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Abstract 

MicroRNAs	(miRNAs)	are	a	class	of	small	non-coding	RNA	molecule,	approximately	22nt	in	

length,	which	guide	the	repression	of	mRNA	transcripts.	A	number	of	tools	have	been	

developed	to	predict	miRNA	targets	in	animals	which	do	not	account	for	the	effects	of	a	

specific	cellular	context	on	miRNA	targeting.	We	present	FilTar	(Filtering	of	predicted	

miRNA	Targets),	a	method	which	utilises	available	RNA-Seq	information	to	filter	non-	or	

lowly	expressed	transcripts	and	refine	existing	3’UTR	annotations	for	a	given	cellular	

context,	to	increase	miRNA	target	prediction	accuracy	in	animals.		

	

The	FilTar	tool	is	available	at	https://github.com/TBradley27/FilTar.	
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Introduction 

miRNAs	exert	widespread	post-transcriptional	control	over	mRNA	expression	in	most	

animal	lineages	(Bartel	2018),	creating	a	need	for	the	accurate	identification	of	miRNA	

targets	in	order	to	better	understand	gene	regulation.	Traditional	methods	for	providing	

experimental	support	for	putative	interactions	include	the	use	of	reporter	assays	to	test	for	

a	direct	interaction	between	the	miRNA	and	mRNA,	or	perturbation	experiments	to	test	for	

the	effect	of	increased	or	decreased	miRNA	levels	on	target	mRNA,	or	the	corresponding	

proteins	translated	from	these	molecules	(Kuhn	et	al.	2008).	More	recent	methods	allow	

researchers	to	test	for	direct	interactions	between	miRNA	and	putative	targets	

transcriptome-wide.	These	methods	usually	test	for	binding	between	the	putative	miRNA	

target	and	argonaute	(AGO)	(Chi	et	al.	2009;	König	et	al.	2010;	Van	Nostrand	et	al.	2016),	a	

key	component	of	the	miRNA-guided	RISC	(RNA-induced	silencing)	complex,	and	in	

addition	some	methods	can	also	be	used	to	determine	the	identity	of	the	miRNA	which	is	

guiding	AGO	to	the	target	transcript	(Kudla	et	al.	2011;	Helwak	and	Tollervey	2014).	

Currently	available	data	for	these	types	of	experiments	are	generally	limited	in	number	and	

diversity	of	cell	types	and	species.	Inspection	of	the	TarBase	resource	(v8.0)	(Karagkouni	et	

al.	2017),	a	database	of	published,	experimentally-supported	predicted	miRNA	

interactions,	reveal	that,	at	the	time	of	writing,	even	for	a	widely	utilised	model	organism	

such	as	mouse,	AGO	immunoprecipitation	datasets	are	available	for	only	three	cell	lines	

and	five	tissues.	The	problem	is	exacerbated	when	examining	records	for	other	model	

organisms	such	as	rat	and	zebrafish,	in	which	no	data	from	immunoprecipitation	

experiments	is	reported.		This	is	likely	because	generating	data	of	this	type	is	usually	

prohibitively	expensive	in	terms	of	skills,	time	and	material	resources	needed	to	complete	

sophisticated	transcriptome-wide,	next-generation	library	preparation	and	sequencing	

protocols.	The	limited	applicability	of	experimental	approaches	therefore	underlies	the	

continuing	necessity	of	computational	approaches	for	predicting	miRNA	targets.	

There	are	a	number	of	existing	computational	tools	for	predicting	miRNA	targets	in	

animals.	Algorithms	such	as	TargetScan	use	complementarity	between	the	seed	sequence	

of	the	miRNA	(Lewis	et	al.	2003;	Bartel	2018)	and	a	corresponding	region	of	the	3’UTR	of	
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its	target	as	the	basis	of	target	prediction	(Lewis	et	al.	2003;	Lewis	et	al.	2005;	Grimson	et	

al.	2007;	Friedman	et	al.	2009;	Garcia	et	al.	2011;	Agarwal	et	al.	2015).	Alternatively,	some	

miRNA	target	prediction	algorithms	do	not	require	full	complementarity	in	the	miRNA	seed	

region	(Khorshid	et	al.	2013;	Gumienny	and	Zavolan	2015;	Enright	et	al.	2003;	John	et	al.	

2004;	Wang	2016),	or	predict	miRNA	targeting	to	occur	in	the	coding	region	of	the	

transcript	as	well	as	the	3’UTR	(Reczko	et	al.	2012).	Most	algorithms,	in	addition	to	

considerations	of	seed	complementarity,	and	the	location	of	the	target	site	within	the	

transcript,	also	consider	features	such	as	the	conservation	of	the	miRNA	target	site	in	

closely	related	species,	the	thermodynamic	stability	of	the	miRNA-mRNA	duplex,	and	the	

structural	accessibility	of	putative	target	sites	to	the	miRNA-RISC	complex,	as	variables	

which	are	also	thought	to	influence	miRNA	targeting	and	subsequent	transcript	repression	

(Ritchie	and	Rasko	2014).	

Although	intramolecular	features	are	often	considered,	current	miRNA	target	predictions	

currently	do	not	account	for	the	broader	cellular	context	in	which	miRNA	targeting	occurs.	

The	clearest	indication	of	this,	is	that	current	target	prediction	tools	do	not	account	for	

whether	predicted	targets	are	expressed	within	a	given	cell	type	or	tissue.	If	the	predicted	

target	is	not	expressed,	it	cannot	physically	interact	and	be	translationally	inhibited	or	

repressed	by	miRNA	molecules.		As	expression	profiles	differ	across	different	cell	types	and	

tissues,	not	incorporating	expression	information	will	then	likely	lead	to	false	positive	

results	when	making	miRNA	target	predictions.	

