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Abstract 18 

In largely non-mitotic tissues such as the brain, cells are prone to a gradual accumulation of 19 

stochastic genetic and epigenetic alterations. This may lead to increased gene expression variation 20 

between cells and possibly also between individuals over time. Although increased inter-individual 21 

heterogeneity in gene expression during brain aging was previously reported, whether this process 22 

starts during development or if it is mainly restricted to the aging period has not yet been studied. The 23 

regulatory dynamics and functional significance of putative age-related heterogeneity are also 24 

unknown. Here we address these issues by a systematic analysis of 19 transcriptome datasets from 25 

diverse human brain regions in human covering the whole postnatal lifespan. Among all datasets, we 26 

observed a significant increase in inter-individual gene expression heterogeneity during aging (20 to 27 

98 years of age) compared to postnatal development (0 to 20 years of age). Increased heterogeneity 28 

during aging was consistent among different brain regions at the gene level. Genes showing 29 

increased heterogeneity were associated with biological processes that are known to be important for 30 

lifespan regulation and neuronal function, including longevity regulating pathway, autophagy, mTOR 31 

signaling, axon guidance, and synaptic function. Overall, our results show that increased gene 32 

expression heterogeneity during aging is a general effect in the human brain, and may influence 33 

aging-related changes in brain functions. We also provide the necessary functions to calculate 34 

heterogeneity change with age as an R package, ‘hetAge’.  35 
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Introduction 39 

Aging is a complex process characterized by a gradual decline in maintenance and repair 40 

mechanisms, accompanied by an increase in genetic and epigenetic mutations, and oxidative 41 

damage to nucleic acids, protein and lipids (Gorbunova, Seluanov, Mao, & Hine, 2007; Lu et al., 42 

2004). The human brain experiences dramatic structural and functional changes in the course of 43 

aging. These include decline in gray matter and white matter volumes (Sowell, Thompson, & Toga, 44 

2004), increase in axonal bouton dynamics (Grillo et al., 2013) and reduced synaptic plasticity, all 45 

processes that may be associated with decline in cognitive functions (Dorszewska, 2013). Changes 46 

during brain aging are suggested to be a result of stochastic processes, unlike changes associated 47 

with postnatal neuronal development that are known to be primarily controlled by adaptive regulatory 48 

processes (Polleux, Ince-Dunn, & Ghosh, 2007; Schratt, 2009; Stefani & Slack, 2008). The molecular 49 

mechanisms underlying age-related alteration of regulatory processes and eventually leading to 50 

aging-related phenotypes, however, are little understood.  51 

 52 

Over the past decade, a number of transcriptome studies focusing on age-related changes in human 53 

brain gene expression profiles were published (Kang et al., 2011; Lu et al., 2004; Miller et al., 2014; 54 

Somel et al., 2010; Tebbenkamp, Willsey, State, & Šestan, 2014). These studies report aging-related 55 

differential expression patterns in many functions, including synaptic functions, energy metabolism, 56 

inflammation, stress response, and DNA repair. By analyzing age-related change in gene expression 57 

profiles in diverse brain regions, we previously showed that for many genes, gene expression 58 

changes occur in opposite directions during postnatal development (pre-20 years of age) and aging 59 

(post-20 years of age), which may be associated with aging-related phenotypes in healthy brain aging 60 

(Dönertaş et al., 2017). While different brain regions are associated with specific, and often 61 

independent, gene expression profiles (Kang et al., 2011; Miller et al., 2014; Tebbenkamp et al., 62 

2014), these studies also show that age-related alteration of gene expression profiles during aging is 63 

a widespread effect across different brain regions. 64 

 65 

One of the suggested effects of aging is increased variability between individuals and somatic cells, 66 

which has been previously reported by several studies. Some of these studies find an increase in 67 

age-related heterogeneity in heart, lung and white blood cells of mice (Angelidis et al., 2019; Bahar et 68 

al., 2006; Martinez-Jimenez et al., 2017), Caenorhabditis elegans (Herndon et al., 2002),� and 69 

human twins (Fraga et al., 2005).  A study analysing microarray datasets from different tissues of 70 

humans and rats also reported an increase in age-related heterogeneity in expression as a general 71 

trend (Somel, Khaitovich, Bahn, Pääbo, & Lachmann, 2006), although this study found no significant 72 

consistency across datasets, nor any significant enrichment in functional gene groups. That said, the 73 

generality of increase in expression heterogeneity remains unresolved. For instance, Viñuela et al. 74 

find more decrease than an increase in heterogeneity in human twins (Viñuela et al., 2018) and 75 

Ximerakis et al. show the direction of the heterogeneity change depends on cell type in aging mice 76 
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brain (Ximerakis et al., 2018). Using GTEx data covering different brain regions (20 to 70 years of 77 

age), Brinkmeyer-Langford et al. identify a set of differentially variable genes between age groups, but 78 

they do not observe increased heterogeneity at old age (Brinkmeyer-Langford, Guan, Ji, & Cai, 2016). 79 

Meanwhile, another study performing single-cell RNA sequencing of human pancreatic cells, identifies 80 

an increase in transcriptional heterogeneity and somatic mutations with age (Enge et al., 2017). A 81 

meta-analysis also suggested more shared expression patterns during development than in aging, 82 

implying an increase in inter-individual variability (Dönertaş et al., 2017). Likewise, a prefrontal cortex 83 

transcriptome analysis we recently conducted revealed a weak increase in age-dependent 84 

heterogeneity at the gene, transcriptome and pathway levels, irrespective of the preprocessing 85 

methods (Kedlian, Donertas, & Thornton, 2019). 86 

 87 

Whether age-related increase in heterogeneity is a universal phenomenon thus remains contentious. 88 

Furthermore, where it can be detected, whether this is a time-dependent process that starts at the 89 

beginning of life or whether this increase and its functional consequences are only seen after 90 

developmental processes are completed, have not yet been explored. In this study, we retrieved 91 

transcriptome data from independent studies covering the whole lifespan, including data from diverse 92 

brain regions, and conducted a comprehensive analysis to identify the prevalence of age-related 93 

heterogeneity changes in human brain aging compared with those observed during postnatal 94 

development. We confirmed that increased age-related heterogeneity is a consistent trend in the 95 

human brain transcriptome during aging but not during development, and it is associated with the 96 

pathways and biological functions that are related to longevity and neuronal function.   97 

 98 

Results 99 

To investigate how heterogeneity in gene expression changes with age, we used 19 published 100 

microarray datasets from three independent studies. Datasets included 1,010 samples from 17 101 

different brain regions of 298 individuals whose ages ranged from 0 to 98 years (Table S1, Figure 102 

S1). In order to analyze the age-related change in gene expression heterogeneity during aging 103 

compared to the change in development, we divided datasets into two subsets as development (0 to 104 

20 years of age, n = 441) and aging (20 to 98 years of age, n = 569). We used the age of 20 to 105 

separate pre-adulthood and adulthood based on commonly used age intervals in earlier studies (see 106 

Methods). For the analysis, we focused only on the genes for which we have a measurement across 107 

all datasets (n = 11,137). 108 

 109 

Age-related change in gene expression levels 110 

To quantify age-related changes in gene expression, we used a linear model between gene 111 

expression levels and age (see Methods, Figure S2). We transformed the ages to the fourth root 112 

scale before fitting the model as it provides relatively uniform distribution of sample ages across the 113 

lifespan (as in Somel et al., 2010), but we also confirmed that different age scales yield quantitatively 114 
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similar results (see Figure S3). We quantified expression change of each gene in aging and 115 

development periods separately and considered regression coefficients from the linear model (β 116 

values) as a measure of age-related expression change (Figure S4, Table S2). 117 

 118 

 119 
Figure 1. Age-related change in gene expression during postnatal development and aging. (a) Spearman 120 
correlations among age-related expression changes (β values) across datasets. The color of the squares 121 
indicates if the correlation between the corresponding pair of datasets (across β values of 11,137 common 122 
genes) is positive (red) or negative (blue), while darker color specifies a stronger correlation. Diagonal values 123 
were removed in order to enhance visuality. Annotation rows and columns indicate data source, brain region and 124 
period of each dataset. Hierarchical clustering was performed for each period separately (color of the 125 
dendrogram indicates periods) to determine the order of datasets. (b) Principal component analysis (PCA) of 126 
age-related expression changes during aging and development. The analysis was performed on age-related 127 
expression change values of 11,137 common genes among all 38 datasets. The values of the first principal 128 
component on the x-axis and second principal component on the y-axis were drawn, where the values in the 129 
parenthesis indicate the variation explained by the corresponding principal component. Median Euclidean 130 
pairwise distances among development and aging datasets calculated using PC1 and PC2 were annotated on 131 
the figure. Different shapes show different data sources and colors show development (dark orange) and aging 132 
(blue) (c) Number of significant (FDR corrected p < 0.05) gene expression changes in development (left panel) 133 
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and aging (right panel). The x-axis shows the number of genes in the log scale. The color of the bars shows the 134 
direction of change, decrease (steel gray), and increase (orange). The exact number of genes are also displayed 135 
on the plot. 136 
 137 

We first analyzed similarity in age-related expression changes across datasets by calculating pairwise 138 

