≥ 0 and p1,k < p0,k+1 for k = 1, ..., m − 1. The positions p0,k, p1,k in the indel tracts always refer397

to the positions in the original unmodified barcode: deletions and insertions do not change the398

indexing. Let Ω be the set of all possible alleles.399

A target j is active in allele a if none of the nucleotides in pos(j) are modified. That is, the status
of target j in allele a is

TargStat(j; a) = 1{∃ IT[p0, p1, s, j
′

0, j
′

1] ∈ a and ∃k ∈ pos(j) s.t. p0 ≤ k ≤ p1}.

So TargStat(j; a) is 0 if target j is active and 1 if it is inactive. For convenience, denote the target
status of allele a as

TargStat(a) = (TargStat(1; a), ...,TargStat(M ; a)). (2)

We now introduce the rules governing how alleles change through the introduction of indel400

tracts. First, transitions between possible allele states Ω are constrained by the status of the targets.401

For a given allele a, we can introduce the indel tract d = IT[p0, p1, s, j0, j1] if and only if targets j0 and402
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Indel tracts

overlap

Indel tracts

are adjacent

Figure 10. Possible transitions from the top allele and the bottom allele: either an indel tract is introduced that

overlaps with an existing indel tract (middle top) or an adjacent indel tract is introduced (middle bottom).

j1 are active. Note that the set of transitions allowed under this rule is a superset of biologically-403

plausible transitions. For example, even if position p0 is deleted, introducing indel tract d is formally404

allowed in our scheme. However in order to exclude biologically-implausible transitions, our models405

assign near-zero probability to such transitions.406

Let Apply(a, d) be the resulting allele from introducing indel tract d into allele a. If indel tract d407

does not overlap any other indel tract in a, then Apply(a, d) is simply the union a∪{d}. If d completely408

masks other indel tracts, i.e. all indel tracts in a are either completely within the range of p0 to p1 − 1409

or are completely outside of the range, then Apply(a, d) is the resulting allele after removing the410

masked indel tracts and adding d. The last possibility is that d is adjacent or overlaps, but does411

not fully mask, other indel tract(s) in a; then Apply(a, d) is the resulting allele after properly merging412

overlapping indel tracts (Figure 10). From a biological perspective, it is impossible to introduce413

overlapping but non-masking indel tracts. However the likelihood model is much simpler if we414

allow such events to happen. Since deletion lengths tend to be short in the empirical data (75%415

quantile = 10,McKenna et al. [2016]), we will estimate that long deletion lengths occur with small416

probability, which means that these overlapping but non-masking indel tracts have very small417

probabilities. Thus we believe our model closely approximates the GESTALT mutation process. We418

will also discuss an assumption that removes these overlapping indel tracts from the likelihood419

calculation entirely in more detail in the following section.420

GESTALT Model and Assumptions421

Here we define the GESTALT model more concretely and formalize the model assumptions pre-422

sented in the Introduction. Recall the three model assumptions. First, as we rarely observe very423

long deletion lengths in the GESTALT data, we assume that indel tracts are introduced by cuts424

at the outermost cut sites (assumption A). In addition, based on our biological understanding425

of the CRISPR/Cas9 mutation process, we assume that mutations occur in two stages: first the426

targets are cut according to the rates of the active targets (assumption B) and then nucleotides are427

deleted/inserted according to a process that only depends on which targets were cut (assumption428

C). Figure 11 presents a flowchart of how the assumptions are used to derive later results.429

The barcode mutation process up to time T is formulated as a continuous time Markov chain430

{X(t) ∶ 0 ≤ t ≤ T } with state space Ω. As mentioned before, the choice of using state space Ω431

implicitly assumes that indel tracts are introduced instantaneously, i.e. nucleotides are inserted432

and/or deleted immediately after target(s) are cut.433

For a given tree T , let tN be the length of the branch ending with node N and let {XN(t) ∶ 0 ≤ tN}434

be the Markov process along the branch. In addition, let aN be the allele observed at that leaf, and435

let Leaves(N) denote all leaves with ancestral node N. The set of leaves in the entire tree T is denoted436

Leaves(T ). As notational shorthand, we denote the Markov process for the branches with end nodes437

in the set S as XS . In addition, the observed alleles in the leaf set S are denoted aS .438
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Symbol Description Eq.

XN(t) Markov process along branch ending with node N

XS (t) Markov process along branches ending with nodes in

set S
aN Observed allele at leaf N

aS Observed alleles at leaves in set S
pos(j) Positions of target j in the unmodified barcode
c(j) Cut site of target j

Leaves(N) Leaves of node N

Desc(N) Descendants of node N

TargStat(a) Status of targets in allele a. 1 in position j indicates
target j is inactive

(2)

IT[p0, p1, s, j0, j1] Indel tract that cuts targets j0 and j1, deletes positions
p0 to p1 − 1, inserts s

TT[j′0, j0, j1, j
′
1] Target tract: all indel tracts that cut targets j0 and j1 and

deactivate targets j′0 to j
′
1

(5)

TT(d) The target tract that indel tract d belongs to
WC[j0, j1] Wildcard: any indel tract that only deactivates targets

with indices j0 to j1

(8)

SGWC[p0, p1, s, j0, j1] Singleton-wildcard: union of an indel tract and its inner

wildcard

(9)

AncState(N) The set of likely ancestral states for node N (7)

Table 2. Notation used in this paper

Assumption 1 
(outermost-cuts) 
Indels are 
introduced by cuts 
at the outermost 
cut sites

Assumption 2 
(target-rates) The hazard of 
introducing any indel tract from 
a target tract only depends on 
which targets are active 
(indel-probability) Conditional 
probability that an indel is 
introduced only depends on the 
target tract that was introduced

Definition 2 + Lemma 3 (Lumpability) 
For each branch, the transitions 
between meta-states, which aggregate 
possible barcode states by target 
status, follow a Markov process.

Theorem 1 
The likelihood can be 
computed with respect 
to the meta-states using 
Felsenstein’s pruning 
algorithm.

Lemma 2 
We can efficiently construct 
the states to sum over for 
approximating the likelihood.

We can efficiently calculate 
the approximate likelihood

Approximation 1 
Approximate the 
likelihood by only 

summing over 
mutation histories 

where no indel 
tracts merge.

Irreversibility 
Assumption 

Once a target is 
modified, the 
target is no 
longer active.

Figure 11. A guide for how assumptions, approximations, and derived results connect and lead to our final

algorithm for approximating the likelihood. The flowchart also maps the formal assumptions here to

Assumptions A, B, and C in the introduction.

18 of 38

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2019. ; https://doi.org/10.1101/595215doi: bioRxiv preprint 

https://doi.org/10.1101/595215
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

If there are multiple barcodes, we use the notation X(i)
N
(⋅) to represent the process for the ith439

barcode and a(i)
N
to represent the allele observed on the ith barcode. In the manuscript, we assume440

the barcodes are independently and identically distributed. Therefore we will typically discuss the441

model and assumptions in the context of a single barcode and omit the index of the barcode.442

Unfortunately, calculating the likelihood of the tree for a general model where the mutation443

rate depends on the entire sequence is computationally intractable: We would need to compute444

the transition rates between an infinite number of barcode states. Instead we introduce a model445

assumption so that we can aggregate the possible barcode states into lumped states indexed by446

target statuses. Then we can compute the likelihood using transition matrices of dimension at447

most 2M × 2M . AsM is typically small (M = 10 inMcKenna et al. [2016]), the assumption makes the448

likelihood computationally feasible.449

First we formalize the outermost-cuts assumption, which states that the cuts for an indel tract450

occur at the outermost cut sites. We define this mathematically by requiring that for any indel tract451

where targets j0 and j1 are cut, the deletions to the left and right cannot extend past the cut site of452

the neighboring targets j0 − 1 and j1 + 1.453

Assumption 1 (outermost-cuts). All indel tracts are of the form IT[p0, p1, s, j0, j1] where
c(j0 − 1) < p0 ≤ c(j0) if j0 ≥ 1
c(j1) ≤ p1 < c(j1 + 1) if j1 ≤M.