For	the	prediction	of	miRNA	targets	in	the	3’UTR,	an	additional	complication	is	that	the	

identity	of	an	individual	3’UTR	may	not	be	stable	across	different	cell	types	or	different	

biological	conditions	due	to	alternative	cleavage	and	polyadenylation	(APA)	(Tian	and	

Manley	2017).	APA	is	the	process	by	which	cellular	polyadenylation	machinery	utilises	

alternative	polyadenlyation	sites	located	on	precursor	mRNA	molecules	to	produce	

transcripts	with	alternative	3’UTR	sequences.	Differential	usage	of	polyadenylation	sites	in	

diverse	tissues	or	biological	conditions,	can	result	in	distinct	3’UTR	isoform	abundance	

profiles	existing	between	different	cell	types	(Nam	et	al.	2014).	One	consequence	of	the	

existence	of	3’UTR	isoforms,	is	that	a	miRNA	target	site	may	exist	for	some	3’UTR	isoforms	

of	the	same	annotated	mRNA,	but	not	others.	
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As	a	result,	APA	allows	the	differential	usage	of	miRNA	target	sites	by	the	cell,	diversifying	

and	modifying	the	effect	of	miRNAs	in	different	cellular	contexts.	For	example,	in	cancer	

cells,	shortening	of	3’UTRs	can	activate	oncogenes	by	increasing	mRNA	stability,	partially	

through	the	reduction	in	the	number	of	miRNA	target	sites	in	their	3’UTRs,	decreasing	the	

extent	to	which	they	are	repressed	(Mayr	and	Bartel	2009).	In	contrast,	an	extensive	

enrichment	of	longer	3’UTRs	and	hence	additional	miRNA	target	sites	has	been	discovered	

in	mammalian	brain	tissue	(Miura	et	al.	2013),	which	has	been	hypothesised	to	serve	as	an	

extended	platform	for	the	regulation	of	gene	expression	(Wang	and	Yi	2014).	This	evidence	

of	context-specific	miRNA	action	underlies	the	utility	of	methods	which	accounts	for	this	

information	in	order	to	increase	the	precision	and	sensitivity	of	miRNA	target	predictions.	

Most	databases	of	miRNA	target	predictions	do	not	incorporate	information	relating	to	

APA,	and	instead	rely	on	default	3’UTR	annotations	provided	by	public	sequence	databases	

such	as	Ensembl	(Birney	et	al.	2004;	Cunningham	et	al.	2019)	and	RefSeq	(Pruitt	et	al.	

2006;	Pruitt	et	al.	2013),	when	identifying	potential	miRNA	targets.	Similarly,	most	

prediction	algorithms	do	not	easily	allow	the	user	to	generate	predictions	for	multiple	

3’UTR	isoforms	of	the	same	mRNA.	An	exception	is	TargetScan	(v7)	(Agarwal	et	al.	2015).	

In	this	version	each	mRNA	transcript	is	associated	with	a	distinct	profile	of	relative	3’UTR	

isoform	abundances.	From	this	profile,	each	scored	target	site	is	weighted	by	the	

abundance	of	the	3’UTR	segment	containing	the	predicted	target	site	relative	to	all	3’UTRs	

of	that	transcript.	The	caveat	of	this	analysis	being	that	3’UTR	profiles	are	generated	from	

sequencing	data	obtained	from	only	four	human	cell	lines	(Nam	et	al.	2014),	which	is	

subsequently	treated	as	being	representative	for	all	cell	types.	Whilst	it	was	shown	that	this	

approach	was	superior	to	not	incorporating	3’UTR	profile	data	at	all,	it	was	sub-optimal	in	

comparison	to	using	3’UTR	profiles	specific	to	each	cellular	context	examined	(Nam	et	al.	

2014).	Crucially,	a	miRNA	target	prediction	tool	which	enables	the	user	to	predict	miRNA	

targets	specific	to	a	given	tissue	or	cell	line	is	lacking.	

Presented	in	this	manuscript	is	FilTar,	a	tool	which	takes	RNA-Seq	data	as	input,	and	

generates	miRNA	target	predictions	tailored	to	specific	cellular	contexts.	Specificity	of	

target	prediction	is	increased	by	utilising	information	from	sequencing	data	to	both	filter	

for	abundant	target	transcripts	and	to	refine	3’UTR	annotations.	Analysis	demonstrates	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595322doi: bioRxiv preprint 

https://doi.org/10.1101/595322
http://creativecommons.org/licenses/by/4.0/


that	predicted	miRNA	targets	gained	and	lost	due	to	3’UTR	reannotation	do	not	

substantially	differ	in	their	response	to	a	miRNA	than	pre-existing	miRNA	targets	and	non-

targets	predictions,	respectively.	The	cumulative	effect	of	integrating	these	additional	

processing	steps	into	conventional	miRNA	target	prediction	workflows	is	to	increase	

prediction	accuracy	and	to	drastically	alter	the	number	of	miRNA	target	predictions	made	

between	different	cell	types.	