Spearman’s correlation coefficients among the β values (Figure 1a). Both development (median 139 

correlation coefficient = 0.56, permutation test p < 0.001, Figure S5a) and aging datasets (median 140 

correlation coefficient = 0.43, permutation test p = 0.003, Figure S5b) showed moderate correlation 141 

with the datasets within the same period. Although the difference between dataset correlations within 142 

development and aging datasets was not significant (permutation test p = 0.1, Figure S6a), weaker 143 

consistency during aging may reflect the stochastic nature of aging, causing increased heterogeneity 144 

between aging datasets.  145 

 146 

The principal component analysis (PCA) of age-related expression changes (β) revealed distinct 147 

clusters of development and aging datasets (Figure 1b). Moreover, aging datasets were more 148 

dispersed than development datasets (median pairwise Euclidean distances between PC1 and PC2 149 

were 77 for aging and 21 for development), which may again reflect stochasticity in gene expression 150 

change during aging and can indicate more heterogeneity among different brain regions or datasets 151 

during aging than in development. 152 

 153 

We next identified genes showing significant age-related expression change (FDR-corrected p < 154 

0.05), for development and aging datasets separately (Figure 1c). Development datasets showed 155 

more significant changes compared to aging (permutation test p = 0.003, Figure S6c), which may 156 

again indicate higher expression variability among individuals during aging. The direction of change in 157 

development was mostly positive (14 datasets with more positive and 5 with more negative), whereas 158 

in aging datasets, we observed more genes with a decrease in expression level (13 datasets with 159 

more  genes decreasing expression and 5 with no significant change, and 1 with an equal number of 160 

positive and negative changes). 161 

 162 

Age-related change in gene expression heterogeneity 163 

To assess age-related change in heterogeneity, we obtained the unexplained variance (residuals) 164 

from the linear models used to calculate the change in gene expression level. For each gene in each 165 

dataset, we separately calculated Spearman’s correlation coefficient (ρ) between the absolute value 166 

of residuals and age, irrespective of whether the gene shows a significant change in expression (see 167 

Methods, Figure S2). We considered ρ values as a measure of heterogeneity change, where positive 168 

values mean an increase in heterogeneity with age (Table S2). We also repeated this approach using 169 

loess regression instead of a linear model between expression level and age, and found high 170 

correspondence between ρ values based on linear and loess regression models (Figure S7). Still, 171 
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loess regression was more sensitive to the changes in sample sizes and parameters and we therefore 172 

continued downstream analyses with the ρ estimates based on the residuals from the linear model.  173 

 174 

We next asked if datasets show similar ρ, i.e. age-related changes in heterogeneity, by calculating 175 

pairwise Spearman’s correlation between pairs of datasets, across shared genes (Figure 2a). Unlike 176 

the correlations among expression level changes, ρ values did not show a higher consistency during 177 

development. In fact, although the difference is not significant (permutation test p = 0.2, Figure S6b), 178 

the median value of the correlation coefficients was higher in aging (median correlation coefficient = 179 

0.21, permutation test p = 0.24, Figure S5c), than in development (median correlation coefficient = 180 

0.11, permutation test p = 0.25, Figure S5d).  181 

 182 

A principal component analysis (PCA) showed that, like expression change, heterogeneity change 183 

with age can also differentiate aging datasets from development (Figure 2b). Similar to the pairwise 184 

correlations (Figure 2a), aging datasets clustered more closely than development datasets (median 185 

pairwise Euclidean distances between PC1 and PC2 are 41 and 44 for aging and development, 186 

respectively). Both observations imply more similar changes in heterogeneity during aging. 187 

 188 

Using the p-values from Spearman’s correlation between age and the absolute value of residuals for 189 

each gene, we then investigated the genes showing a significant change in heterogeneity during 190 

aging and development (FDR corrected p-value < 0.05). We found almost no significant change in 191 

heterogeneity during development, except for the Colantuoni2011 dataset, for which we have high 192 

statistical power due to its large sample size. In aging datasets, on the other hand, we observed more 193 

genes with significant changes in heterogeneity (permutation test p = 0.06, Figure S6d) and the 194 

majority of the genes with significant changes in heterogeneity tended to increase in heterogeneity 195 

(Figure 2c). However, the genes showing a significant change did not overlap across aging datasets 196 

(Figure S8). 197 

 198 

Nevertheless, our analyses indicated relatively more consistent heterogeneity changes among 199 

datasets in aging compared to development, implying that heterogeneity change could be a 200 

characteristic linked to aging (see Discussion). 201 

 202 
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 203 
Figure 2. Age-related change in gene expression heterogeneity during development and aging. The procedures 204 
are similar to those in Figure 1, except, age-related heterogeneity changes (ρ values) were used instead of 205 
expression changes (β values). (a) Spearman correlations among age-related heterogeneity changes (ρ values) 206 
across datasets. (b) Principal component analysis (PCA) of heterogeneity change with age. (c) The number of 207 
genes showing significant heterogeneity change in aging and development. 208 
 209 

Consistent increase in heterogeneity during aging 210 

As our previous analyses suggested age-related changes in heterogeneity can differentiate 211 

development from aging and show more similarity during aging, we sought to characterize the genes 212 

displaying such changes. Since the significance of the changes is highly dependent on the sample 213 

size, instead of focusing on significant genes identified within individual datasets, we leveraged upon 214 

the availability of multiple datasets and focused on their shared trends, capturing weak but 215 

reproducible trends across multiple datasets (as in Dönertaş et al., 2017). Consequently, we used the 216 

level of consistency in age-related heterogeneity change across datasets to sort genes.  217 

 218 
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 219 
Figure 3. (a) Boxplots, showing distributions of age-related heterogeneity changes (ρ values) of 11,1137 220 
common genes for each dataset and period separately. The dotted red line (vertical line at x = 0) reflects no 221 
change in heterogeneity. The difference between median heterogeneity change in aging and development is 222 
given as a bar plot on the right panel. Datasets are ordered by the differences in median heterogeneity changes 223 
in aging and development. (b) The relationship between expression and heterogeneity change with age. 224 
Spearman correlation analysis was performed between age-related expression changes (β values) and age-225 
related heterogeneity changes (ρ values) of 11,137 common genes, separately for each dataset. The dotted gray 226 
line at y = 0 reflects no correlation between expression and heterogeneity. (c) Expected and observed 227 
consistency in the heterogeneity change across datasets in development and aging. There is a significant shift 228 
toward heterogeneity increase in aging (permutation test p<10-7) (lower panel), while there is no significant 229 
consistency in either direction in development (upper panel). The expected distribution is constructed using a 230 
permutation scheme that accounts for the dependence among datasets and is more stringent than random 231 
permutations (see Figure S10 for details).  232 
 233 

We first examined profiles of age-related heterogeneity change in aging and development. Among 234 

aging datasets 18/19 showed more increase than decrease in heterogeneity with age (median ρ > 0, 235 

i.e. higher numbers of genes with increase), while the median heterogeneity change in one dataset 236 

was zero. In development, on the other hand, only 5/19 datasets showed more increase in 237 
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heterogeneity, while the remaining 14/19 datasets showed more decrease with age (median ρ < 0) 238 

(Figure 3a). The age-related change in heterogeneity during aging was significantly higher than during 239 

development (permutation test p < 0.001, Figure S6e). We also checked if there is a relationship 240 

between changes in heterogeneity during development and during aging (e.g. if those genes that 241 

decrease in heterogeneity tend to increase in heterogeneity during aging) but did not find any 242 

significant trend (Figure S9). 243 

 244 

A potential explanation why we see different patterns of heterogeneity change with age in 245 

development and aging could be the accompanying changes in the expression levels, as it is 246 

challenging to remove dependence between the mean and variance. To address this possibility, we 247 

first calculated Spearman’s correlation coefficient between the changes in heterogeneity (ρ values) 248 

and expression (β values), for each dataset. Overall, all datasets had values close to zero, suggesting 249 

the association is not strong. Surprisingly, we saw an opposing profile for development and aging; 250 

while the change in heterogeneity and expression were positively correlated in development, they 251 

showed a negative correlation in aging (Figure 3b).  252 

 253 

Having observed both a tendency to increase and a higher consistency in heterogeneity change 254 

during aging, we asked which genes show consistent increase in heterogeneity across datasets in 255 

aging and development. We therefore calculated the number of datasets with an increase in 256 

heterogeneity during development and aging for each gene (Figure 3c). To calculate significance and 257 

expected consistency, while controlling for dataset dependence, we performed 1,000 random 258 

permutations of individuals’ ages and re-calculated the heterogeneity changes (see Methods). In 259 

development, there was no significant consistency in heterogeneity change in either increase or 260 

decrease. During aging, however, there was a significant signal of consistent heterogeneity increase, 261 

i.e. more genes showed consistent heterogeneity increase across aging datasets than randomly 262 

expected (Figure 3c, lower panel). We identified 147 common genes with a significant increase in 263 

heterogeneity across all aging datasets (permutation test p < 0.001, Table S3). Based on our 264 

permutations, we estimated that 84/147 genes could be expected to have consistent increase just by 265 

chance, suggesting only ~40% true positives. In development, in contrast, there was no significant 266 

consistency in heterogeneity change in either direction (increase or decrease). Nevertheless, 267 

comparing the consistency in aging and development, there was an apparent shift towards a 268 

consistent increase in aging – even if we cannot confidently report the genes that become significantly 269 

more heterogeneous with age across multiple datasets. 270 

 271 

Heterogeneity Trajectories   272 

We next asked if there are specific patterns of heterogeneity change, e.g. increase only after a certain 273 

age. We used the genes with a consistent increase in heterogeneity with age during aging (n = 147) 274 

to explore the trajectories of heterogeneity change (Figure 4). Genes grouped with k-means clustering 275 
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revealed three main patterns of heterogeneity increase (Table S3): i) genes in clusters 3 and 7 show 276 

noisy but a steady increase throughout aging, ii) genes in clusters 4, 5 and 8 show increase in early 277 

aging but a later slight decrease, revealing a reversal (up-down) pattern, and iii) the remaining genes 278 

in cluster 1, 2 and 6 increase in heterogeneity dramatically after the age of 60. We next asked if these 279 

genes have any consistent heterogeneity change pattern in development (Figure S11), but most of 280 

the clusters showed no or only weak age-related changes during development. We also analyzed the 281 

accompanying changes in mean expression levels for these clusters. Except for cluster 1, which 282 

shows a decrease in expression level at around the age of 60 and then shows a dramatic increase, all 283 

clusters show a steady scaled mean expression level at around zero, i.e. different genes in a cluster 284 

show different patterns (Figure S12).  285 

 286 

We further tested the genes showing dramatic heterogeneity increase after the age of 60 (clusters 1, 287 