454

This assumption limits the possible mutation histories of the alleles. Note that Assumption 1 still

allows indel tracts to deactivate targets immediately neighboring the cut site. That is, an indel tract

d = IT[p0, p1, s, j0, j1] can either have a short deletion to the left so that target j0 − 1 is unaffected or a
long deletion to the left such that target j0 − 1 is deactivated, i.e.

d has a short left deletion if p0 ∈ pos(j0) (3)

d has a long left deletion if p0 ∈ pos(j0 − 1) (4)

We can have similar short and long deletions to the right.455

For the second assumption, let us introduce the concept of a target tract, which is a set of

indel tracts that cut the same target(s) and deactivate the same target(s). A target tract, denoted

TT[j′0, j0, j1, j
′
1], is the set of all indel tracts that cut targets j0 and j1 and delete nucleotides such that

targets j′0 through j
′
1 are inactive, i.e.

TT[j′0, j0, j1, j
′
1] =

{

IT[p0, p1, s, j0, j1] ∶ p0 ∈ pos(j′0), p1 ∈ pos(j
′
1)
}

. (5)

Note that we always have that j′0 ≤ j0 ≤ j1 ≤ j′1. Each indel tract d belongs to a single target tract; we456

denote its associated target tract by TT(d).457

This second assumption decomposes the mutation process into a two-step process where458

targets are cut and then indels are introduced; and combines the target-rate and indel-probability459

assumptions. In particular, the assumption states that the instantaneous rate of introducing an460

indel tract can be factorized into the rate of introducing any indel tract from a target tract, which461

depends on the target status of the current allele, and the conditional probability of introducing an462

indel tract which only depends on the target tract.463

Assumption 2 (rate-rate, indel-probability). Let a be any allele, d be any indel tract that can be
introduced into a, and � be the target tract TT(d). The instantaneous rate of introducing indel tract d in
allele X(t) = a can be factorized into two terms: first, a function ℎ that only depends on �, TargStat(a),
and time t, then second, the conditional probability of introducing d given �:

q(a,Apply(a, d), t) ∶= lim
Δ→0

Pr (X(t + Δ) = Apply(a, d)|X(t) = a)
Δ

= ℎ (�,TargStat(a), t) Pr (d|�) .
464
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Thus the instantaneous rate of introducing d only depends the allele a through its target status.465

Using this assumption, we will show that the mutation process is equivalent to a continuous time466

Markov chain where we lump together possible allele states that share the same target status.467

Likelihood approximation: summing over likely ancestral states468

The likelihood of a given tree and mutation parameters is the sum of the probability of the data469

over all possible mutation histories. There are many possible ancestral states since inter-target470

deletions can mask previously-introduced indel tracts. In this section, we present an approximation471

of the likelihood that only sums over the likely ancestral states and ignores those with very small472

probabilities. We also provide a simple algorithm that efficiently specifies the set of these likely473

states, which is useful when we actually implement the (approximate) likelihood calculation.474

We first address the problem that inter-target indel tracts have too many possible histories475

for brute-force computation. Not only can inter-target deletions mask previously-introduced476

indel tracts, but they can also result from merging overlapping multiple indel tracts. To simplify477

the likelihood calculation, we ignore any mutation history where indel tracts merge. We are478

motivated to do so by observing that indel tracts rarely merge –merging only occurs when many479

nucleotides are deleted whereas we mostly observe short deletions in the experimental data. Thus,480

mutation histories involving merging indel tracts probably contribute a negligible fraction to the481

total likelihood. The approximation is therefore as follows:482

Approximation 1. We approximate the likelihood with the probability of the data over all possible
mutation histories where no two indel tracts are ever merged:

Pr
(

XLeaves(N)(T ) = aLeaves(N)
)

≈ Pr
(

XLeaves(N)(T ) = aLeaves(N),no indel tracts merged
)

. (6)

483

Note that this approximation strictly lower bounds the full likelihood since we sum over a subset of484

the possible histories.485

Based on Approximation 1, we define a partial ordering between alleles. Given two alleles

a, a′ ∈ Ω, we use a′ ⪰ a to indicate that a can transition to the allele a′ without merging indel tracts,
i.e. there is a sequence of indel tracts {di}mi=1 such that

a′ = Apply
(

dm,Apply
(

dm−1, ....Apply(d1, a)
))

where no indel tracts merge.486

Now we present an algorithm to concisely express the set of alleles that are summed over at

each internal node under Approximation 1. For the tree T and observed alleles aLeaves(T ), define the
set of likely ancestral states at each internal node N as

AncState
(

N; T , aLeaves(T )
)

=
{

a ∈ Ω ∶ a ⪯ aL∀ L ∈ Leaves(N)
}

. (7)

We define AncState(⋅) over leaf nodes in the same way as (7), but we interpret this set as the487

alleles that likely preceded the observed allele. Henceforth, we use the shorthand notation488

AncState(N) ≡ AncState
(

N; T , aLeaves(T )
)

whenever the context is clear. The approximate likelihood489

from Approximation 1 is equal to summing over AncState(N) at each internal node N.490

To construct the sets AncState(N), we also need sets of indel tracts of the following forms491

(Figure 12a):492

• wildcard2 WC[j0, j1]: the set of all indel tracts that only deactivate targets within the range j0
to j1

WC[j0, j1] =
{

IT[p′0, p
′
1, s

′, j′0, j
′
1] ∶ pos(j0 − 1) < p

′
0, p

′
1 < pos(j1 + 1)

}

(8)

2In software systems, a wildcard is a symbol used to represent one or more characters (e.g. “*”). Similarly, we define wildcard

here as all indel tracts that only deactivate targets within a specified range.
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WC[2,3]

…

s

{IT[p0,p1,s,1,4]}

SGWC[p0,p1,s,1,4]

TT[1,1,3,4]

…

(a) Relationship between indel tracts (IT), target tracts (TT),
wildcards (WC), and singleton-wildcards (SGWC). Each indel tract is
shown in the context of a barcode. Each box represents a set of

indel tracts; we show the notation at the top of the box for

describing that set of indel tracts. A singleton-wildcard is the union

of a singleton set composed of an indel tract and an inner wildcard.

d2d1

pos(1) pos(2) pos(3) pos(4) pos(5)

?

(b) Bottom: An example of an allele with

two indel tracts d1 and d2 where d1 must
have been introduced before d2, because
d1 cuts target 2 while d2 deactivates target
2 through 4. Top: A two-leaf tree where

one leaf is the example allele and the

other leaf is an allele with only d2. Since d1
must be introduced before d2, the only
possible ancestral state of the parent is an

unmodified allele. On the other hand, if d2
did not overlap with pos(2), we can simply
take the intersection of the two alleles to

get a possible ancestral state.

Figure 12. Visual dictionary of indel tract sets (a) and example of ordering between indel tracts in an allele (b).

• singleton-wildcard SGWC[p0, p1, s, j0, j1]: the union of the singleton set {IT[p0, p1, s, j0, j1]} and
its inner wildcard, if it exists:

SGWC[p0, p1, s, j0, j1] =

⎧

⎪

⎨

⎪

⎩

{IT[p0, p1, s, j0, j1]} ∪ WC[j0 + 1, j1 − 1] if j0 + 1 ≤ j1 − 1

{IT[p0, p1, s, j0, j1]} otherwise

(9)

The singleton of singleton-wildcard (9) refers to {IT[p0, p1, s, j0, j1]} and the inner wildcard of a493

singleton-wildcard refers toWC[j0 + 1, j1 − 1] if it exists and ∅ otherwise.494

Two singleton-wildcards are disjoint if the range of their positions don’t overlap. A wildcard is495

disjoint from a wildcard/singleton-wildcard if the range of their targets don’t overlap.496

Given a set of indel tracts D, let the alleles generated by D, denoted Alleles(D), be the set of
alleles that can be created using subsets of D, i.e. Alleles(D) is

{

{IT[p0,k, p1,k, sj , j0,k, j1,k]}mk=1 ⊆ D ∶ m ∈ ℕ, p1,k < p0,k+1∀k = 1, ..., m − 1
}

.

We are interested in wildcards and singleton-wildcards because for any leaf node L with indel tracts

IT[p0,m, p1,m, sm, j0,m, j1,m] for m = 1, ...,ML, a superset of AncState(L) is the alleles generated by the
union of their corresponding singleton-wildcards, i.e.