Methods 

Workflow management and automation 

All	workflows	are	coordinated	and	managed	by	the	FIlTar	tool.	FilTar	is	a	command	line	

tool	for	gnu-linux	and	macOS	operating	systems	predominantly	written	in	the	python	

(v3.6.8)	and	R	(v3.5.0)	(R	Core	Team	2013)	programming	languages.	Users	can	configure	

the	tool	to	process	available	RNA-Seq	datasets	from	public	repositories	(Leinonen	et	al.	

2010a;	Leinonen	et	al.	2010b	and	Harrison	et	al.	2018);		and	and	also	the	user’s	own	

private	sequencing	data.	All	parameters	reported	in	this	study,	for	given	analysis	and	

processing	steps	are	configurable	by	the	user.	FilTar	utilises	Snakemake	(v5.4.0)	(Köster	

and	Rahmann	2012)	when	managing	workflows.	

All	of	the	following	described	analyses	and	data	processing	steps	were	managed	within	
FilTar.	

	

Data selection, quality control, pre-processing and statistics 

For	analysis	of	miRNA	transfection	experiments,	FASTQ	sequencing	data	generated	from	

RNA-Seq	protocols	in	human	or	mouse	cell	lines	with	at	least	two	biological	replicates	were	

selected	for	further	processing.	After	differential	expression	analysis,	if	by	inspection	of	

cumulative	plots	the	miRNA	targets	could	not	be	observed	to	be	downregulated	relative	to	

non-target	transcripts,	then	the	transfection	experiment	was	considered	to	have	failed,	and	

relevant	datasets	were	not	used	for	downstream	analysis	(see	supplementary	file	1a	and	

1b).		
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For	supplementary	figures	3a	and	3b,	total	reads	were	sampled	using	the	seqtk	tool	(Li	

2012).		

Reads	were	trimmed	using	Trim	Galore	(v0.5.0)	(Krueger	2015),	a	wrapper	around	

Cutadapt	(v1.16)	(Martin	2011),	using	default	parameters	with	the	exception	of	the	‘length’	

and	‘stringency’	parameters	which	were	set	to	35	and	4	respectively.	

FASTQ	data	quality	scores,	GC-content,	read	lengths	and	similar	statistics	were	generated	

using	FASTQC	(v0.11.5)	(Andrews	2010).	Output	from	FASTQC	was	collated	with	data	from	

the	log	files	of	other	processes	in	order	to	produce	a	summary	statistics	report	for	each	

used	BioProject	using	MultiQC	(v1.6)	(Ewels	et	al.	2016)	(see	supplementary	file	2).	

A	summary	of	datasets	used	with	relevant	database	accessions	can	be	found	in	

supplementary	table	5	(Tamim	et	al.	2014,	Liu	et	al.	2017,	Stolzenburg	et	al.	2016,	Liu	et	al.	

2019,	Guo	et	al.	2014,	Diepenbruck	et	al.	2017,	Pua	et	al.	2016,	Cao	et	al.	2015).	

3’UTR reannotation 

In	order	to	build	an	index	for	the	alignment	of	FASTQ	reads	to	the	genome,	unmasked	

chromosomal	reference	genome	assembly	fasta	files	for	human	(GRCh38.p12)	and	mouse	

(GRCm38.p6)	(Schneider	et	al.	2017)		were	downloaded	from	release	94	of	Ensembl	

(Cunningham	et	al.	2019).		All	subsequent	files	obtained	from	the	Ensembl	resource	were	

for	this	same	release	version.	Splice-aware	mapping	of	reads	to	the	genome	was	achieved	

using	HISAT2	(v2.1.0)	(Kim	et	al.	2015):	The	location	of	exons	and	junction	sites	was	

determined	by	running	the	appropriate	HISAT2	scripts	on	the	relevant	species-specific	GTF	

annotation	file	also	obtained	from	Ensembl.	The	‘hisat2-build’	binary	was	executed	using	

the	‘ss’	and	‘exon’	flags	indicating	splice	site	and	exon	co-ordinates	built	from	the	previous	

step.	

The	indexed	genome	was	used	for	FASTQ	read	alignment	using	the	‘hisat2’	command.	The	

‘rna-strandness’	option	was	used	for	strand-aware	alignment.	The	strandedness	of	RNA-

seq	datasets	was	predicted	using	the	‘quant’	command	of	the	salmon	(v0.11.3)	(Patro	et	al.	

2017)	RNA-seq	quantification	tool,	by	setting	the	‘lib-type’	option	to	‘A’	for	automatic	

inference	of	library	type.	The	samtools	(v1.8)	(Li	et	al.	2009)	‘view’	and	‘sort’	commands	
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were	used	to	sort	data	from	sam	to	bam	format,	and	to	sort	the	resultant	bam	files	

respectively.	

Sorted	bam	files	were	converted	to	bedgraph	format	using	the	‘genomeCoverageBed’	

command	of	bedtools	(v2.27.1)	(Quinlan	and	Hall	2010;	Quinlan	2014)	using	the	‘bg’,‘ibam’	

and	‘split’	options.	Bedgraph	files	representing	biological	replicates	of	the	same	condition	

were	merged	using	bedtool’s	‘unionbedg’	command.	FilTar	then	calculated	the	mean	

average	coverage	value	for	each	record	in	the	merged	bedgraph	file.	Existing	gene	models	

were	produced	by	converting	Ensembl	GTF	annotations	files	into	genePred	format	using	

the	UCSC	‘gtfToGenePred’	binary,	and	then	from	genePred	format	to	bed12	format	using	

the	UCSC	‘genePredToBed’	binary	(Kent	et	al.	2002).	APAtrap	(Ye	et	al.	2018),	the	3’UTR	

reannotation	tool	was	used	to	refine	3’UTR	annotations	by	integrating	information	from	

the	bed12	file	and	bedgraph	files	using	the	‘identifyDistal3UTR.pl’	perl	script	using	default	

parameters.	