2 and 6) for association with Alzheimer’s Disease, as the disease incidence increases after 60 (Evans 288 

et al., 1989) as well; however, we found no evidence for such an association (see Figure S13). 289 

 290 

 291 

 292 
Figure 4. Clusters of genes showing a consistent heterogeneity increase in aging (n = 147). Clustering was 293 
performed based on patterns of the change in heterogeneity, using the k-means clustering method (see 294 
Methods). The x- and y-axes show age and heterogeneity levels, respectively. Mean heterogeneity change for 295 
the genes in each cluster was drawn by spline curves. The colors and line-types of curves specify different brain 296 
regions and data sources, respectively. 297 
 298 

Functional analysis 299 

To examine the functional associations of heterogeneity changes with age, we performed gene set 300 

enrichment analysis using KEGG pathways (Kanehisa, Sato, Furumichi, Morishima, & Tanabe, 2019), 301 
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Gene Ontology (GO) categories (Ashburner et al., 2000; The Gene Ontology Consortium, 2019), 302 

Disease Ontology (DO) categories (Kibbe et al., 2015), Reactome pathways (Fabregat et al., 2018), 303 

transcription factor (TF) targets (TRANSFAC) (Matys et al., 2003), and miRNA targets (MiRTarBase) 304 

(Chou et al., 2016). Specifically, we rank-ordered genes based on the number of datasets that show a 305 

consistent increase in heterogeneity and asked if the extremes of this distribution are associated with 306 

the gene sets that we analyzed. There was no significant enrichment for any of the functional 307 

categories and pathways for the consistent changes in development. The significantly enriched KEGG 308 

pathways for the genes that become consistently heterogeneous during aging included multiple 309 

KEGG pathways known to be relevant for aging, including the longevity regulating pathway, 310 

autophagy (Rubinsztein, Mariño, & Kroemer, 2011), mTOR signaling (Johnson, Rabinovitch, & 311 

Kaeberlein, 2013) and FoxO signaling (Martins, Lithgow, & Link, 2016) (Figure 5a). Among the 312 

pathways with a significant association (listed in Figure 5a), only protein digestion and absorption, 313 

primary immunodeficiency, linoleic acid metabolism, and fat digestion and absorption pathways had 314 

negative enrichment scores, meaning these pathways were significantly associated with the genes 315 

having the least number of datasets showing an increase. However, it is important to note that this 316 

does not mean these pathways have a decrease in heterogeneity as the distribution of consistent 317 

heterogeneity levels is skewed (Figure 3c, lower panel). We also calculated if the KEGG pathways 318 

that we identified are particularly enriched in any of the heterogeneity trajectories we identified. 319 

Although we lack the necessary power to test the associations statistically due to small number of 320 

genes, we saw that i) group 1, which showed a stable increase in heterogeneity, is associated more 321 

with the metabolic pathways and mRNA surveillance pathway, ii) group 2, which showed first an 322 

increase and a slight decrease at later ages, is associated with axon guidance, mTOR signaling, and 323 

phospholipase D signaling pathways, and iii) group 3, which showed a dramatic increase after age of 324 

60, is associated with autophagy, longevity regulating pathway and FoxO signaling pathways. The full 325 

list is available as Figure S14. 326 

 327 

 328 
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Figure 5. Functional analysis of consistent heterogeneity changes. (a) Distribution of consistent heterogeneity 329 
increase for the significantly enriched KEGG pathways, in development and aging. x- and y-axes show the 330 
number of datasets with a consistent increase and the density for each significant pathway, respectively. The 331 
dashed red line shows x = 9.5, which is the middle point for 19 datasets, representing no tendency to increase or 332 
decrease. Values higher than 9.5, shown with red color, indicate an increase in heterogeneity while values lower 333 
than 9.5, shown with blue color, indicate a decrease in heterogeneity and the darkness shows the consistency in 334 
change across datasets. b) The longevity regulating pathway (KEGG Pathway ID: hsa04211), exemplifying the 335 
distribution of the genes (circles), their heterogeneity across datasets (color – the same color scheme as panel 336 
(a)), and their relationship in the pathway (edges). More detailed schemes for all significant pathways with the 337 
gene names are given as SI.   338 
 339 

The distribution of consistent heterogeneity in development and aging also showed a clear difference. 340 

The pathway scheme for the longevity regulating pathway (Figure 5b), colored based on the number 341 

of datasets with a consistent increase, shows how particular genes compare between development 342 

and aging. The visualizations for all significant pathways, including the gene names are given in the 343 

Supplementary Information. Other significantly enriched gene sets, including GO, Reactome, TF and 344 

miRNA sets, are included as Tables S4-11. In general, while the consistent heterogeneity changes in 345 

development did not show any enrichment (except for miRNAs, see Table S11), we detected a 346 

significant enrichment for the genes that become more heterogeneous during aging, with the 347 

exception that Disease Ontology terms were not significantly associated with consistent changes in 348 

either development or aging. The gene sets included specific categories such as autophagy and 349 

synaptic functions as well as broad functional categories such as regulation of transcription and 350 

translation processes, cytoskeleton or histone modifications. We also performed GSEA for each 351 

dataset separately and confirmed that these pathways show consistent patterns in aging (Figure S15-352 

S19). There were 30 significantly enriched transcription factors, including EGR and FOXO, and 99 353 

miRNAs (see Table S9-10 for the full list). We also asked if the genes that become more 354 

heterogenous consistently across datasets are known aging-related genes, using the GenAge Human 355 

gene set (Tacutu et al., 2018), but did not find a significant association (Figure S20). 356 

 357 

It has been reported that the total number of distinct regulators of a gene (apart from its specific 358 

regulators) is correlated with gene expression noise (Barroso, Puzovic, & Dutheil, 2018). Accordingly, 359 

we asked if the total number of transcription factors (TFs) or miRNAs regulating a gene might be 360 

related to the heterogeneity change with age (Figure 6). We calculated the correlations between the 361 

total number of regulators and the heterogeneity changes and found a mostly positive (18 / 19 for 362 

miRNA and 15 / 19 for TFs), and higher correlation between change in heterogeneity and the number 363 

of regulators in aging (p = 0.007 for miRNA and p = 0.045 TFs). We further tested the association 364 

while controlling for the expression changes in development and aging since regulation of expression 365 

changes during development could confound a relationship. However, we found that the pattern is 366 

mainly associated with the genes that show a decrease in expression during aging, irrespective of 367 

their expression during development (Figure S21).  368 
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 369 

 370 
Figure 6. Correlation between the change in heterogeneity and number of transcriptional regulators, i.e. miRNA 371 
and transcription factors. Each point represents a dataset, and the color shows the data source. p-values are 372 
calculated using a permutation test. The dashed line at y = 0 shows zero correlation.  373 
 374 

We further tested if genes with a consistent heterogeneity increase in aging are more central in the 375 

protein interaction network using STRING database (von Mering et al., 2005). Using multiple cutoffs 376 

and repeating the analysis, we observed a higher degree of interactions for the genes with increasing 377 

heterogeneity (Figure S22).  378 

 379 

Johnson and Dong et al. previously compiled a list of traits that are age-related and have been 380 

sufficiently tested for genome-wide associations (n = 39) (Johnson, Dong, Vijg, & Suh, 2015). Using 381 

the genetic associations for GWAS Catalog traits, we tested if there are significantly enriched traits for 382 

the consistent changes in heterogeneity during aging (Table S12). Although there was no significant 383 

enrichment, all these age-related terms had positive enrichment scores, i.e. they all tended to include 384 

genes that consistently become more heterogeneous with age during aging. 385 

 386 

Using cell-type specific transcriptome data generated from FACS-sorted cells in mouse brain (Cahoy 387 

et al., 2008), we also analyzed if there is an association between genes that become heterogeneous 388 

with age and cell-type specific genes, which could be expected if brain cell-type composition 389 

progressively varied among individuals with age. Although there was an overlap with 390 

oligodendrocytes and myelinated oligodendrocytes, there was no significant enrichment (which could 391 

be attributed to low power due to small overlap between aging and cell-type specific expression 392 

datasets) (Figure S23).  393 

 394 
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Discussion  395 

Aging is characterized by a gradual decrease in the ability to maintain homeostatic processes, which 396 

leads to functional decline, age-related diseases, and eventually to death. This age-related 397 

deterioration, however, is thought as not a result of expression changes in a few individual genes, but 398 

rather as a consequence of an age-related alteration of the whole genome, which could be a result of 399 

an accumulation of both epigenetic and genetic errors in a stochastic manner (Enge et al., 2017; Vijg, 400 