AncState(L) ⊆ Alleles

(

⋃

m=1,...,ML

SGWC[p0,m, p1,m, sm, j0,m, j1,m]

)

. (10)

In fact, the following lemma states that we can use a recursive algorithm to compute supersets497

of AncState(N). The algorithm starts at the leaves and proceeds up towards the root. We first use498

(10) to compute supersets of AncState(L) for all leaf nodes L. Now consider any internal node N499

with two (direct) children nodes C1 and C2. For mathematical induction, suppose that we have500

already computed supersets of AncState(Ci) for i = 1 and 2 that are the alleles generated by unions501

of wildcards/singleton-wildcards. We compute the superset of AncState(N) as the alleles generated502
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by the nonempty pairwise intersections of wildcards and/or singleton-wildcards corresponding503

to AncState(C1) and AncState(C2). Since the intersection of wildcards and/or singleton-wildcards504

is always a wildcard or singleton-wildcard, we can also write this superset as the alleles gener-505

ated by the union of disjoint wildcards and/or singleton-wildcards. We can repeatedly intersect506

wildcards/singleton-wildcards for internal nodes with multiple children nodes. The proof for the507

lemma is straightforward so we omit it here.508

Lemma 1. Consider any internal node N with children nodes C1, ..., CK . Suppose for each child Ck, we
have that

AncState(Ck) ⊆ Alleles
⎛

⎜

⎜

⎝

MCk
⋃

m=1
DCk ,m

⎞

⎟

⎟

⎠

(11)

where {DCk ,m
}MCk
m=1
are pairwise disjoint wildcards and/or singleton-wildcards. Then, we can also write

AncState(N) in the form of (11) where {DN,m
}MN
m=1 are the non-empty intersections of DC1 ,m1 ∩ ... ∩DCK ,mK ,

i.e.
{

DN,m
}MN
m=1 =

{

D′ = DC1 ,i1 ∩ ... ∩DCK ,mK ∶ D
′ ≠ ∅, m1 ∈ {1,⋯ ,MC1

},⋯ , mK ∈ {1,⋯ ,MCK
}
}

. (12)

For efficiency reasons, we are not satisfied with computing supersets of AncState(⋅); rather, we
would like to concisely express the set of alleles that is exactly equal to AncState(⋅). The only case
in which the algorithm computes a strict superset of AncState(N) is when the alelles observed at
the leaves of N imply that the observed indel tracts must be introduced in a particular order. For

example, if an allele has indel tracts d1 and d2, we know that d1 must be introduced before d2 if d1
cuts target j and d2 deactivates target j (Figure 12b). Due to this ordering, we may find that the
same indel tract observed in two alleles must have been introduced independently (also known

as homoplasy in the phylogenetics literature). To indicate such orderings, we use the notation

d ∈ a ⇒ d′ ∈ a to denote that “if indel tract d is in allele a, then indel tract d′ must also be in a.“ The
set of alleles respecting this ordering constraint is denoted

Order
(

d ⇒ d′
)

=
{

a ∈ Ω ∶ d ∈ a ⟹ d′ ∈ a
}

.

Per this definition, Order(d ⇒ d′) contains all alleles that do not include d.509

The following lemma builds on Lemma 1 and computes the sets exactly equal to AncState(⋅). The510

algorithm is similar as before, but the parent nodes also adopt ordering requirements from their511

children nodes. Note that ordering requirements only ever involve observed indel tracts. Again, the512

proof for the lemma is straightforward so we omit it here.513

Lemma 2. For any leaf node L, suppose its observed allele is {dm ∶ m = 1, ...,ML} for some ML ≥ 0,
where dm = IT[p0,m, p1,m, s, j0,m, j1,m]. Denote its list of ordering requirements as

Orderlist
L

=
{

Order
(

dm ⇒ dm′
)

∶ m,m′ ∈ {1, ...,ML}, m ≠ m′, p1,m ∈ pos(j0,m′ ) or p0,m ∈ pos(j1,m′ )
}

.

Then

AncState(L) = Alleles

(ML
⋃

m=1
DL,m

)

∩

[

⋂

Order(d⇒d′)∈OrderlistL

Order(d ⇒ d′)

]

(13)

where DL,m = SGWC[p0,m, p1,m, sj , j0,m, j1,m].514

Similarly, for any internal node N, we can also write AncState(N) in the form of (13). If node N has
children nodes C1, ..., CK ,

{

DN,m
}MN
m=1 are pairwise disjoint wildcards and/or singleton-wildcards satisfying

(12) and

Orderlist
N

=

{

Order(d ⇒ d′) ∈

[

K
⋃

k=1
Orderlist

Ck

]

∶ d ∈

[MN
⋃

m=1
DN,m

]}

.

Now that we’ve shown thatAncState(N) can be written in terms of disjoint wildcards and singleton-515

wildcards, we introduce onemore notation that will be useful later. Define SG(N) to be the singletons516

from the singleton-wildcards in AncState(N).517
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Likelihood calculation: aggregating states518

Here we show how to use the concept of “lumpability“ to calculate the approximate likelihood (6),519

even when there are an infinite number of ancestral states. Recall that we previously proposed520

calculating (6), which sums over a subset of all possible ancestral states. Though this has decreased521

the set of states to sum over, the number of ancestral states under consideration at each tree node522

is still infinite. Even if we ignore the insertion sequences, the number of possible ancestral states523

still grows at a rate of O(p2) where p is the number of positions in the unmodified barcode and the524

likelihood calculation has complexity O(p6) since we need to construct transition matrices. Since525

the barcode is 300 nucleotides long inMcKenna et al. [2016], we cannot calculate the likelihood by526

considering all possible states separately.527

To handle Markov processes with infinite state spaces, one solution is to partition the states into528

lumped states and show that the behavior of the original Markov process is equivalent to that of an529

aggregate Markov process over the lumped states [Kemeny and Laurie Snell, 1976, Hillston, 1995].530

This property, called “lumpability,“ is defined as follows.531

Definition 1. Let X(t) be a continuous time Markov chain with state space Ω. If there exists a partition
{A1, ..., AM} of Ω and a continuous time Markov chain Y (t) with state space {A1, ..., AM} such that

Pr(X(t) ∈ Ai) = Pr(Y (t) = Ai) ∀i = 1, ...,M,

then X is lumpable.532

Although lumpability is a well-established technique for Markov chains, the practical difficulty is533

typically in constructing the appropriate partition [Ganguly et al., 2014].534

There is relatively little work on applying these ideas of lumpability in phylogenetics. (The one

application in Davydov et al. [2017] calculates the likelihood of a codon model approximately by
assuming states are lumpable, even though this is not necessarily true in their model; here we will

show that the states are indeed lumpable.) Here we extend lumpability to the phylogenetics setting

where we have different partitions of the state space at each tree node. In particular, for some

indexing set B, define a partition {g(b; N) ∶ b ∈ B} of Ω at every node N. Lumpability is only useful for
efficient phylogenetic likelihood computation if these partitions are compatible with Felsenstein’s

pruning algorithm [Felsenstein, 1981]. For any b ∈ B and node N, let pN(b) be the component of the
likelihood for the subtree below N for states in partition b:

pN(b) = Pr
(

XLeaves(N)(T ) = aLeaves(N)
|

|

|

XN(tN) ∈ g(b; N)
)

(14)

By Felsenstein’s algorithm, we have

pN(b) =
∏

C∈children(N)

{

∑

b′∈B

pC(b′) Pr
(

XC(tC) ∈ g(b′; C)|XC(0) ∈ g(b; N)
)

}

. (15)

For lumpability to be useful, we must be able to show that there exists an easy-to-compute weight

function w(b, N, b′, C) such that

pN(b) =
∏

C∈children(N)

{

∑

b′∈B

pC(b′)w(b, N, b′, C) Pr
(

XC(tC) ∈ g(b′; C)|XC(0) ∈ g(b; C)
)

}

(16)

and that for each tree node C, XC(⋅) is indeed lumpable over the partition g(⋅; C). Obviously if the535

partitions are the same across all tree nodes, then we can just set all weights to one. However we536

will need to construct a different partition for each tree node for the GESTALT likelihood.537

We propose partitioning Ω at tree node N based on whether or not the allele is a likely ancestral538

state (i.e. is it in AncState(N)) and its target status (Figure 2):539

Definition 2. Define the indexing set B to be {0, 1}M ∪ {other}.540
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For internal tree node N, partition the state space Ω into
⎧

⎪

⎨

⎪

⎩

g(b; N) = {a ∈ AncState(N) ∶ TargStat(a) = b} ∀ b ∈ {0, 1}M

g(other; N) = Ω − AncState(N).
(17)

For leaf node N, partition the state space Ω into
⎧

⎪

⎪

⎨

⎪

⎪

⎩

g(b; N) = {aN} if b = TargStat(aN)
g(b; N) = ∅ if b ∈ {0, 1}M and b ≠ TargStat(aN)
g(other; N) = Ω − {aN}.