FilTar	then	integrated	existing	3’UTR	models	with	new	models	predicted	by	APAtrap.	Only	

truncations	or	elongations	of	single	exon	3’UTR	annotations	were	integrated	into	final	

3’UTR	annotations;	novel	3’UTR	predictions	(i.e.	prediction	of	3’UTRs	for	transcripts	

without	a	previous	3’UTR	annotation)	were	discarded	and	alterations	of	the	3’UTR	start	

site	were	also	not	permitted,	due	to	the	reannotation	of	3’UTR	start	sites	by	the	APAtrap	

dependency	as	beginning	at	the	start	position	of	the	final	exon	in	standard	Ensembl	

transcript	models.		No	alterations	to	existing	3’UTR	annotations	spanning	multiple	exons	

were	permitted,	as	this	is	not	intended	functionality	of	the	APAtrap	tool.	

miRNA Target Prediction 

Target	prediction	for	the	analyses	presented	in	this	study	was	conducted	using	the	

TargetScan	algorithm	(v.7.01)	(Agarwal	et	al.	2015).	Mature	miRNA	sequences	were	

obtained	from	release	22	of	miRBase	(Griffiths-Jones	2004;	Kozomara	et	al.	2018).	The	

3’UTR	sequence	data	required	for	target	prediction	can	either	be	provided	as	multiple	

sequence	alignments	or	single	sequences,	with	the	former	option	enabling	the	computation	
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of	3’UTR	branch	lengths	and	the	probability	of	conserved	targeting	(Pct)	for	putative	

miRNA	target	sites.	

Multiple	sequence	alignments	(MSA)	are	derived	from	100-way	(human	reference)	and	60-

way	(mouse	reference)	whole-genome	alignments	hosted	at	the	UCSC	genome	browser	

(Kent	et	al.	2002)	generated	using	the	threaded	blockset-aligner	(Blanchette	et	al.	2004)	

stored	in	MAF	(multiple	alignment	format)	format.	MAF	files	are	indexed,	and	the	relevant	

alignment	regions	corresponding	to	3’UTR	co-ordinates	extracted	using	‘MafIO’	functions	

contained	within	the	biopython	(v1.72)	library	(Cock	et	al.	2009).	For	human	MSAs,	during	

post-processing,	distantly	related	species	were	removed,	resulting	in	84-way	multiple	

sequence	alignments	(Agarwal	et	al.	2015)	

If	multiple	sequence	alignments	are	not	used,	single	sequences	are	extracted	from	DNA	

files	using	relevant	3’UTR	co-ordinates	in	bed	format	using	the	‘getfasta’	command	of	

bedtools	with	the	‘s’	option	enabled.	Custom	scripts	are	used	to	process	the	output	of	this	

command	in	order	to	merge	exon	sequences,	into	a	single	contiguous	3’UTR	sequence.	

Further	scripting	is	required	to	convert	miRNA	and	3’UTR	sequence	and	identifier	

information	to	a	format	which	can	be	parsed	by	TargetScan	algorithms.	

TargetScan	is	executed	using	both	Ensembl	3’UTR	annotations,	and	updated	annotations	

produced	using	FilTar		for	the	purposes	of	the	differential	expression	analysis.	

The	FilTar	tool	is	also	fully	compatible	with	the	miRanda	(v3.3a)	(Enright	et	al.	2003;	John	

et	al.	2004)	miRNA	target	prediction	algorithm	allowing	users	to	identify	non-canonical	

miRNA	targets		i.e.	predicted	targets	without	a	perfectly	complementary	seed	match	to	the	

miRNA.	

Transcript quantification 

Human	and	mouse	cDNA	files	were	downloaded	from	Ensembl.	Kallisto	(v0.44.0)	(Bray	et	

al.	2016)	was	used	to	index	the	cDNA	data	using	the	‘kallisto	index’	command	with	default	

parameters.	Reads	were	pseudoaligned	and	relative	transcript	abundance	quantified	using	

the	‘kallisto	quant’	executable,	using	the	‘bias’	option	to	correct	for	sequence-based	biases.	

When	kallisto	was	used	with	data	derived	from	single-end	RNA-sequencing	experiments,	
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180nt	and	20nt	were	used	as	required	estimates	of	the	mean	average	fragment	length	and	

standard	deviation	respectively.	

Differential expression analysis 

Differential	expression	analysis	for	miRNA	transfection	experiments	was	completed	within	

the	R	(v.3.5.0)	statistical	computing	environment.	Transcript-level	read	count	data	derived	

from	RNA	sequencing	of	miRNA	mimic	or	negative	control	transfected	cell	lines	were	

imported	using	the	tximport	package	(v1.10.1)	(Soneson	et	al.	2015).	Differential	

expression	analysis	on	length	and	library	size	normalised	read	counts	was	performed	using	

DESeq2	(v1.22.2)	(Love	et	al.	2014)	comparing	expression	between	negative	control	and	

miRNA	mimic	transfection	conditions.	Log2	fold	change	values	were	subsequently	

shrunken	using	the	default	DESeq2	‘normal’	shrinkage	estimator	(Love	et	al.	2014)	to	

account	for	the	large	uncertainty	in	predicted	fold	change	values	at	low	transcript	

expression	values.	For	plotting,	records	corresponding	to	non-coding	RNA	transcripts	were	

discarded.	Transcript	records	were	discarded	when	there	was	zero	expression	for	all	

control	and	transfection	replicates	and	fold	change	values	could	not	be	calculated.	Target	

prediction	data	was	used	to	label	the	remaining	records	as	either	predicted	targets	or	non-

targets	of	the	transfected	miRNA.	