2004). This stochastic nature of aging impedes the identification of conserved age-related changes in 401 

gene expression from a single dataset with a limited number of samples. 402 

 403 

In this study, we examined 19 gene expression datasets compiled from three independent studies to 404 

identify the changes in gene expression heterogeneity with age. While all datasets have samples 405 

representing the whole lifespan, we separated postnatal development (0 to 20 years of age) and 406 

aging (20 to 98 years of age) by the age of 20, as this age is considered to be a turning-point in gene 407 

expression trajectories (Dönertaş et al., 2017). We implemented a regression-based method and 408 

identified genes showing a consistent change in heterogeneity with age, during development and 409 

aging separately. At the single gene level, we did not observe significant age-related heterogeneity 410 

change in most of the datasets, possibly due to insufficient statistical power due to small sample sizes 411 

and the subtle nature of the phenomenon. We hence took advantage of a meta-analysis approach 412 

and focused on consistent signals among datasets, irrespective of their effect sizes and significance. 413 

Although this approach fails to capture patterns that are specific to individual brain regions, it identifies 414 

genes that would otherwise not pass the significance threshold due to insufficient power. 415 

Furthermore, we demonstrated that our method is robust to noise and confounding effects within 416 

individual datasets.   417 

 418 

Increase in gene expression heterogeneity during aging 419 

By analyzing age-related gene expression changes, we first observed that there are more significant 420 

and more similar changes during development than aging. Additionally, genes showing significant 421 

change during aging tended to decrease in expression (Figure 1). These results can be explained by 422 

the accumulation of stochastic detrimental effects during aging, leading to a decrease in expression 423 

levels  (Lu et al., 2004). Our initial analysis of gene expression changes suggested a higher 424 

heterogeneity between aging datasets. 425 

 426 

We next focused on age-related heterogeneity change between individuals and found a significant 427 

increase in age-related heterogeneity during aging, compared to development. Notably, increased 428 

heterogeneity is not limited to individual brain regions, but a consistent pattern across different 429 

regions during aging.  We found that age-related heterogeneity change is more consistent among 430 

aging datasets, which may reflect an underlying systemic mechanism. Further, a larger number of 431 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


 

 15 

genes showed more significant heterogeneity changes during aging than in development, and the 432 

majority of these genes tended to have more heterogeneous expression.  433 

 434 

It was previously proposed that somatic mutation accumulations (Lodato et al., 2018; Lombard et al., 435 

2005; Lu et al., 2004; Vijg, 2004) and epigenetic regulations (Cheung et al., 2018) might be 436 

associated with transcriptome instability. While Enge et al. and Lodato et al. suggested that genome-437 

wide substitutions in single cells are not so common as to influence genome stability and cause 438 

transcriptional heterogeneity at the cellular level (Enge et al., 2017; Lodato et al., 2015), epigenetic 439 

mechanisms may be relevant. Although we cannot test age-related somatic mutation accumulation 440 

and epigenetic regulation in this study, an alternative mechanism might be related to transcriptional 441 

regulation, which is considered to be inherently stochastic  (Maheshri & O’Shea, 2007). Several 442 

studies demonstrated that variation in gene expression is positively correlated with the number of TFs 443 

controlling gene’s regulation (Barroso et al., 2018). We also found that genes with a higher number of 444 

regulators and a decrease in expression during aging become more heterogeneous. Further, 445 

significantly enriched TFs include early growth response (EGF), known to be regulating the 446 

expression of many genes involved in synaptic homeostasis and plasticity, and FOXO TFs, which 447 

regulate stress resistance, metabolism, cell cycle arrest and apoptosis. Together with these studies, 448 

our results support that transcriptional regulation may be associated with age-related heterogeneity 449 

increase during aging and may have important functional consequences in brain aging. 450 

 451 

Increased heterogeneity is not a result of technical or statistical artifacts 452 

We next confirmed that observed increase in heterogeneity was not a result of low statistical power 453 

(Figure S1) or a technical artifact (Figure 3b, S24, S25). Specifically, we tested whether increased 454 

heterogeneity during aging can be a result of the mean-variance relationship, but we found no 455 

significant effect that can confound our results. In fact, the mean-variance relationship in development 456 

and aging showed opposing profiles. We further analyzed this by grouping genes based on their 457 

expression in development and aging (Figure S24). The genes that decrease in expression both in 458 

development and aging showed the most opposing profiles in terms of the mean-variance 459 

relationship, which could suggest that the decrease in development are more coordinated and well-460 

regulated whereas the decrease in aging occurs due to stochastic errors. Another potential 461 

confounder is the post-mortem interval (PMI), which is the time between death and sample collection. 462 

Since we do not have this data for all datasets we analyzed, we could not account for PMI in our 463 

model. However, using the list of genes previously suggested as associated with PMI (Zhu, Wang, 464 

Yin, & Yang, 2017), we checked if the consistency among aging datasets could be driven by PMI. 465 

Only 2 PMI-associated genes were among the 147 that become consistently heterogeneous, and the 466 

distribution also suggested there is no significant relationship (Figure S25). We also confirmed that 467 

the increase in heterogeneity is not caused by outlier samples in datasets (Figure S26) or by the 468 

confound of sex with age (Figure S27). 469 

 470 
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Microarrays do not bias against identifying age-related heterogeneity change 471 

One important limitation of our study is that we analyze microarray-based data. Since gene 472 

expression levels measured by microarray do not reflect an absolute abundance of mRNAs, but 473 

rather are relative expression levels, we were only able to examine relative changes in gene 474 

expression. A recent study analyzing single-cell RNA sequencing data from the aging Drosophila 475 

brain identified an age-related decline in total mRNA abundance (Davie et al., 2018). It is also 476 

suggested that, in microarray studies, genes with lower expression levels tend to have higher 477 

variance (Aris et al., 2004). In this context, whether the change in heterogeneity is a result of the total 478 

mRNA decay is an important question. As an attempt to see if the age-related increase in 479 

heterogeneity is dependent on the technology used to generate data, we repeated the initial analysis 480 

using RNA sequencing data for the human brain, generated by GTEx Consortium (Ardlie et al., 2015) 481 

(Figure S28-30). Nine out of thirteen datasets displayed more increase than decrease in 482 

heterogeneity during aging, consistent with 18/19 microarray datasets, while the remaining four 483 

datasets showed the opposite pattern (BA24, cerebellar hemisphere, cerebellum and substantia 484 

nigra). Unlike what we observed for the microarray datasets, the change in expression levels and 485 

heterogeneity were strongly positively correlated (Figure S30). Unfortunately, average expression 486 

levels and variation levels in RNA sequencing is challenging to disentangle. Thus, the biological 487 

relevance of the relationship between the age-related change in expression levels and expression 488 

heterogeneity still awaits to be studied through novel experimental and computational approaches. 489 

Nevertheless, RNA sequencing analysis also suggests an overall increase in age-related 490 

heterogeneity increase.  491 

 492 

Another limitation is related to use of bulk RNA expression datasets, where each value is an average 493 

for the tissue. While it is important to note that our results indicate increased heterogeneity between 494 

individuals rather than cells, the fact that the brain is composed of different cell types raises the 495 

question if increased heterogeneity may be a result of changes in brain cell-type proportions. To 496 

explore the association between heterogeneity and cell-type specific genes, we used FACS-sorted 497 

cell type specific transcriptome dataset from mouse brain (Cahoy et al., 2008). We only had nine 498 

genes that have consistent heterogeneity increase and are specific to one cell-type. Eight out of nine 499 

were highly expressed in oligodendrocytes, which is consistent with the results reported in our earlier 500 

work (Kedlian et al., 2019). However, we did not observe any significant association between cell-type 501 

specific genes and heterogeneity (Figure S23).  502 

 503 

Biological processes are associated with increased heterogeneity 504 

Gene set enrichment analysis of the genes with increased heterogeneity with age revealed a set of 505 

significantly enriched pathways that are known to modulate aging, including longevity regulating 506 

pathway, autophagy, mTOR signaling pathway (Figure 5a). Furthermore, GO terms shared among 507 

these genes include some previously identified common pathways in aging and age-related diseases 508 

(Figure S16-18). We have also tested if these genes are associated with age-related diseases 509 
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through GWAS, and although not significant, we found a positive association with all age-related traits 510 

defined in Johnson and Dong et al.. Overall, these results indicate the effect of heterogeneity on 511 

pathways that modulate aging and may reflect the significance of increased heterogeneity in aging. 512 