(18)

541

To prove that the Markov process over the branch with end node N is lumpable with respect to542

the proposed partition, we show that the instantaneous transition rate from any allele in g(b; N) to543

the set g(b′; N) is the same. Therefore we use qlump to denote the transition rates between the lumped544

states {g(b; N)}. The results show that there are two types of transitions between the lumped states,545

which determines the appropriate formula for calculating qlump. Either the transition corresponds to546

an observed indel tract and there is only one indel tract that is a valid for transitioning between the547

lumped states; or the transition corresponds to a masked indel tract, in which case all indel tracts548

from the possible target tracts are valid transitions between the lumped states.549

Lemma 3. Suppose Assumption 2 holds. Consider any branch with child node C, and target statuses
b, b′ ∈ {0, 1}M where the sets g(b; C) and g(b′; C) are nonempty. For any alleles a, a′ ∈ g(b; C), we have

qlump
(

g(b; C), g(b′; C), t
)

= lim
Δ→0

Pr
(

XC(t + Δ) ∈ g(b′; C)|XC(t) = a
)

Δ

= lim
Δ→0

Pr
(

XC(t + Δ) ∈ g(b′; C)|XC(t) = a′
)

Δ
.

(19)

If the only transition from an element in g(b; C) to g(b′; C) is via the unique indel d ∈ SG(C) that deactivates
the targets b′ ⧵ b, then

qlump
(

g(b; C), g(b′; C), t
)

= ℎ(TT(d), b, t) Pr(d|TT(d))

where ℎ is defined in Assumption 2. Otherwise, we have
qlump

(

g(b; C), g(b′; C), t
)

=
∑

�∶∃d∈�=TT(d) s.t. Apply(d,a)∈g(b′;N)
ℎ(�, b, t).

Proof. The instantaneous transition rates for an allele a ∈ g(b; C) to the set g(b′; C) is

lim
Δ→0

Pr (X(t + Δ) ∈ g(b′; C)|X(t) = a)
Δ

=
∑

a′∈g(b′;C)

q(a, a′, t)

=
∑

d∶Apply(d,a)∈g(b′;N)

ℎ(�, b, t) Pr(d|�).

If d is an indel tract that can be introduced to the allele a ∈ g(b; C) and Apply(a, d) has target status550

b′, then we can introduce the same indel tract to any other allele a′ ∈ g(b; C) and Apply(a′, d) will also551

have the target status b′. Therefore we have proven that (19) must hold for all a, a′ ∈ g(b; C).552

To calculate the hazard rate between these lumped states, we rewrite the summation by

grouping indel tracts with the same target tract:

qlump
(

g(b; C), g(b′; C), t
)

=
∑

�∶∃d∈�=TT(d)
s.t. Apply(d,a)∈g(b′;N)

{

∑

d∈�∶Apply(d,a)∈g(b′;N)

ℎ(�, b, t) Pr(d|�)

}

. (20)

One of the following two cases must be true:553
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1. From the decomposition (13) of AncState(C), there is only one indel tract d in the sets DC,m for554

m = 1, ...,MC such that Apply(a, d) ∈ g(b′, C) for all a ∈ g(b, C). d cannot be from a wildcard or555

the inner wildcard of a singleton-wildcard since this would contradict the fact that d is the only556

indel tract in {DC,m} such that Apply(a, d) ∈ g(b′, C) for all a ∈ g(b, C). Therefore d must be the557

singleton for some singleton-wildcard DC,m. In other words, the only possible transition from558

g(b; C) to g(b′; C) is via the indel tract d.559

2. Otherwise, for some target tract �, there are at least two indel tracts in d, d′ ∈ � in the560

sets DC,m for m = 1, ...,MC that deactivate targets b′ ⧵ b such that Apply(a, d) ∈ g(b′, C) and561

Apply(a, d′) ∈ g(b′, C) for all a ∈ g(b, C). In this case, d and d′ must be from a wildcard or562

the inner wildcard of a singleton-wildcard (d and d′ cannot both be from a singleton of a563

singleton-wildcard since d ≠ d′). Therefore every indel tract d in � satisfies Apply(a, d) ∈ g(b′, C)564

for all a ∈ g(b, C).565

Therefore (20) simplifies to

qlump
(

g(b; C), g(b′; C), t
)

=

⎧

⎪

⎨

⎪

⎩

ℎ(�, b, t) Pr(d|�) if case (1)

∑

�∶∃d∈�=TT(d) s.t. Apply(d,a)∈g(b′;N) ℎ(�, b, t) if case (2).

Note that to construct the entire instantaneous transition rate matrix of the aggregated process,566

we can easily calculate the total transition rate away from a target status and then calculate the567

transition rate to sink state g(other; C) using the fact that each row sums to zero. The transition rate568

away from g(other; C) is zero.569

We are finally ready to combine lumpability with Felsenstein’s pruning algorithm. The following570

theorem provides a recursive algorithm for calculating (6), using results from above.571

Theorem 1. Suppose the above model assumptions hold. Consider any tree node N, target status b, and
nonempty allele group g(b; N). Denote
pN(b) = Pr

(

XLeaves(N)(T ) = aLeaves(N),
{

{XN′ (t) ∶ 0 ≤ t ≤ tN′} ⊆ AncState(N′) ∶ N′ ∈ Desc(N)
}

|

|

|

XN(tN) ∈ g(b; N)
)

.

(21)

If N is an internal node, then

pN(b) =
∏

C∈children(N)

⎧

⎪

⎨

⎪

⎩

∑

b′∈{0,1}M
g(b′;C)≠∅

pC(b′) Pr
(

XC(tC) ∈ g(b′; C)|XC(0) ∈ g(b; C)
)

⎫

⎪

⎬

⎪

⎭

. (22)

where Pr (XC(tC) ∈ g(b′; C)|XC(0) ∈ g(b; C)
) is calculated using the instantaneous transition rates given in572

Lemma 3.573

Proof. For any internal node, we know that

pN(b) =
∏

C∈children(N)

⎧

⎪

⎨

⎪

⎩

∑

b′∈{0,1}M
g(b′;C)≠∅

pC(b′) Pr
(

XC(tC) ∈ g(b′; C)|XC(0) ∈ g(b; N)
)

⎫

⎪

⎬

⎪

⎭

.