For	all	differential	expression	analyses,	null	hypothesis	significance	testing	was	performed	

using	two-sample,	one-sided	Kolmogorov-Smirnov	tests	to	test	whether	different	fold	

change	distributions	were	sampled	from	the	same	underlying	distribution.	

Data Visualisation 

All	visualisations	are	produced	using	R’s	ggplot2		package	(v3.1.0)	(Wickham	2016).	

	

For	figure	1,	the	filtered	miRNA	predicted	target	set	represent	protein-coding	transcripts	

with	a	miRNA	seed	target	site	to	the	transfected	miRNA	mimic,	which	have	filtered	at	an	

expression	threshold	of	0.1	Transcripts	per	million	(TPM)	(Li	et	al.	2009).	

	

For	figure	2,	the	‘added	seed	sites’	are	identified	as	those	transcripts	which	had	not	
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previously	been	labelled	as	predicted	miRNA	targets	using	target	prediction	results	derived	

from	existing	Ensembl	3’UTR	annotations,	but	had	been	identified	as	predicted	miRNA	

targets	using	target	prediction	results	derived	from	3’UTR	sequences	reannotated	using	the	

FilTar	workflow	due	to	3’UTR	extension.		

For	figure	3,	the	‘removed	seed	sites’	are	identified	as	those	transcripts	which	had	

previously	been	labelled	as	predicted	miRNA	targets	using	target	prediction	results	derived	

from	existing	Ensembl	3’UTR	annotations,	but	had	not	been	identified	as	predicted	miRNA	

targets	using	target	prediction	results	derived	from	3’UTR	sequences	reannotated	using	the	

FilTar	workflow	due	to	3’UTR	truncation.	Filtering	for	all	groups	occurred	at	an	expression	

threshold	of	greater	than	or	equal	to	5	TPM.	This	was	to	reduce	the	number	of	false	positive	

3’UTR	truncations	(see	discussion).	

	

Additional	plots	for	remaining	datasets	analysed	can	be	found	in	the	supplementary	

materials	(supplementary	files	3,	4	and	5)	with	the	exception	of	cases	were	there	was	an	

insufficient	number	of	added	or	removed	target	transcripts	predicted	(n	<	15).	

Results 

Predicted	miRNA	targets	with	TPM	>	0.1		as	a	whole,	exhibited	stronger	repression	after	

miRNA	transfection	than	the	full	miRNA	target	set	without	expression	filtering	(Figure	1;	

upplementary	file	3).	Predicted	miRNA	targets	removed	for	low	expression	generally	

exhibited	low	absolute	fold	change	values	(supplementary	figure	1).	
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Figure	1:	Cumulative	plots	demonstrating	the	effect	of	miRNA	mimic	transfection	on	expression	filtered	

(TPM	>	0.1)	miRNA	seed	targets.	Curves	are	plotted	of	the	cumulative	log2	fold	change	distributions	of	i)	

protein-coding	non-target	transcripts	(black)	ii)	protein-coding	seed	target	transcripts	(orange)	and	iii)	

expression	filtered	protein-coding	seed	target	transcripts	(green).	Numbers	in	brackets	represents	the	

number	of	mRNA	transcripts	found	in	each	set.	Approximate	P-values	were	computed	using	one-sided,	two-
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sample,	Kolmogorov-Smirnov	tests	between	full	target	and	filtered	target	fold	change	distributions.	Data	

presented	for	miRNA	mimic	transfection	into	A)	A549	and	B)	HeLa	cell	lines,	C)	normal	murine	mammary	

gland	(NMuMG)	cells	and	D)	mouse	embryonic	stem	cells	(ESCs).	Results	from	the	application	of	this	analysis	

to	additional	datasets	can	be	found	in	the	supplementary	file	3..	

	

Newly	gained	miRNA	target	predictions	deriving	from	FilTar’s	refined	3’UTR	annotations	of	

protein-coding	transcripts	(i.e.	miRNA	targets	deriving	from	the	elongation	of	existing	

3’UTR	annotations),	generally	exhibited	similar	levels	of	repression	to	miRNA	target	

predictions	deriving	from	Ensembl	3’UTR	annotations	(Figure	2;	supplementary	file	4).	

Anomalies	were	results	deriving	from	the	transfection	of	miR-107	and	miR-10a-5p	miRNA	

mimics	into	HeLa	cells	in	which	newly	identified	miRNA	target	predictions	did	not	exhibit	a	

log	fold	change	distribution	commensurate	with	that	exhibited	by	already	existing	miRNA	

target	predictions	(supplementary	file	4).	
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Figure	2:	Cumulative	plots	demonstrating	the	effect	of	miRNA	mimic	transfection	on	predicted	miRNA	target	

t`ranscripts	newly	identified	by	the	FilTar	workflow.	Curves	are	plotted	of	the	cumulative	log2	fold	change	

distributions	of	i)	protein-coding	non-target	transcripts	(black).	ii)	protein-coding	seed	target	transcripts	

(orange)	and	iii)	predicted	target	transcripts	deriving	from	FilTar	3’UTR	annotations	but	not	Ensembl	3’UTR	

annotations	(blue).	Approximate	P-values	were	computed	using	one-sided,	two-sample,	Kolmogorov-Smirnov	
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tests	between	pre-existing	target	and	newly	identified	target	fold	change	distributions.	Otherwise	as	in	figure	

1.	