Importantly, we identified genes that are enriched in terms related to neuronal and synaptic functions, 513 

such as axon guidance, neuron to neuron synapse, postsynaptic specialization, which may reflect the 514 

role of increased heterogeneity in synaptic dysfunction observed in the mammalian brain, which is 515 

considered to be a major factor in age-related cognitive decline (Morrison & Baxter, 2012). We also 516 

observed genes that become more heterogeneous with age consistently across datasets are more 517 

central (i.e. have a higher number of interactions) in a protein-protein interaction network (Figure 518 

S22). Although this could mean the effect of heterogeneity could be even more critical because it 519 

affects hub genes, another explanation is research bias that these genes are studied more than 520 

others. 521 

 522 

In summary, by performing a meta-analysis of transcriptome data from diverse brain regions we found 523 

a significant increase in gene expression heterogeneity during aging, compared to development. 524 

Increased heterogeneity was a consistent pattern among diverse brain regions in aging, while no 525 

significant consistency was observed across development datasets. Our results support the view of 526 

aging as a result of stochastic molecular alterations, whilst development has a higher degree of gene 527 

expression regulation. We also found that genes showing a consistent increase in heterogeneity 528 

during aging are involved in pathways important for aging and neuronal function. Therefore, our 529 

results demonstrate that increased heterogeneity is one of the characteristics of brain aging and is 530 

unlikely to be only driven by the passage of time starting from developmental stages. 531 

  532 

Methods 533 

 534 

Dataset collection 535 

Microarray datasets: Raw data used in this study were retrieved from the NCBI Gene Expression 536 

Omnibus (GEO) from three different sources (Table S1). All three datasets consist of human brain 537 

gene expression data generated on microarray platforms. In total, we obtained 1017 samples from 538 

298 individuals, spanning the whole lifespan with ages ranging from 0 to 98 years (Figure S1).  539 

RNA sequencing dataset: We used the transcriptome data generated by the GTEx Consortium (v6p) 540 

(Ardlie et al., 2015). We only used the samples with a death circumstance of 1 (violent and fast 541 

deaths due to an accident) and 2 (fast death of natural causes) on the Hardy Scale excluding 542 

individuals who died of illnesses. As we focus only on the brain, we used all 13 brain tissue data in 543 

GTEx. We thus analyzed 623 samples obtained from 99 individuals.  544 

Separating datasets into development and aging datasets: To differentiate changes in gene 545 

expression heterogeneity during aging from those during development, we used the age of 20 to 546 

separate pre-adulthood from adulthood. It was shown that the age of 20 corresponds to the first age 547 
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of reproduction in human societies (Walker et al., 2006). Structural changes after the age of 20 in the 548 

human brain were previously linked to age-related phenotypes, specifically neuronal shrinkage and a 549 

decline in total length of myelinated fibers (Sowell et al., 2004). Earlier studies examining age-related 550 

gene expression changes in different brain regions also showed a global change in gene expression 551 

patterns after the age of 20 (Colantuoni et al., 2011; Dönertaş et al., 2017; Somel et al., 2010). Thus, 552 

consistent with these studies, we separated datasets using the age of 20 into development (0 to 20 553 

years of age, n = 441) and aging (20 to 98 years of age, n = 569). 554 

 555 

Preprocessing 556 

Microarray datasets: RMA correction (using the ‘oligo’ library in R) (Carvalho & Irizarry, 2010) and 557 

log2 transformation were applied to Somel2011 and Kang2011 datasets. For the Colantuoni2011 558 

dataset, as there was no public R package to analyze the raw data, we used the preprocessed data 559 

deposited in GEO, which had been loess normalized by the authors. We quantile normalized all 560 

datasets using the ‘preprocessCore’ library in R (Bolstad, 2019).  Notably, our analysis focused on 561 

consistent patterns across datasets, instead of considering significant changes within individual 562 

datasets. Since we don’t expect random confounding factors to be shared among datasets, we used 563 

quantile normalization to minimize the effects of confounders, and we treated consistent results as 564 

potentially a biological signal. We also applied an additional correction procedure for Somel2011 565 

datasets, in which there was a batch effect influencing the expression levels, as follows: for each 566 

probeset (1) calculate mean expression (M), (2) scale each batch separately (to mean = 0, standard 567 

deviation = 1), (3) add M to each value. We excluded outliers given in Table S1, through a visual 568 

inspection of the first two principal components for the probeset expression levels (same as in 569 

Dönertaş, Fuentealba Valenzuela, Partridge, & Thornton, 2018; Dönertaş et al., 2017). We mapped 570 

probeset IDs to Ensembl gene IDs 1) using the Ensembl database, through the ‘biomaRt’ library 571 

(Durinck, Spellman, Birney, & Huber, 2009) in R for the Somel2011 dataset, 2) using the GPL file 572 

deposited in GEO for Kang2011, as probeset IDs for this dataset were not complete in Ensembl, and 573 

3) using the Entrez gene IDs in the GPL file deposited in GEO for the Colantuoni2011 dataset and 574 

converting them into Ensembl gene IDs using the Ensemble database, through the “biomaRt” library 575 

in R. Lastly, we scaled expression levels for genes (to mean = 0, standard deviation = 1) using the 576 

‘scale’ function in R. Age values of individuals in each dataset were converted to the fourth root of age 577 

(in days) to have a linear relationship between age and expression both in development and aging. 578 

However, we repeated the analysis using different age scales and confirmed that the results were 579 

quantitatively similar (Figure S3). 580 

RNA sequencing dataset: The genes with median RPKM value of 0 were excluded from the dataset. 581 

The RPKM values provided in the GTEx data were log2 transformed and quantile‐normalized. Similar 582 

to the microarray data, we excluded the outliers based on the visual inspection of the first and second 583 

principal components (Table S1). In GTEx, ages are given as 10 year intervals. We therefore used 584 

the middle point of these age intervals to represent that individual’s age. 585 

 586 
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 587 

Age-related expression change 588 

We used linear regression to assess the relationship between age and gene expression. The model 589 

used in the analysis is: 590 

 591 

(1) Yi = βi0 + βi1*Age1/4 + εi                                                                                                                                 592 

 593 

where Yi is the scaled log2 expression level for the ith gene, βi0 is the intercept, βi1 is the slope, and εi 594 

is the residual. We performed the analysis for each dataset (development and aging datasets 595 

separately) and considered the β1 value as a measure of change in expression. p-values obtained 596 

from the model were corrected for multiple testing according to Benjamini and Hochberg procedure 597 

(Benjamini & Hochberg, 1995) by using ‘p.adjust’ function in R. 598 

 599 

Age-related heterogeneity change 600 

In order to quantify the age-related change in gene expression heterogeneity, we calculated 601 

Spearman’s correlation coefficient (ρ). The correlations were calculated between the absolute values 602 

of residuals obtained from equation (1) and the fourth root of individual age. We regarded the 603 

absolute values of residuals as a measure of heterogeneity. Therefore, high positive correlation 604 

coefficients suggest that heterogeneity increases with age, whereas strong negative correlation 605 

implies heterogeneity decreases with age. p-values were calculated from the correlation analysis and 606 

corrected for multiple testing with the Benjamini and Hochberg method using the ‘p.adjust’ function in 607 

R. To compare heterogeneity changes in aging and development, we employed paired Wilcoxon test 608 

(‘wilcox.test’ in the R ‘stats’ package) in which we compared median heterogeneity changes in aging 609 

and development dataset pairs.   610 

 611 

Principal Component Analysis 612 

We conducted principal component analysis on both age-related changes in expression (β) and 613 

heterogeneity (ρ). We followed a similar procedure for both analyses, in which we used the ‘prcomp’ 614 

function in R.  The analysis was performed on a matrix containing β values (for the change in 615 

expression level) and ρ values (for the change in heterogeneity), for 11,137 commonly expressed 616 

genes for all 38 development and aging datasets. In each dataset, the estimates of expression 617 

change (β) or heterogeneity change (ρ) values were scaled for each dataset before calculating 618 

principal components.  619 

 620 

Permutation test 621 

We performed a permutation test, taking into account the non-independence of samples across the 622 

Somel2011 and Kang2011 datasets, due to the fact that these datasets include multiple samples from 623 

the same individuals for different brain regions. We first randomly permuted ages among individuals, 624 
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not samples, for 1,000 times in each data source, using the ‘sample’ function in R. Next, we assigned 625 

ages of individuals to corresponding samples and calculated age-related expression and 626 

heterogeneity change for each dataset, corresponding to different brain regions. For the tests related 627 

to the changes in gene expression with age, we used a linear model between gene expression levels 628 

and the randomized ages. In contrast, for the tests related to the changes in heterogeneity with age, 629 

we measured the correlation between the randomized ages and the absolute value of residuals from 630 

the linear model that is between expression levels and non-randomized ages for each gene. In this 631 

way, we preserved the relationship between age and expression, and we were able to ensure that our 632 

regression model was viable for calculating age-related heterogeneity change. Using expression and 633 

heterogeneity change estimates calculated using permuted ages, we tested (a) if the correlation of 634 

expression (and heterogeneity) change in aging is higher than in development datasets; (b) if the 635 

correlations of expression (and heterogeneity) change in development and in aging datasets are 636 

significantly higher than null expectation; (c) if the number of genes showing significant change in 637 

expression (and heterogeneity) is significantly higher in aging than in development datasets; (d) if the 638 

overall increase in age-related heterogeneity during aging is significantly higher than development; (e) 639 

if the observed consistency in heterogeneity increase is significantly different from expected. We also 640 

demonstrate that our permutation strategy is more stringent than random permutations in Figure S10, 641 

giving the distributions calculated using both dependent permutations and random permutations.  642 