(We do not need to sum over the partition g(other; N) since it contributes zero probability.) By
irreversibility of the mutation process, g(b; N) ⊆ g(b; C) if C is a child of N. By (19) in Lemma 3,

Pr
(

C(tC) ∈ g(b′; C)| C(0) ∈ g(b; N)
)

= Pr
(

C(tC) ∈ g(b′; C)| C(0) ∈ g(b; C)
)

,

which means (22) also holds for node N.574
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Note that (22) requires enumerating the possible target statuses. We can do this quickly using575

Lemma 2.576

Since each node may have a different partition of the state space, we compute a separate577

instantaneous transition rate matrix for each branch. If we have multiple barcodes, we need to578

compute a separate matrix for each branch and for each barcode. Calculating the likelihood and its579

gradient can therefore become memory-intensive when there are many branches and/or barcodes.580

One way to reduce the amount of memory is to sum over subsets of AncState(⋅) instead. This is581

often reasonable since it is unlikely for the barcode to have many hidden events. For the analyses582

of the zebrafish data, we only sum over states that can be reached when at most one masked indel583

tract occurs along each branch. If there are more than 20 such states at a node, we only sum over584

the possible states when no masked indel tracts occur along that branch.585

Caterpillar trees586

As discussed in the main manuscript, we resolve the multifurcations in the tree as caterpillar trees587

to estimate the ordering of events. Recall that a caterpillar tree is a tree where all the leaves branch588

off of a central path, which we call the “caterpillar spine.“ Thus for each multifurcating node N with589

children nodes C1, ..., CK , we resolve the multifurcation as a tree where the children nodes branch off590

of the caterpillar spine (Figure 3b). We do not consider all possible resolutions of the multifurcations591

since there are a super-exponential number of them and we likely do not have enough information592

to choose between all the possible trees (recall that they are parsimony-equivalent).593

We need an efficient method to select the best ordering in each caterpillar tree since the594

number of possible orderings for K children nodes is K!, which is also super-exponential. Since it595

is computationally intractable to calculate the likelihood for each ordering, we take an alternate596

approach where we introduce another approximation of the likelihood. This approximate likelihood597

can be computed using the samemathematical expression regardless of the ordering of the children598

nodes, which means we can tune over all possible orderings in the caterpillar trees by solving a599

single continuous optimization problem.600

Approximation 2. We approximate the likelihood by considering only the mutation histories that have
a constant allele along the caterpillar spines:

Pr
(

XLeaves(T )(T ) = aLeaves(T )
)

≈ Pr
(

XLeaves(T )(T ) = aLeaves(T ),alleles are constant on all spines
)

. (23)

601

To construct a mathematical expression for (23) that is independent of the ordering along602

caterpillar trees, we first re-parameterize the branch lengths for children of multifurcating nodes.603

For each child C of a multifurcating node, let lC indicate the distance between the child node and604

the multifurcating node and �C ∈ (0, 1) indicate the proportion of distance lC that is located on the605

caterpillar spine (Figure 13). We can capture all possible orderings in a caterpillar tree by varying606

the values of these two sets of parameters across the children of a multifurcating node.607

Next we extend the likelihood calculation in Theorem 1 where the multifurcations are resolved

as caterpillar trees and we want to calculate the approximate likelihood (23). We do this by recursing

on the analogous quantity

p̃N(a) = Pr
(

XN(T ),alleles are constant on all spines| N(0) = a
)

. (24)

To calculate (24), we use the recursive relation that p̃N(a) is equal to

⎧

⎪

⎨

⎪

⎩

Pr
(

XN(tspine) = a|XN(0) = a
)
∏

C∈children(N)

{
∑

a′∈Ω Pr
(

XC(lC(1 − �C)) = a′|XC(0) = a
)

p̃C(a′)
}

if |children(N)| > 2
∏

C∈children(N)

{
∑

a′∈Ω Pr
(

XC(tC) = a′|XC(0) = a
)

p̃C(a′)
}

otherwise

(25)

where t
spine

= max{lC�C ∶ C ∈ children(N)}. Using the same machinery in Lemma 3 and Theorem 1,608

we can then calculate (25) efficiently by grouping ancestral allele states into lumped states.609
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Figure 13. Parameterization of branch lengths in a caterpillar tree within the context of the entire tree T . The
rest of the tree is greyed out to draw focus to the caterpillar tree. The bolded path is the caterpillar spine. Each

child node C of the caterpillar tree is associated with parameters lC and �C. lC is the length of the path from the
start of the caterpillar spine to C. �C is the proportion of this path is along the caterpillar spine. The length of the
caterpillar spine, tspine, is the maximum value of �ClC over all children nodes C.

Penalization610

Our algorithm fits the tree and mutation parameters by maximizing the penalized log likelihood.611

Penalization improves accuracy when the number of observations is small relative to the number612

of parameters; GESTALT exhibits this problem because the number of parameters is large and the613

number of independent barcodes is small (McKenna et al. [2016] only has one barcode).614

We propose a tree-based penalty that discourages large differences in the branch lengths l
and the target rates �. For multifurcating nodes, the branch lengths include the length of the spine
as well as the lengths of branches off of the spine, i.e. lC(1 − l′C). Let L be the number of branch
lengths in l. The penalty is then

Pen�(�) = �1
‖

‖

‖

‖

‖

‖

log� − 1
M

M
∑

i=1
log(�i)

‖

‖

‖

‖

‖

‖

2

2

+ �2
‖

‖

‖

‖

‖

‖

logl − 1
L

L
∑

i=1
log(li)

‖

‖

‖

‖

‖

‖

2

2

where �1, �2 > 0 are penalty parameters.615

Our penalty on the branch length was also considered in the penalized likelihood framework616

in Kim and Sanderson [2008]. However the focus of Kim and Sanderson [2008] was to encourage617

development of methods that were more flexible and had fewer assumptions, rather than to618

improve estimation in high-dimensional settings. In particular, their work focused on the standard619

phylogenetic setting in which there are multiple independent sites. However, in the GESTALT setting,620

the current available datasets were generated using a single barcode and we cannot tune the621

penalty parameters using the common approach of cross-validation [Hastie et al., 2009, Arlot and622

Celisse, 2010]. In addition, Kim and Sanderson [2008] only discussed penalized likelihood in the623

context of a fixed topology. In our setting the true tree is unknown and we must consider various624

tree topologies.625

We found that a major hurdle in applying this penalized likelihood framework is that some626

topologies will naturally have larger penalties. Therefore we cannot simply choose the tree with627

the highest penalized log likelihood. Our solution is to perform a hill-climbing iterative search and628

score topology updates based on the penalized log likelihood where the penalty is restricted to the629

shared subtree. We found that our method tends to choose topology updates that improve the630

tree estimate (see Figure 17b).631

Alternatively, we could have applied regularization methods tailored for the setting where the632

topology is unknown. These methods typically regularize the tree towards a prespecified tree633
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[Wu et al., 2013, Dinh et al., 2018]. However we would like to place minimal assumptions on the634

developmental process and we have little to no knowledge about the true tree.635

Tuning penalty parameters636

By varying the value of the penalty parameters �1 and �2, we can control the trade-off between637

minimizing the penalty versus maximizing the log likelihood. Choosing appropriate values is638

crucial for estimation accuracy. A common approach for tuning penalty parameters is to use639

cross-validation [Arlot and Celisse, 2010]; we use this procedure whenever possible. Note that we640

keep the tree topology fixed when tuning the penalty parameter.641

We can perform cross-validation when there are multiple barcodes. First we partition the

barcodes into training and valdation sets T and V , respectively. Next we fit tree and mutation
parameters l̂� and �̂� , respectively, for each � using only the training data. We choose the � with
the highest validation log likelihood

1
|V |

∑

i∈V
log Pr

(

X(i)
Leaves(T )(T ) = aLeaves(T ); l̂� , �̂�

)

.

For our simulation studies with two and four barcodes, we used half of the barcodes for the642

validation set and half for training.643

Unfortunately cross-validation cannot be utilized when there is a single barcode since we644

cannot split the dataset by barcodes. Instead we propose a variant of cross-validation described645

in Algorithm 2. The main differences are that we partition the leaves instead of the barcodes into646

training and validation sets S and Sc , respectively; and we select the best penalty parameter that647

maximizes the conditional probability of the observed alleles at Sc given the observed alleles at S.648

To partition the leaves, we randomly select a subset of leaf children of each multifurcating node649

to put in the validation set Sc . We partition leaves in this manner, rather than simply dividing the650

leaves in half, because we must be able to evaluate (or closely approximate) (27) at the end of651

Algorithm 2 using the fitted branch length and mutation parameters. That is, we must be able652

to regraft the leaves in the set Sc onto the fitted tree. Regrafting is easy for the leaves in our653

specially-constructed set: The parent node of each leaf in Sc must be located somewhere along654

the caterpillar spine corresponding to its original multifurcating parent. In our implementation, we655

chose to regraft the leaves to the midpoints of their corresponding caterpillar spines. The regrafting656

procedure is illustrated in Figure 14. Note that we do not tune the branch lengths of these validation657

leaves since it amounts to peeking at the validation data. In our simulations, we found that when658

tuning the branch lengths to maximize the unpenalized (or penalized) log likelihood, we nearly659

almost always choose the smallest penalty parameter since it prioritizes maximizing the likelihood660

and, therefore, (27).661

To assess each candidate penalty parameter �, we compare the conditional probability of the
observed alleles at Sc given the observed alleles at S. Our motivation is similar to that in cross-
validation: If the alleles are observed from the tree with branch and mutation parameters l∗ and �∗,
we know that