Conversely,	miRNA	target	transcripts	that	were	removed	as	a	result	of	FilTar	truncating	

3’UTR	annotations	relative	to	standard	Ensembl	annotations,	exhibited	repression	similar	

to	that	of	annotated	non-target	transcripts	(figure	3;	supplementary	file	5).	In	a	minority	of	

datasets	analysed,	removed	target	transcripts	exhibited	significantly	less	repression	than	

target	transcripts,	but	nonetheless	exhibited	greater	repression	than	annotated	non-target	

transcripts.	In	these	datasets,	the	removed	target	log	fold	change	distribution	tended	to	

align	with	the	non-target	distribution	at	the	negative	extremity,	but	not	at	small	negative	

fold	change	value	ranges	-	indicating	that	for	a	minority	of	datasets,	labelled	‘removed	

targets’	may	be	mildly	repressed	by	targeting	miRNAs.	Additional	analysis	demonstrated	

that	for	these	datasets,	such	targets	exhibited	significantly	weaker	repression	in	response	

to	miRNA	transfection	than	6mer	targets,	which	are	the	weakest	canonical	miRNA	target	

sites	(supplementary	figure	2).	
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Figure	3:	Cumulative	plots	demonstrating	the	effect	of	miRNA	mimic	transfection	on	previously	predicted	

miRNA	target	transcripts	discarded	by	the	FilTar	workflow.	Curves	are	plotted	of	the	cumulative	log	fold	

change	distributions	of	expression	filtered	i)	protein-coding	non-target	transcripts	(black).	ii)	protein-coding	

seed	target	transcripts	(orange)	and	iii)	predicted	target	transcripts	deriving	from	Ensembl	3’UTR	

annotations	but	not	FilTar	3’UTR	annotations	(red).	Approximate	P-values	were	computed	using	one-sided,	
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two-sample,	Kolmogorov-Smirnov	tests	between	non-target	and	discarded	miRNA	target	fold	change	

distributions.	Otherwise	as	in	figure	1.	

	

When	the	FilTar	reannotation	and	miRNA	target	prediction	workflow	was	applied	

transcriptome-wide,	to	multiple	organs	and	cell	lines,	using	all	annotated	miRBase	human	

miRNAs,	there	was	a	mean	average	gain	and	loss	of	miRNA	target	sites	corresponding	to	

0.18%	and	1.5%	of	the	total	original	miRNA	target	sites	predicted	deriving	from	Ensembl	

3’UTR	annotations	(Figure	4),	corresponding	to	a	gain	and	loss	of	total	miRNA	seed	sides	in	

the	tens	and	hundreds	of	thousands	respectively	(supplementary	table	4).	Whilst	a		much	

larger	proportion	of	miRNA	seed	sites	(mean	average	of	26.3%)	are	lost	through	

expression	filtering	(supplementary	figure	5),	representing	a	loss	of	millions	of	miRNA	

seed	sites	(supplementary	table	4).		This	is	commensurate	with	the	mean	average	of	34.0%	

of	3’UTR	bases	lost	when	removing	lowly	expressed	transcripts	from	target	predictions	

(supplementary	table	2).	When	considering	the	combined	effect	of	expression	filtering	and	

3’UTR	reannotation,	a	mean	average	36.1%	of	3’UTR	bases	are	lost,	affecting	a	mean	

average	of	53.4%	of	protein-coding	3’UTRs	(supplementary	table	3).	
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Figure	4:	miRNA	target	site	gain	and	loss	across	the	protein-coding	transcriptome	when	FilTar	is	used	with	

all	annotated	human	miRNAs	for	multiple	tissues,	organs	and	cell	lines.	Gained	(blue)	and	lost	(red)	miRNA	

target	sites	is	expressed	as	a	percentage	of	the	total	number	of	target	sites	identified	when	deriving	miRNA	

from	Ensembl	3’UTR	annotations		
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Discussion 

Results	show	that	FilTar	is	successfully	able	to	utilise	RNA-Seq	data	to	reannotate	protein-

coding	3’UTR	sequences	and	filter	based	on	expression	data	leading	to	a	gain	in	specificity	

and	sensitivity	of	target	prediction	evidenced	through	tests	using	experimental	data.	

That	expression	filtering	target	transcripts	at	even	a	modest	expression	threshold	of	0.1	

TPM		leads	to	a	loss	of	over	a	million	seed	sites	in	most	datasets	analysed	represents	a	

radical	reduction	in	the	number	of	false	positive	predictions	associated	with	miRNA	target	

prediction	and	is	indicative	of	the	importance	of	considering	the	biological	plausibility	of	

candidate	miRNA	interactions.	