 643 

To test the overall correlation within development or aging datasets for the changes in expression (β) 644 

and heterogeneity (ρ), we calculated median correlations among independent three subsets of 645 

datasets (one Kang2011, one Somel2011 and the Colantuoni2011 dataset), taking the median value 646 

calculated for each possible combination of independent subsets (16 x 2 x 1 = 32 combinations). 647 

Using 1,000 permutations of individuals’ ages, we generated an expected distribution for the median 648 

correlation coefficient for triples and compared these with the observed values, asking how many 649 

times we observe a higher value. We used this approach to calculate expected median correlation 650 

among development (and aging) datasets, because the number of independent pairwise comparisons 651 

are outnumbered by the number of dependent pairwise comparisons, causing low statistical power.  652 

 653 

To further test the significance of the difference between correlations among development and aging 654 

datasets, we calculated the median difference in correlations between aging and development 655 

datasets for each permutation. We next constructed the null distribution of 1,000 median differences 656 

and calculated empirical p-values compering the observed differences with these null distributions. 657 

Next, to test the significance of the difference in the number of significantly changing genes between 658 

development and aging, we calculated the difference in the number of genes showing significant 659 

change between development and aging datasets for each permutation. Empirical p-values were 660 

computed according to observed differences. Likewise, to test if the overall increase in age-related 661 

heterogeneity during aging is significant compared to development, we computed median differences 662 

between median heterogeneity change values of each aging and development dataset, for each 663 
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permutation, followed by an empirical p-value calculation to answer if the aging datasets have a 664 

higher increase in age-related heterogeneity.  665 

 666 

Expected heterogeneity consistency 667 

Expected consistency in heterogeneity change was calculated from heterogeneity change values 668 

(ρ) measured using permuted ages. For each permutation, we first calculated the total number of 669 

genes showing consistent heterogeneity increase for N number of datasets (N = 0, ..., 19). To test if 670 

observed consistency significantly differed from the expected, we compared observed consistency 671 

values to the distribution of expected numbers, by performing a one-sided test for the consistency in 672 

N number of datasets, N = 1, …, 19. 673 

 674 

Clustering 675 

We used the k-means algorithm (‘kmeans’ function in R) to cluster genes showing consistent 676 

heterogeneity change (n=147) according to their heterogeneity profiles. We first took the subset of the 677 

heterogeneity levels (absolute value of the residuals from equation [1]) to include only the genes that 678 

show a consistent increase with age and then scaled the heterogeneity levels to the same mean and 679 

standard deviation. Since the number of samples in each dataset is different, just running k-means on 680 

the combined dataset would not equally represent all datasets. Thus, we first calculated the spline 681 

curves for scaled heterogeneity levels for each gene in each dataset (using the ‘smooth.spline’ 682 

function in R, with three degrees of freedom). We interpolated at 11 (the smallest sample size) equally 683 

distant age points within each dataset. Then we used the combined interpolated values to run the k-684 

means algorithm with k = 8, a liberal choice, given the total number of genes being 147.   685 

 686 

To test association of the clusters with Alzheimer’s Disease, we retrieved overall AD association 687 

scores of the 147 consistent genes (n = 40) from the Open Targets Platform (Carvalho-Silva et al., 688 

2019). 689 

 690 

Functional Analysis 691 

We used the "clusterProfiler" package in R to run Gene Set Enrichment Analysis, using Gene 692 

Ontology (GO) Biological Process (BP), GO Molecular Function (MF), GO Cellular Compartment 693 

(CC), Reactome, Disease Ontology (DO), and KEGG Pathways. We performed GSEA on all gene 694 

sets with a size between 5 and 500, and we corrected the resulting p-values with the Benjamini and 695 

Hochberg correction method. To test if the genes with a consistent increase or decrease in their 696 

expression are associated with specific functions, we used the number of datasets with a consistent 697 

increase to run GSEA. Since we are running GSEA using number of datasets showing consistency, 698 

our data includes many ties, potentially making the ranking ambiguous and non-robust. In order to 699 

assess how robust our results are, we ran GSEA 1,000 times on the same data and counted how 700 

many times we observed the same set of KEGG pathways as significant (Table S4). The lowest 701 

number among the pathways with a significant positive enrichment score was 962 out of 1,000 702 
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(Phospholipase D signaling pathway). Moreover, we repeated the same analysis using the 703 

heterogeneity change levels (ρ), instead of using the number of datasets with a consistent change, for 704 

each dataset to confirm the gene sets are indeed associated with the increase or decrease in 705 

heterogeneity (Figure S15-S19). We visualized the KEGG pathways using ‘KEGGgraph’ library in R 706 

and colored the genes by the number of datasets that show an increase. 707 

 708 

We also performed an enrichment analysis of the transcription factors and miRNA to test if specific 709 

TFs or miRNAs regulate the genes that become more heterogeneous consistently. We collected 710 

gene-regulator association information using the Harmonizome database (Rouillard et al., 2016), 711 

“MiRTarBase microRNA Targets” (12086 genes, 596 miRNAs) and “TRANSFAC Curated 712 

Transcription Factor Targets” (13216 genes, 201 TFs) sets. We used the ‘fgsea’ package in R, which 713 

allows GSEA on a custom gene set. We tested the association for each regulator with at least 10 and 714 

at most 500 targets. Moreover, we tested if the number of regulators is associated with the change in 715 

heterogeneity. We first calculated the correlation between heterogeneity change with age (or the 716 

number of datasets with an increase in expression heterogeneity) and the number of TFs or miRNAs 717 

regulating that gene, for aging and development separately. We repeated the analysis while 718 

accounting for the direction of expression changes in these periods (i.e. separating genes into down-719 

down, down-up, up-down, and up-up categories based on their expression in development and aging, 720 

Figure S21). To test the difference in the correlations between aging and development, we used 721 

1,000 random permutations of the number of TFs. For each permutation, we randomized the number 722 

of TFs and calculated the correlation between heterogeneity change (or the number of datasets with 723 

an increase in heterogeneity) and the randomized numbers. We then calculated the percentage of 724 

datasets where aging has a higher correlation than development. Using the distribution of 725 

percentages, we tested if the observed value is expected by chance. 726 

 727 

Protein-protein interaction network analysis 728 

We downloaded all human protein interaction data from the STRING database (v11) (von Mering et 729 

al., 2005). Ensembl Peptide IDs are mapped to Ensembl Gene IDs using the “biomaRt” package in R. 730 

Here we aimed to test whether genes showing consistent increase in heterogeneity have a different 731 

number of interactors than other genes. For this we calculated the degree distributions for the genes 732 

that become consistently more heterogeneous with age and all remaining genes using different 733 

cutoffs for interaction confidence scores. In order to calculate the significance of the difference, we i) 734 

calculated the number of interactors (degree) for each gene, ii) for 10,000 times, randomly sampled k 735 

genes from all interactome data (k = number of genes that become heterogeneous with age across all 736 

datasets and have interaction information in STRING database, after filtering for a cutoff), iii) 737 

calculated the median of degree for each sample. We then calculated an empirical p-value by asking 738 

how many of these 10,000 samples we see a median degree that is equivalent to or higher than our 739 

original value. The number of genes and interactions after each cutoff are given in Figure S22. 740 

 741 
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Cell-type specificity analysis 742 

Using FACS-sorted cell-type specific transcriptome data from the mouse brain (Cahoy et al., 2008), 743 

we checked if there is any overlap between genes that become heterogeneous with age and cell-type 744 

specific genes. We downloaded the dataset from the GEO database (GSE9566) and preprocessed it 745 

by performing: i) RMA correction using the ‘affy’ package in R (Gautier, Cope, Bolstad, & Irizarry, 746 

2004), ii) log2 transformation, iii) quantile normalization using the ‘preprocessCore’ package in R 747 

(Bolstad, 2019), iv) mapping probeset IDs to first mouse genes, and then human genes. We only 748 

included genes that have one to one orthologs in humans, after filtering out probesets that map to 749 

multiple genes. We defined cell-type specific genes by calculating the effect size (Cohen’s D) for each 750 

gene and cell type and identifying genes that have an effect size higher than or equal to 2 as specific 751 

to that cell type. At this cutoff, there was no overlap between cell type specific gene lists. To test for 752 

association between heterogeneity and cell type specificity, we used the Fisher’s exact test using the 753 

R ‘fisher.test’ function.  754 

 755 

Software 756 

All analysis was performed using R and the code to calculate heterogeneity changes with age is 757 

available as an R package ‘hetAge’, documented at https://mdonertas.github.io/hetAge/. “ggplot2” 758 

(Wickham, 2017) and “ggpubr” (Kassambara, 2018) R libraries were used for the visualization. 759 

 760 

Data availability 761 

Raw data used in this study was downloaded from the GEO database using GSE numbers specified 762 

in Table S1. All data generated in this study, i.e. changes in expression and heterogeneity with age 763 

for each dataset and functional enrichment results are available as Supplementary Tables.  764 

 765 

Author Contributions 766 

H.M.D. conceived and designed the study with the contributions from M.S., and J.M.T.. U.I. and 767 