E
[

log Pr(XSc (T )|XS (T );l∗, �∗);l∗, �∗
]

≥ E
[

log Pr(XSc (T )|XS (T );l, �);l∗, �∗
]

∀l, � (26)

by Jensen’s inequality. (Note that this conditional probability is high only for if we have good662

estimates of both the mutation parameters and branch lengths of leaves Sc . It is not sufficient to663

only have an accurate estimate of the mutation parameters.) Recall cross-validation is motivated by664

a similar inequality but uses Pr(X;l, �) rather than a conditional probability.665

From a theoretical standpoint, using (26) to select penalty parameters makes the most sense if666

we have an unbiased estimate of the expected conditional probability. Unfortunately, in our setting,667

the conditional probability in (27) is actually a biased estimate since the fitted parameters depended668

on the observed alleles at leaves S. Nonetheless, in simulations (where the truth is known), this669

biased estimate seemed to work well, as the selected penalty parameter was typically close to the670

best penalty parameter.671
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Algorithm 2 Cross validation for a single barcode

Initialize S to be all the leaves in tree T . Throughout, let Sc denote all the leaves in T not in S.
for each multifurcating node N where at least one children is a leaf do

Let C1, ..., Cm be the children nodes of N that are leaves. Randomly select m′ ≥ 1 of them and
remove these from S.

end for

Let TS be the subtree over the leaves S.
for each candidate penalty parameter � do
Maximize the penalized log likelihood of the tree TS with respect to its branch lengths l and
mutation parameters �

l̂� , �̂� = argmax
l,�

log Pr
(

XS (T ) = aS ;l,�
)

+ Pen� (l,�) .

end for

Return the penalty parameter that maximizes the conditional probability:

�̂ = argmax
�

Pr
(

XSc (T ) = aSc ∣ XS (T ) = aS ; l̂� , �̂�
)

. (27)

1. Partition leaves 2. Fit tree over

remaining leaves

3. Regraft held-out

leaves

Figure 14. Cross-validation to tune penalty parameters with only one barcode. We split leaves into training and

validation sets S and Sc , respectively as follows (left): For each multifurcating node, randomly select a subset of
its children that are leaves to put in the “validation“ set, denoted by the gray boxes. Fit branch lengths and

mutation parameters on the subtree over the remaining leaves (middle). Regraft the leaves in the “validation“

set back onto the fitted tree (right).
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Finally, we must simultaneously tune the penalty parameter and the topology of the tree (from672

Algorithm 1). Our full algorithm alternates between tuning the penalty parameters for a fixed tree673

topology and running a single iteration of Algorithm 1 for a fixed penalty parameter. After the674

penalty parameters are stable, we keep them fixed and only run Algorithm 1.675

Specific model implementation676

Here we discuss the specific implementation we use to model the GESTALT data. We suppose the677

mutation process is homogeneous and does not depend on t. Therefore we will drop the time678

index t in the model. Recall that there are two major components of the mutation model: the rates679

at which target tracts are introduced and the conditional probability of an indel tract given the680

selected target tract.681

To parameterize the rate at which a target tract � = TT[j′0, j0, j1, j
′
1] is introduced, we further

decompose the rate into a rate ℎ0 that represents the rate at which the targets j0 and j1 are cut and
various scaling factors that control how often deletions are short or long (recall the definition in (3)

and (4)):

ℎ (�,TargStat(a)) = ℎ0
(

j0, j1,TargStat(a)
)

1
∏

i=0

[

i1{ji ≠ j′i} + 1{ji = j
′
i}
]

,

where 0 and 1 parameterize how often long deletions occur to the left and right, respectively.682

We specify ℎ0 using the assumption that the cutting time for target j follows an exponential
distribution with rate of �j > 0. For focal target cuts where j0 = j1, we define

ℎ0
(

j0, j0,TargStat(a)
)

= �j01{TargStat(j0, a) = 0}.

For double cuts at targets j0 and j1, we suppose the cut time follows an exponential distribution683

with rate ! ⋅ (�j0 + �j1 ), where ! is an additional model parameter that we estimate and does not684

depend on the targets.685

Our parameterization of the double-cut rate is based on the assumption that an inter-target

deletion is introduced when the cuts at both targets occur within a small time window of length

�. For random cut times Xj0 and Xj1 for targets j0 and j1, we approximate that the cut times occur
within a small window � with the distribution

p
(

|Xj0 −Xj1 | ≤ �,
Xj0 +Xj1

2
= t

)

≈ Pr(|Xj0 −Xj1 | ≤ �) p(Xj0 = Xj1 = t|Xj0 = Xj1 ). (28)

The values on the left and right hand sides approach each other as � → 0. The first component on686

the right-hand-side of (28) approaches zero as � → 0 and does not vary much for different values687

of �j0 , �j1 if � is sufficiently small. Hence we use the same value of ! for all targets. The second688

component on the right-hand-side of (28) corresponds to an exponential distribution with the rate689

�j0 + �j1 .690

We can interpret ! in two ways. First, ! controls how often a double cut is introduced. In691

an unmodified barcode, the relative rate that a double cut is introduced versus a single cut is692

!
∑

j1<j2
(�j1 +�j2 ) versus

∑M
j=1 �j . The second interpretation, based on (28), is that ! serves as a proxy693

for �: Larger ! indicates that an inter-target deletion can be introduced by two cuts spaced farther694

apart in time.695

The second major component of the GESTALT mutation model specifies the conditional proba-696

bility of introducing a particular indel tract given target tract � = TT[j′0, j0, j1, j
′
1]. An indel tract can697

be represented by its deletion lengths to the left and right and the insertion sequence. We will698

suppose that the probability of a single insertion sequence is uniform over all possible nucleotide699

sequences of that length. Let X0, X1, X2 be the random variables parameterizing the lengths of the700

left deletion, right deletion, and insertion, respectively. Let x�,min,i and x�,max,i for i = 0 and 1 specify701

the minimum and maximum deletion lengths to the left and right, respectively, for target tract702

�. (For example, if j0 = j′0, the left deletions must be short so x�,min,i = 0 and x�,max,i is the longest703

30 of 38

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2019. ; https://doi.org/10.1101/595215doi: bioRxiv preprint 

https://doi.org/10.1101/595215
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

deletion without deactivating target j0 − 1. As another example, if j0 = j′0 + 1, the left deletion is704

long so x�,min,i is the minimum deletion length to deactivate target j′0 and x�,max,i is the longest length705

without deactivating target j′0 − 1.) For insertions, x�,min,2 = 0 and x�,max,i = ∞ regardless of the target706

tract.707

We parameterize the conditional probability of indel d with left deletion, right deletion, and
insertion lengths x0, x1, x2 given target tract � as

Pr
(

X0 = x0, X1 = x1, X2 = x2|�
)

= p
(

x0, x1, x2|�; x�,min,0, x�,min,1, x�,min,2
)

where

p
(

x0, x1, x2|�; xmin,0, xmin,1, xmin,2
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p0,boostp
(

x0, x1, x2|�; xmin,0 + 1, xmin,1, xmin,2
)

+p1,boostp
(

x0, x1, x2|�; xmin,0, xmin,1 + 1, xmin,2
)

if xmin,0 = xmin,1 = xmin,2 = 0

+p2,boostp
(

x0, x1, x2|�; xmin,0, xmin,1, xmin,2 + 1
)

Pr
(

X0 = x0|�; xmin,0
)

Pr
(

X1 = x1|�; xmin,1
)

Pr
(

X2 = x2|�; xmin,2
)

otherwise

where p0,boost + p1,boost + p2,boost = 1. The probabilities pi,boost ensure that we can never introduce an708

indel tract that deletes and inserts nothing. When the minimum insertion and deletion lengths are709

zero (in the case of focal target tracts), we use the probabilities pi,boost to randomly pick whether to710

boost the minimum left deletion, right deletion, or insertion length by one.711

We assume that the deletion lengths follow a zero-inflated, truncated negative binomial distri-

bution; and the insertion lengths follow a zero-inflated negative binomial distribution. Let NB(m, q)
denote the negative binomial distribution, which is the distribution for the number of successes

until m failures are observed and q is the probability of success. The zero-inflation factor for dele-
tion lengths for focal indel tracts is pi,0 and inter-target indel tracts is pi,1, where left and right are
indicated by i = 0 and i = 1, respectively. The zero-inflation factor for insertion lengths is p2,0 = p2,1.
Then for i = 0, 1, 2, we define

Pr
(

Xi = xi|�; xmin,i
)

=

⎧

⎪

⎨

⎪

⎩

pi,1{j0=j1} if xi = xmin,i = 0

(1 − pi,1{j0=j1})
[

Pr(X = x − xmin,i; NB(mi, qi)) +
Pr(X>xmax,i−xmin,i;NB(mi ,qi))

xmax,i−xmin,i

]

if xi > xmin,i.