The	number	of	newly	predicted	miRNA	target	sites	deriving	from	FilTar	elongated	3’UTR	

sequences	is	generally	relatively	low.	For	cell	line	datasets	analysed,	the	maximum	of	

number	of	newly	predicted	miRNA	targets	made	for	any	single	miRNA	was	67,	with	the	

majority	of	datasets	analysed	yielding	less	than	15	newly	predicted	targets	(figure	1,	figure	

4	and	supplementary	file	4).	The	number	of	newly	identified	target	transcripts	is	

commensurate	with	the	universally	low	proportion	of	3’UTRs	extended,	and	the	small	

proportion	of	bases	added	to	the	total	of	the	3’UTR	annotation	(supplementary	table	1),	

even	though	this	still	represents	a	substantial	increase	in	the	number	of	miRNA	seed	target	

sites	identified.	This	is	in	contrast	to	3’UTR	truncation	in	which	the	proportion	of	3’UTRs	

truncated	and	bases	removed	from	the	3’UTR	annotation	total	are	much	greater.	Analysis	

shows	that	there	is	a	strong	positive	correlation	between	the	number	of	3’UTR	bases	

reannotated,	and	the	number	of	predicted	miRNA	target	sites	gained	or	lost	through	

reannotation	(supplementary	Figures	6a	and	6b)	.	The	bias	in	3’UTR	truncation	as	opposed	

to	elongation	can	possibly	be	explained	by	either	a	pre-existing	bias	in	standard	Ensembl	

3’UTR	annotations	to	generate	long	3’UTR	models,	or	rather	a	bias	in	the	FilTar	

reannotation	workflow	for	3’UTR	truncation	rather	than	elongation.	A	potential	bias	in	the	

standard	Ensembl	annotation	workflow	could	potentially	be	explained	by	the	method	of	

transcript	annotation,	in	which,	although	transcript	models	are	built	on	a	tissue-specific	

basis,	transcript	models	incorporated	into	the	final	Ensembl	gene	set	typically	only	derive	

from	the	merging	of	RNA-sequencing	reads	from	multiple	different	tissue	samples	(Aken	et	
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al.	2016),	therefore	creating	a	bias	towards	the	annotation	of	longer	3’UTRs.	This	effect	

may	be	exacerbated	or	supplemented	by	the	existence	of	3’UTR	isoforms	within	a	given	

sample	and	transcript	-	creating	relatively	low	abundance	isoforms	towards	the	distal	end	

of	the	3’UTR,	making	annotation	difficult,	and	likely	generating	a	large	amount	of	

uncertainty,	biases	and	variability	in	different	methods	used	to	models	used	to	estimate	

3’UTRs.	

Another	possibility,	is	that	the	shortening	and	extension	of	existing	3’UTR	annotations	are	

qualitatively	different	problems	requiring	different	respective	sequencing	depths.	Within	a	

given	sample,	a	read	sampling	analysis	demonstrates	that	there	is	a	positive	relationship,	

up	to	a	point	of	saturation	between	sequencing	depth	and	the	number	of	bases	used	to	

elongate	existing	3’UTRs	(supplementary	figure	3a).	In	addition,	the	saturation	point	for	

the	addition	of	bases	to	3’UTRs	is	still	substantially	less	than	the	proportion	of	bases	

removed	at	3’UTRs	even	at	relatively	low	sequencing	depths	indicating	that	the	

discrepancy	between	proportion	of	3’UTR	bases	added	or	subtracted	from	the	3’UTRs	

cannot	be	explained	by	insufficient	sequencing	depth.	A	similar	positive	relationship	is	

observed	between	sequencing	depth	and	the	number	of	based	truncated	from	existing	

3’UTRs	(supplementary	figure	3b),	although	far	less	reads	seem	to	be	required	for	

saturation	to	occur,	indicating	a	weaker	reliance	on	sequencing	depth	for	3’UTR	truncation	

compared	to	3’UTR	elongation.	

Although	as	mentioned	previously,	the	sequencing	depth	does	seem	to	influence	the	extent	

of	3’UTR	reannotation,	for	a	set	of	different	biological	samples,	sequencing	depth	alone	

seems	to	have	limited	predictive	value	for	this	variable	(supplementary	figures	4a	and	4b).	

The	likely	explanation	being	that	as	well	as	sequencing	depth,	the	extent	of	3’UTR	

reannotation	is	also	determined	by	other	key	variables	such	as	the	cell	type	being	analysed,	

read	length	used	for	sequencing,	library	preparation	protocol,	the	use	of	single-end	or	

paired-end	sequencing,	as	well	as	additional	researcher	or	lab-specific	batch	effects	(Leek	

et	al.	2010).	For	example,	as	some	cell	types	are	biased	towards	shorter	3’UTRs	(Mayr	and	

Bartekl	2009),	whilst	other	towards		longer	3’UTRs	(Miura	et	al.	2013),	generating	radically	

different	reannotation	statistics	irrespective	of	sequencing	depth	used.	
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As	mentioned	previously,	there	was	generally	a	much	larger	number	of	miRNA	target	sites	

predicted	to	be	removed	than	added	during	3’UTR	reannotation.	This	is	despite	FilTar	

permitting	3’UTR	truncations	only	occurring	on	moderately-to-highly	expressed	

transcripts	after	discovery	that	the	reannotation	of	the	3’UTRs	of	lowly	expressed	

transcripts	generated	a	relatively	large	number	of	what	seemed	to	be	false	positive	

predictions	(supplementary	Figure	7).	The	likely	cause	being	that	low	transcript	expression	

leads	to	sporadic	and	inconsistent	coverage	across	the	3’UTR,	in	which	there	is	insufficient	

information	to	correctly	call	3’UTR	truncation.	The	default	behavior	of	the	FilTar	tool	

therefore	is	to	only	truncate	the	3’UTRs	of	transcripts	which	are	not	poorly	expressed	(i.e.	

TPM	>	5).	