H.M.D. analyzed the data. U.I. and H.M.D. interpreted the results and wrote the manuscript with the 768 

contributions from M.S. and J.M.T. All authors read, revised and approved the final version of this 769 

manuscript. 770 

 771 

Acknowledgements 772 

The authors thank Hamit Izgi, Matias Fuentealba Valenzuela, Dr. Daniel K. Fabian, and Prof Linda 773 

Partridge for helpful discussions. H.M.D. is a member of Darwin College, University of Cambridge.  774 

 775 

Funding Statement  776 

This work is funded by EMBL (H.M.D., J.M.T.) and the Wellcome Trust (098565/Z/12/Z; J.M.T).  777 

  778 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


 

 24 

References 779 

Angelidis, I., Simon, L. M., Fernandez, I. E., Strunz, M., Mayr, C. H., Greiffo, F. R., … Schiller, H. B. 780 

(2019). An atlas of the aging lung mapped by single cell transcriptomics and deep tissue 781 

proteomics. Nature Communications, 10(1), 963. https://doi.org/10.1038/s41467-019-08831-9 782 

Ardlie, K. G., Deluca, D. S., Segre, A. V., Sullivan, T. J., Young, T. R., Gelfand, E. T., … Dermitzakis, 783 

E. T. (2015). The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation 784 

in humans. Science, 348(6235), 648–660. https://doi.org/10.1126/science.1262110 785 

Aris, V. M., Cody, M. J., Cheng, J., Dermody, J. J., Soteropoulus, P., Recce, M., & Tolias, P. P. 786 

(2004). Noise filtering and nonparametric analysis of microarray data underscores discriminating 787 

markers of oral, prostate, lung, ovarian and breast cancer. BMC Bioinformatics, 5. 788 

https://doi.org/10.1186/1471-2105-5-185 789 

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000, 790 

May). Gene ontology: Tool for the unification of biology. Nature Genetics. Nature America Inc. 791 

https://doi.org/10.1038/75556 792 

Bahar, R., Hartmann, C. H., Rodriguez, K. A., Denny, A. D., Busuttil, R. A., Dollé, M. E. T., … Vijg, J. 793 

(2006). Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature, 794 

441(7096), 1011–1014. https://doi.org/10.1038/nature04844 795 

Barroso, G. V., Puzovic, N., & Dutheil, J. Y. (2018). The Evolution of Gene-Specific Transcriptional 796 

Noise Is Driven by Selection at the Pathway Level. Genetics, 208(1), 173–189. 797 

https://doi.org/10.1534/genetics.117.300467 798 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful 799 

Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological). 800 

WileyRoyal Statistical Society. Retrieved from https://www.jstor.org/stable/2346101 801 

Bolstad, B. M. (2019). preprocessCore: A collection of pre-processing functions. Retrieved from 802 

https://github.com/bmbolstad/preprocessCore 803 

Brinkmeyer-Langford, C. L., Guan, J., Ji, G., & Cai, J. J. (2016). Aging Shapes the Population-Mean 804 

and -Dispersion of Gene Expression in Human Brains. Frontiers in Aging Neuroscience, 8, 183. 805 

https://doi.org/10.3389/fnagi.2016.00183 806 

Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., … Barres, B. 807 

A. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new 808 

resource for understanding brain development and function. The Journal of Neuroscience�: The 809 

Official Journal of the Society for Neuroscience, 28(1), 264–278. 810 

https://doi.org/10.1523/JNEUROSCI.4178-07.2008 811 

Carvalho-Silva, D., Pierleoni, A., Pignatelli, M., Ong, C., Fumis, L., Karamanis, N., … Dunham, I. 812 

(2019). Open Targets Platform: new developments and updates two years on. Nucleic Acids 813 

Research, 47(D1), D1056–D1065. https://doi.org/10.1093/nar/gky1133 814 

Carvalho, B. S., & Irizarry, R. A. (2010). A framework for oligonucleotide microarray preprocessing. 815 

Bioinformatics, 26(19), 2363–2367. https://doi.org/10.1093/bioinformatics/btq431 816 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


 

 25 

Cheung, P., Vallania, F., Warsinske, H. C., Donato, M., Schaffert, S., Chang, S. E., … Kuo, A. J. 817 

(2018). Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations 818 

with Aging. Cell, 173(6), 1385-1397.e14. https://doi.org/10.1016/j.cell.2018.03.079 819 

Chou, C.-H., Chang, N.-W., Shrestha, S., Hsu, S.-D., Lin, Y.-L., Lee, W.-H., … Huang, H.-D. (2016). 820 

miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. 821 

Nucleic Acids Research, 44(D1), D239–D247. https://doi.org/10.1093/nar/gkv1258 822 

Colantuoni, C., Lipska, B. K., Ye, T., Hyde, T. M., Tao, R., Leek, J. T., … Kleinman, J. E. (2011). 823 

Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature, 824 

478(7370), 519–523. https://doi.org/10.1038/nature10524 825 

Davie, K., Janssens, J., Koldere, D., De Waegeneer, M., Pech, U., Kreft, Ł., … Aerts, S. (2018). A 826 

Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell, 174(4), 982-998.e20. 827 

https://doi.org/10.1016/j.cell.2018.05.057 828 

Dönertaş, H. M., Fuentealba Valenzuela, M., Partridge, L., & Thornton, J. M. (2018). Gene 829 

expression-based drug repurposing to target aging. Aging Cell, 17(5), e12819. 830 

https://doi.org/10.1111/acel.12819 831 

Dönertaş, H. M., İzgi, H., Kamacıoğlu, A., He, Z., Khaitovich, P., & Somel, M. (2017). Gene 832 

expression reversal toward pre-adult levels in the aging human brain and age-related loss of 833 

cellular identity. Scientific Reports, 7(1), 5894. https://doi.org/10.1038/s41598-017-05927-4 834 

Dorszewska, J. (2013). Cell biology of normal brain aging: synaptic plasticity–cell death. Aging 835 

Clinical and Experimental Research, 25(1), 25–34. https://doi.org/10.1007/s40520-013-0004-2 836 

Durinck, S., Spellman, P. T., Birney, E., & Huber, W. (2009). Mapping identifiers for the integration of 837 

genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols, 4(8), 1184–838 

1191. https://doi.org/10.1038/nprot.2009.97 839 

Enge, M., Arda, H. E., Mignardi, M., Beausang, J., Bottino, R., Kim, S. K., & Quake, S. R. (2017). 840 

Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and 841 

Somatic Mutation Patterns. Cell, 171(2), 321-330.e14. https://doi.org/10.1016/j.cell.2017.09.004 842 

Evans, D. A., Funkenstein, H. H., Albert, M. S., Scherr, P. A., Cook, N. R., Chown, M. J., … Taylor, J. 843 

O. (1989). Prevalence of Alzheimer’s disease in a community population of older persons. 844 

Higher than previously reported. JAMA, 262(18), 2551–2556. Retrieved from 845 

http://www.ncbi.nlm.nih.gov/pubmed/2810583 846 

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., … D’Eustachio, P. 847 

(2018). The Reactome Pathway Knowledgebase. Nucleic Acids Research, 46(D1), D649–D655. 848 

https://doi.org/10.1093/nar/gkx1132 849 

Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., … Esteller, M. (2005). 850 

Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the 851 

National Academy of Sciences, 102(30), 10604–10609. 852 

https://doi.org/10.1073/pnas.0500398102 853 

Gautier, L., Cope, L., Bolstad, B. M., & Irizarry, R. A. (2004). affy--analysis of Affymetrix GeneChip 854 

data at the probe level. Bioinformatics, 20(3), 307–315. 855 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


 

 26 

https://doi.org/10.1093/bioinformatics/btg405 856 

Gorbunova, V., Seluanov, A., Mao, Z., & Hine, C. (2007). Changes in DNA repair during aging. 857 

Nucleic Acids Research, 35(22), 7466–7474. https://doi.org/10.1093/nar/gkm756 858 

Grillo, F. W., Song, S., Teles-Grilo Ruivo, L. M., Huang, L., Gao, G., Knott, G. W., … De Paola, V. 859 

(2013). Increased axonal bouton dynamics in the aging mouse cortex. Proceedings of the 860 

National Academy of Sciences, 110(16), E1514–E1523. 861 

https://doi.org/10.1073/pnas.1218731110 862 

Herndon, L. A., Schmeissner, P. J., Dudaronek, J. M., Brown, P. A., Listner, K. M., Sakano, Y., … 863 

Driscoll, M. (2002). Stochastic and genetic factors influence tissue-specific decline in ageing C. 864 

elegans. Nature, 419(6909), 808–814. https://doi.org/10.1038/nature01135 865 

Johnson, S. C., Dong, X., Vijg, J., & Suh, Y. (2015). Genetic evidence for common pathways in 866 

human age-related diseases. Aging Cell, 14(5), 809–817. https://doi.org/10.1111/acel.12362 867 

Johnson, S. C., Rabinovitch, P. S., & Kaeberlein, M. (2013). mTOR is a key modulator of ageing and 868 

age-related disease. Nature, 493(7432), 338–345. https://doi.org/10.1038/nature11861 869 

Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., & Tanabe, M. (2019). New approach for 870 

understanding genome variations in KEGG. Nucleic Acids Research, 47(D1), D590–D595. 871 

https://doi.org/10.1093/nar/gky962 872 

Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., … Sestan, N. (2011). Spatio-temporal 873 

transcriptome of the human brain. Nature, 478(7370), 483–489. 874 

https://doi.org/10.1038/nature10523 875 

Kassambara, A. (2018). ggpubr: “ggplot2” Based Publication Ready Plots. R Package Version 0.1.8. 876 

Retrieved from https://cran.r-project.org/package=ggpubr 877 

Kedlian, V. R., Donertas, H. M., & Thornton, J. M. (2019). The widespread increase in inter-individual 878 

variability of gene expression in the human brain with age. Aging, 11(8), 2253–2280. 879 

https://doi.org/10.18632/aging.101912 880 

Kibbe, W. A., Arze, C., Felix, V., Mitraka, E., Bolton, E., Fu, G., … Schriml, L. M. (2015). Disease 881 

Ontology 2015 update: an expanded and updated database of human diseases for linking 882 

biomedical knowledge through disease data. Nucleic Acids Research, 43(D1), D1071–D1078. 883 

https://doi.org/10.1093/nar/gku1011 884 

Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., … Walsh, C. A. 885 

(2018). Aging and neurodegeneration are associated with increased mutations in single human 886 

neurons. Science, 359(6375), 555–559. https://doi.org/10.1126/science.aao4426 887 

Lodato, M. A., Woodworth, M. B., Lee, S., Evrony, G. D., Mehta, B. K., Karger, A., … Walsh, C. A. 888 

(2015). Somatic mutation in single human neurons tracks developmental and transcriptional 889 

history. Science, 350(6256), 94–98. https://doi.org/10.1126/science.aab1785 890 

Lombard, D. B., Chua, K. F., Mostoslavsky, R., Franco, S., Gostissa, M., & Alt, F. W. (2005). DNA 891 

Repair, Genome Stability, and Aging. Cell, 120(4), 497–512. 892 

https://doi.org/10.1016/j.cell.2005.01.028 893 

Lu, T., Pan, Y., Kao, S.-Y., Li, C., Kohane, I., Chan, J., & Yankner, B. A. (2004). Gene regulation and 894 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


 

 27 

DNA damage in the ageing human brain. Nature, 429(6994), 883–891. 895 

https://doi.org/10.1038/nature02661 896 

Maheshri, N., & O’Shea, E. K. (2007). Living with Noisy Genes: How Cells Function Reliably with 897 

Inherent Variability in Gene Expression. Annual Review of Biophysics and Biomolecular 898 

Structure, 36(1), 413–434. https://doi.org/10.1146/annurev.biophys.36.040306.132705 899 

Martinez-Jimenez, C. P., Eling, N., Chen, H.-C., Vallejos, C. A., Kolodziejczyk, A. A., Connor, F., … 900 

Odom, D. T. (2017). Aging increases cell-to-cell transcriptional variability upon immune 901 

stimulation. Science, 355(6332), 1433–1436. https://doi.org/10.1126/science.aah4115 902 

Martins, R., Lithgow, G. J., & Link, W. (2016). Long live FOXO: unraveling the role of FOXO proteins 903 

in aging and longevity. Aging Cell, 15(2), 196–207. https://doi.org/10.1111/acel.12427 904 

Matys, V., Fricke, E., Geffers, R., Gössling, E., Haubrock, M., Hehl, R., … Wingender, E. (2003). 905 

TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Research, 31(1), 906 

374–378. https://doi.org/10.1093/nar/gkg108 907 

Miller, J. A., Ding, S.-L., Sunkin, S. M., Smith, K. A., Ng, L., Szafer, A., … Lein, E. S. (2014). 908 

Transcriptional landscape of the prenatal human brain. Nature, 508(7495), 199–206. 909 

https://doi.org/10.1038/nature13185 910 

Morrison, J. H., & Baxter, M. G. (2012). The ageing cortical synapse: hallmarks and implications for 911 

cognitive decline. Nature Reviews. Neuroscience, 13(4), 240–250. 912 

https://doi.org/10.1038/nrn3200 913 

Polleux, F., Ince-Dunn, G., & Ghosh, A. (2007). Transcriptional regulation of vertebrate axon guidance 914 

and synapse formation. Nature Reviews Neuroscience, 8(5), 331–340. 915 

https://doi.org/10.1038/nrn2118 916 

Rouillard, A. D., Gundersen, G. W., Fernandez, N. F., Wang, Z., Monteiro, C. D., McDermott, M. G., & 917 

Ma’ayan, A. (2016). The harmonizome: a collection of processed datasets gathered to serve and 918 

mine knowledge about genes and proteins. Database, 2016, baw100. 919 

https://doi.org/10.1093/database/baw100 920 

Rubinsztein, D. C., Mariño, G., & Kroemer, G. (2011). Autophagy and Aging. Cell, 146(5), 682–695. 921 

https://doi.org/10.1016/j.cell.2011.07.030 922 

Schratt, G. (2009). microRNAs at the synapse. Nature Reviews Neuroscience, 10(12), 842–849. 923 

https://doi.org/10.1038/nrn2763 924 

Somel, M., Guo, S., Fu, N., Yan, Z., Hu, H. Y., Xu, Y., … Khaitovich, P. (2010). MicroRNA, mRNA, 925 

and protein expression link development and aging in human and macaque brain. Genome 926 

Research, 20(9), 1207–1218. https://doi.org/10.1101/gr.106849.110 927 

Somel, M., Khaitovich, P., Bahn, S., Pääbo, S., & Lachmann, M. (2006). Gene expression becomes 928 

heterogeneous with age. Current Biology, 16(10), R359–R360. 929 

https://doi.org/10.1016/j.cub.2006.04.024 930 

Sowell, E. R., Thompson, P. M., & Toga, A. W. (2004). Mapping Changes in the Human Cortex 931 

throughout the Span of Life. The Neuroscientist, 10(4), 372–392. 932 

https://doi.org/10.1177/1073858404263960 933 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


 

 28 

Stefani, G., & Slack, F. J. (2008). Small non-coding RNAs in animal development. Nature Reviews 934 

Molecular Cell Biology, 9(3), 219–230. https://doi.org/10.1038/nrm2347 935 

Tacutu, R., Thornton, D., Johnson, E., Budovsky, A., Barardo, D., Craig, T., … De Magalhães, J. P. 936 

(2018). Human Ageing Genomic Resources: New and updated databases. Nucleic Acids 937 

Research, 46(D1), D1083–D1090. https://doi.org/10.1093/nar/gkx1042 938 

Tebbenkamp, A. T. N., Willsey, A. J., State, M. W., & Šestan, N. (2014). The developmental 939 

transcriptome of the human brain. Current Opinion in Neurology, 27(2), 149–156. 940 

https://doi.org/10.1097/WCO.0000000000000069 941 

The Gene Ontology Consortium. (2019). The Gene Ontology Resource: 20 years and still GOing 942 

strong. Nucleic Acids Research, 47(D1), D330–D338. https://doi.org/10.1093/nar/gky1055 943 

Vijg, J. (2004). Impact of genome instability on transcription regulation of aging and senescence. 944 

Mechanisms of Ageing and Development, 125(10–11), 747–753. 945 

https://doi.org/10.1016/j.mad.2004.07.004 946 

Viñuela, A., Brown, A. A., Buil, A., Tsai, P.-C., Davies, M. N., Bell, J. T., … Small, K. S. (2018). Age-947 

dependent changes in mean and variance of gene expression across tissues in a twin cohort. 948 

Human Molecular Genetics, 27(4), 732–741. https://doi.org/10.1093/hmg/ddx424 949 

von Mering, C., Jensen, L. J., Snel, B., Hooper, S. D., Krupp, M., Foglierini, M., … Bork, P. (2005). 950 

STRING: known and predicted protein-protein associations, integrated and transferred across 951 

organisms. Nucleic Acids Research, 33(Database issue), D433-7. 952 

https://doi.org/10.1093/nar/gki005 953 

Walker, R., Gurven, M., Hill, K., Migliano, A., Chagnon, N., De Souza, R., … Yamauchi, T. (2006). 954 

Growth rates and life histories in twenty-two small-scale societies. American Journal of Human 955 

Biology, 18(3), 295–311. https://doi.org/10.1002/ajhb.20510 956 

Wickham, H. (2017). ggplot2 – Elegant Graphics for Data Analysis. Journal of Statistical Software, 957 

77(April), 3–5. https://doi.org/10.18637/jss.v077.b02 958 

Ximerakis, M., Lipnick, S. L., Simmons, S. K., Adiconis, X., Innes, B. T., Dionne, D., … Rubin, L. L. 959 

(2018). Single-cell transcriptomics of the aged mouse brain reveals convergent, divergent and 960 

unique aging signatures. BioRxiv, 440032. https://doi.org/10.1101/440032 961 

Zhu, Y., Wang, L., Yin, Y., & Yang, E. (2017). Systematic analysis of gene expression patterns 962 

associated with postmortem interval in human tissues. Scientific Reports, 7(1), 5435. 963 

https://doi.org/10.1038/s41598-017-05882-0 964 

 965 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2019. ; https://doi.org/10.1101/595249doi: bioRxiv preprint 

https://doi.org/10.1101/595249
http://creativecommons.org/licenses/by/4.0/