Implementation712

The code is implemented in Python using Tensorflow. We maximize the penalized log likelihood713

using Adam [Kingma and Ba, 2014].714

Comparison Methods715

We use PHYLIP version 3.697 [Felsenstein, 1995], the neighbor-joining algorithm in Bio.Phylo716

(Biopython version 1.72) [Talevich et al., 2012], and the chronos function in R package ape version717

5.2 [Paradis and Schliep, 2018].718

Evaluation metrics719

Given ultrametric trees 1 and 2 with the same set of leaves, the internal node height correlation720

between the two trees is calculated as follows (Figure 15):721

1. For each internal node in tree 1, find the matching node in tree 2 that is the most recent722

common ancestor of the same set of leaves.723

2. Calculate the Pearson correlation of the heights of matched nodes.724

3. Do the same swapping tree 1 and 2.725
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4. Average the two correlation values.726

A correlation of 1 means that the trees are exactly the same; the smaller the correlation is, the less727

similar the trees are.

A B C A B C

t2’

t1’
t1

t2

Tree 1 reference:
Tree 1 Tree 2

MRCA of ABC t1 t1’
MRCA of AB t1+t2 t1’ 1

2

Tree 2 reference:
Tree 1 Tree 2

MRCA of ABC t1 t1’
MRCA of AB t1 t1’+t2’Tree 1 Tree 2

Figure 15. Example calculation of the internal node height correlation. For each tree, define the groups of

leaves based on its internal nodes and calculate the correlation of the time of the most recent common

ancestors (MRCAs) of the leaf groups. The internal node height correlation is the average of the two correlation

values.

728

Simulation setup and additional results729

For the results in Figure 4b, the data was simulated with 5 synchronous cell division cycles followed730

by a birth-death process where the birth rate decayed at a rate of exp(−18t). The barcode was731

composed of six targets with � = 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6. The weight ! was set to 0.06 so that732

20% of the unique observed indel tracts were due to double cuts. We sampled 8% of the leaves733

so that the average number of unique observed alleles was around 100 leaves. We refer to this734

simulation setup as Simulation A. We ran 20 replicates of Simulation A.735

The results in Figure 4c are from a larger simulation, which we will refer to as Simulation B, that736

is closer to the data collected in McKenna et al. [2016]. Since zebrafish data undergo around 11737

synchronous cell division cycles, this larger simulation entailed 9 synchronous cell division cycles738

followed by a birth-death process. We simulated with a barcode composed of ten targets. The739

resulting tree had on average around 200 leaves. We ran GAPML for 8 topology tuning iterations; at740

each iteration, we consider at most 15 SPR moves. The displayed results are from 20 replicates.741

For this larger simulation, we also compared the runtimes of the methods on a server with an742

Intel Xeon 2x8 core processor at 3.20GHz and 256 GB RAM. Obtaining tree topologies from C-S743

parsimony and neighbor-joining runs on the order of minutes. Branch length estimation using744

chronos runs on the order of seconds. In contrast, GAPML required up to three hours. Though the745

runtime of our method is much longer, it is still reasonable compared to the amount of time spent746

on data collection, which includes waiting until the organism is a certain age.747

Using our simulation engine, we compare two very simple barcode design ideas: a single748

barcode with many targets, recommended in Salvador-Martínez et al. [2018], or many identical749

barcodes. However we believe the latter is more effective since spreading the targets over separate750

barcodes tends to create more unique alleles. In particular, the inter-target deletions tend to be751

shorter, which means fewer existing mutations are deleted and fewer targets are deactivated. To752

test this idea, we compared to the two design options in a simulation setup where we iteratively753

increased the number of targets by six, i.e. add six targets to the existing barcode or add a new754

barcode with six targets. Here we observe all 1024 leaves of a full binary tree with 10 levels. All755

targets had the same single-cut rate. We calibrated the double-cut weight ! to be around 18%756

for both barcode designs – this slightly favors the single-barcode design since it would have a757

higher rate of double cuts in vivo compared to a multiple-barcode design. Nevertheless, we find in758

our simulations that splitting the targets over separate barcodes tends to result in a much larger759
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Figure 16. We compare the number of unique alleles obtained GESTALT using a single barcode with many

targets versus splitting the targets over multiple independent barcodes. The alleles are simulated on a full

binary tree with 1024 leaves. Each line corresponds to a simulation where we iteratively add six targets, either

by extending the single barcode or adding another barcode with six targets. A positive difference that the

multiple-barcode design has more unique alleles, and vice versa.

(a) Example of how the BHV distance changes as the

branch lengths and mutation parameters are updated

using gradient descent to maximize the penalized

likelihood.

(b) Example of how the BHV distance changes at each

SPR iteration, where we select the SPR with the highest

likelihood with penalizaton over only the shared tree.

Figure 17. Examples of how the BHV distance changes as the algorithm proceeds for one simulation replicate

from the ten-target setting.

number of unique alleles than using a single barcode (Figure 16). At 30 targets, the multiple-barcode760

design has roughly 200 more unique alleles on average than the single-barcode design. Another761

reason we prefer the multiple-barcode design is that our model and tree estimates improve as the762

number of independent and identical barcodes increases, as illustrated in Figure 4b.763

Next, to better understand our algorithm GAPML, we show in-depth simulation results from a764

single replicate (Figure 17). Here we use the settings from Simulation B. Starting from the initial765

tree topology, the algorithm tunes the branch lengths and mutation parameters to maximize the766

penalized likelihood. During the gradient descent algorithm, the BHV distance of the tree estimate767

decreases (Figure 17a). In addition, we see that the BHV distance of the tree estimate decreases as768

Algorithm 1 iteratively performs SPR moves to update the tree topology.769

Our method searches over the maximally parsimonious trees since they tend to have the highest770

penalized log likelihood. To justify this restricted search, we compared the penalized log likelihood771

for tree topology candidates of different parsimony scores, where the data was generated using772

Simulation A. To generate tree topologies with different parsimony scores, we started with the773

maximally parsimonious tree fit from Camin-Sokal and iteratively applied random SPR moves. For774
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Figure 18. We compare the maximized penalized log likelihood of maximally parsimonious trees to less

parsimonious trees. Each simulation replicate, represented by each line, shows four candidate tree topologies,

starting from the most parsimonious one (x = 0) to increasingly less parsimonious ones (large differences in
parsimony score). The y-value is the maximized penalized log likelihood of the candidate tree topology minus

that of the maximally parsimonious tree.

each of tree rearrangement, we fit a model by maximizing the penalized log likelihood. The penalty775

parameter is the same across all rearrangements. As seen in Figure 18, the most parsimonious776

trees have the highest penalized log likelihoods. Since our method aims to select a tree topology777

that maximizes the penalized log likelihood, it would not benefit from considering SPR moves that778

make the tree less parsimonious; instead, considering these additional moves would make the779

method much slower.780

Zebrafish data analysis781

For the zebrafish analyses, we estimated the tree over at most 400 randomly selected alleles782

(without replacement). 50% of the fish in this dataset had fewer than 400 alleles and the median783

number of unique alleles over the zebrafish datasets was 443. 25% of the fish in this dataset had784

more than 1000 alleles. We limit the number of alleles analyzed due to runtime restrictions.785

To test if the fitted trees are recovering similar developmental relationships across fish rather786

than random noise, we ran a permutation test comparing the correlation between tissue distances787

from the estimated trees to that from randomly-estimated trees over randomly-shuffled data.788

More specifically, for a given tree topology, we randomly permute the observed alleles at the789

leaves. Each allele is associated with the number of times it is observed in each tissue type; we790

randomly shuffle these abundances over the possible tissue types within each allele. Finally, we791

randomly assign branch lengths along the tree by drawing samples from a uniform distribution and792

using the t-parameterization of Gavryushkin and Drummond [2016] to assign branch lengths. The793

correlation between tissue distances in these random trees is close to zero. All permutation tests794

were performed using 2000 replicates.795

We also tested if the Pearson correlation between the number of tissue types/cell types and the796

internal node times is different from that of random trees. The random trees were generated using797

the same procedure as above.798

We conclude by noting that the random trees are generated using the estimated tree topology799

from each method. Thus the null distributions are different and the p-values are not directly800

comparable between methods. Though this slightly complicates interpretation, we prefer this801

approach since the estimated tree topology may naturally induce correlation between tissue802

distances. For most validation tests, the mean of the null distribution was similar across the803

different methods, and therefore the p-values are somewhat comparable. The major exception was804

the tests that checked recovery of cell-type and germ-layer restriction: here the mean of the null805
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distribution were very different and we abstain from comparing p-values across methods.806

For Figure 6a, we bootstrapped fish replicates to estimate confidence intervals for the average807

correlation between estimated target cut rates.808
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Appendix 1882

30 hpf #4 30 hpf #5 30 hpf #6 30 hpf #8 4.3 hpf #1 4.3 hpf #3 4.3 hpf #8 4.3 hpf #10

Target 1 2.386 2.075 3.212 1.613 1.578 0.874 1.310 1.330

Target 2 1.397 1.262 3.659 2.301 0.590 0.204 0.387 0.343

Target 3 1.437 1.285 3.499 1.477 0.234 0.130 0.144 0.168

Target 4 2.026 1.103 3.637 2.134 0.613 0.351 0.711 0.691

Target 5 1.276 0.892 3.203 1.791 0.477 0.339 0.497 0.518

Target 6 1.344 1.618 3.161 1.200 0.626 0.420 0.570 0.321

Target 7 1.784 0.779 2.577 1.269 1.438 0.634 1.553 0.937

Target 8 1.320 1.712 3.091 2.430 0.275 0.239 0.191 0.181

Target 9 2.944 1.792 3.509 2.058 1.282 0.600 1.375 0.901

Target 10 0.678 1.285 1.227 0.278 0.192 0.109 0.144 0.147

Double cut rate 0.051 0.049 0.039 0.028 0.044 0.063 0.052 0.052

Left long trim length mean 24.291 23.514 25.000 25.000 24.304 23.571 23.650 23.926

Left long trim length SD 1.476 1.124 1.414 1.414 1.477 1.169 1.226 1.375

Left short trim length mean 6.253 3.730 5.749 5.225 6.394 6.074 6.301 5.824

Left short trim length SD 5.594 5.735 4.648 6.650 5.008 5.083 5.107 4.362

Left short trim zero prob 0.264 0.258 0.256 0.280 0.026 0.025 0.024 0.031

Long factor left 0.063 0.058 0.039 0.024 0.059 0.059 0.057 0.056

Long factor right 0.032 0.025 0.025 0.015 0.094 0.181 0.129 0.130

Right long trim length mean 22.647 22.392 24.500 24.500 23.199 22.854 22.759 23.021

Right long trim length SD 1.388 1.127 1.708 1.708 1.707 1.538 1.474 1.631

Right short trim length mean 5.109 4.801 4.677 4.736 3.708 4.145 3.946 4.012

Right short trim length SD 4.141 4.013 3.770 3.845 5.536 5.849 5.719 5.764

Right short trim zero prob 0.147 0.238 0.323 0.188 0.821 0.877 0.860 0.805

Insertion length mean 6.192 5.446 9.796 6.614 4.587 5.972 5.536 5.273

Insertion length sd 7.519 7.291 11.123 7.729 4.723 7.415 5.292 5.432

Insertion zero prob 0.564 0.520 0.535 0.543 0.419 0.438 0.510 0.489
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3 day #1 3 day #2 3 day #3 3 day #4 3 day #5

Target 1 0.874 1.318 0.881 4.192 1.675

Target 2 0.158 0.239 0.268 1.071 0.631

Target 3 0.062 0.109 0.170 0.306 0.233

Target 4 0.319 1.198 0.548 1.820 1.026

Target 5 0.258 0.780 0.373 1.556 0.605

Target 6 0.239 0.282 0.319 1.390 1.037

Target 7 0.858 0.208 1.230 2.108 1.045

Target 8 0.082 0.138 0.152 0.541 0.273

Target 9 0.793 1.216 0.657 2.524 1.501

Target 10 0.051 0.070 0.111 0.245 0.198

Double cut rate 0.041 0.025 0.038 0.031 0.056

Left long trim length mean 24.307 24.312 23.847 23.920 23.988

Left long trim length SD 1.471 1.464 1.335 1.371 1.395

Left short trim length mean 5.246 5.119 5.446 6.069 6.073

Left short trim length SD 4.220 4.394 4.727 5.211 5.008

Left short trim zero prob 0.014 0.019 0.024 0.021 0.016

Long factor left 0.050 0.029 0.047 0.037 0.034

Long factor right 0.132 0.084 0.108 0.085 0.171

Right long trim length mean 22.834 23.189 22.810 22.908 22.883

Right long trim length SD 1.518 1.684 1.502 1.569 1.548

Right short trim length mean 3.854 4.755 4.362 4.417 4.738

Right short trim length SD 5.596 6.069 5.939 5.997 6.123

Right short trim zero prob 0.899 0.904 0.858 0.794 0.903

Insertion length mean 5.448 5.932 6.596 5.831 5.110

Insertion length sd 5.155 6.224 7.358 6.390 5.463

Insertion zero prob 0.403 0.385 0.391 0.383 0.371
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Figure 5–Figure supplement 1. The average distance between tissue sources from adult fish 1

(left) and 2 (right) for the tree estimates from Camin-Sokal parsimony and chronos. The distance
between tissues is the average time from a leaf of one tissue to the closest internal node with a

descendant of the other tissue. The shading reflects distance, where bright means far and dark

means close.

887

Figure 5–Figure supplement 2. The average distance between tissue sources from adult fish 1

(left) and 2 (right) for the tree estimates from neighbor-joining and chronos. The distance between
tissues is the average time from a leaf of one tissue to the closest internal node with a descendant

of the other tissue. The shading reflects distance, where bright means far and dark means close.
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Figure 7–Figure supplement 1. Internal node times versus number of descendant cell types in

the estimated tree for the second adult fish using GAPML.
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Figure 7–Figure supplement 2. Internal node times versus number of descendant germ layers in

the estimated tree for the second adult fish using GAPML.
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Figure 7–Figure supplement 3. Internal node times versus number of descendant cell types in

the estimated tree for the first adult fish using Camin-Sokal parsimony and chronos.
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Figure 7–Figure supplement 4. Internal node times versus number of descendant germ layers in

the estimated tree for the first adult fish using Camin-Sokal parsimony and chronos.
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Figure 7–Figure supplement 5. Internal node times versus number of descendant cell types in

the estimated tree for the second adult fish using Camin-Sokal parsimony and chronos.
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Figure 7–Figure supplement 6. Internal node times versus number of descendant germ layers in

the estimated tree for the second adult fish using Camin-Sokal parsimony and chronos.
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Figure 7–Figure supplement 7. Internal node times versus number of descendant cell types in

the estimated tree for the first adult fish using neighbor-joining and chronos.
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Figure 7–Figure supplement 8. Internal node times versus number of descendant germ layers in

the estimated tree for the first adult fish using neighbor-joining and chronos.
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Figure 7–Figure supplement 9. Internal node times versus number of descendant cell types in

the estimated tree for the second adult fish using neighbor-joining and chronos.
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Figure 7–Figure supplement 10. Internal node times versus number of descendant germ layers

in the estimated tree for the second adult fish using neighbor-joining and chronos.
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Figure 8–Figure supplement 1. Estimated cell lineage tree for all alleles from the second adult

zebrafish using GAPML.
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