When	examining	3’UTR	truncations	further,	for	a	minority	of	datasets	analysed,	some	

removed	miRNA	predicted	targets	seem	to	be	marginally	effective,	with	some	transcripts	

exhibiting	low	levels	of	repression	upon	transfection	of	the	miRNA	mimic.	Further	analysis	

indicates	that	these	marginally	repressed	transcripts	exhibit	even	weaker	repression	than	

6-mer	targeted	transcripts	(supplementary	figure	2),	one	of	the	least	effective	canonical	

miRNA	target	types	(Bartel	2018),	indicating	that	the	efficacy	of	these	site	types	is	

marginal.	A	possible	explanation	for	the	existence	of	these	site	types	is	that,	for	some	

transcript	annotations	for	which	the	3’UTR	was	truncated,	there	may	exist	a	small	

proportion	of	isoforms	with	longer	3’UTRs,	which	are	too	low	in	abundance	to	be	detected	

by	APAtrap,	but	nonetheless	still	confer	a	marginal	level	of	repression	to	the	transcript,	and	

hence	is	detectable	when	analysing	experimental	data.	

Investigations	into	the	effect	of	utilising	expression	data	when	making	transcriptome-wide	

miRNA	target	predictions	can	be	extended	by	closer	examination	of	not	only	the	refinement	

of	3’UTR	annotations	across	different	biological	contexts,	and	its	effects	on	miRNA	target	

prediction,	but	more	precisely	the	definition	of	specific	3’UTR	profiles,	incorporating	

information	about	3’UTR	isoforms	within	a	given	cellular	context	(Agarwal	et	al.	2015).	

This	enables	the	weighting	of	miRNA	target	prediction	scores	on	the	basis	of	sequencing	

data	applied	by	the	user	themselves,	enabling	even	further	and	extended	tailoring	of	

miRNA	target	prediction	to	the	specific	biological	context	being	researched.	Previous	

analyses	indicate	that	the	most	effective	target	predictions	occur	when	those	predictions	
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are	weighted	on	the	basis	of	3’UTR	isoform	ratios	(Nam	et	al.	2014).	In	addition,		the	scope	

of	FilTar’s	functionality	can	be	increased	by	enabling	the	annotation	of	novel	3’UTR	

sequences	for	transcripts	without	a	current	annotated	3’UTR,	and	also	for	those	3’UTRs	

which	themselves	span	multiple	exons.	In	addition,	both	the	configurability	and	precision	

of	FilTar	can	be	improved	in	the	future	by	respectively,	enabling	use	of	additional	tools	for	

3’UTR	reannotation	(Gruber	et	al.	2018a;	Gruber	et	al.	2018b)	and	exploring	the	greater	

transcriptomic	resolutions	enabled	by	nascent	single	cell	sequencing	technologies.		

Conclusion 

FilTar	utilises	RNA-Seq	data	to	increase	the	accuracy	of	miRNA	target	predictions	in	

animals	by	filtering	for	expressed	mRNA	transcripts	and	reannotating	3’UTRs	for	greater	

specificity	to	a	given	cellular	context	of	interest	to	the	researcher.	FilTar’s	compatibility	

with	user-generated	RNA-Seq	data,	confers	functionality	across	a	wide-range	of	potential	

biological	contexts.	

Software Availability 

The	FilTar	workflow	can	be	downloaded	from	GitHub	using	the	following	URL:	

https://github.com/TBradley27/FilTar.	
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Supplementary Figures & Tables 

Supplementary	Figure	1:	For	the	analysis	presented	in	figure	1,	the	cumulative	log2	fold	change	

distributions	of	lowly	expressed	transcripts	(<0.1	TPM)	with	canonical	seeds	sites	(dark	red),	in	their	3’UTRs	

compared	against	the	distribution	of	transcripts	without	a	canonical	seed	site	in	their	3’UTRs	(black). 
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Supplementary	Figure	2:	In	experiments	in	which	removed	predicted	target	transcripts	exhibit	evidence	of	

low-level	repression,	repression	is	less	than	that	observed	by	transcripts	targeted	by	marginally	effective	

sixmer	seed	sequences.	As	in	figure	3,	with	predicted	target	transcripts	divided	by	miRNA	target	site	type	into	

sixmer	(green),	sevenmer	(blue)	and	eightmer	(purple)	subsets.	Approximate	P-values	were	computed	using	

one-sided,	two-sample,	Kolmogorov-Smirnov	tests	between	discarded	miRNA	target	and	sixmer	target	fold	

change	distributions.	
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Supplementary	Figure	3a:	The	relationship	between	the	number	of	reads	sequenced	and	the	extent	of	

3’UTR	elongation	observed	when	using	FilTar	for	human	kidney	(purple)	and	lung	(green)	datasets.	Variable	

read	counts	generated	by	randomly	sampling	reads	from	the	total.	
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Supplementary	Figure	3b:	The	relationship	between	the	number	of	reads	sequenced	and	the	extent	of	

3’UTR	truncation	observed	when	using	FilTar	within	a	given	sample.	Otherwise	as	in	supplementary	figure	

3a.	
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	Supplementary	Figure	4a:	The	relationship	between	the	number	of	mapped	reads	and	the	extent	of	3'UTR	
elongation	observed	when	using	FilTar.	Each	point	represents	a	different	dataset	analysed	using	FilTar.	Refer	

to	suuplementary	table	1	for	metadata	for	datasets	analysed.	
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Supplementary	Figure	4b:	The	relationship	between	the	number	of	mapped	reads	and	the	extent	of	3'UTR	

truncation	observed	when	using	FilTar.	Otherwise	as	in	supplementary	figure	4a.	
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Supplementary	Figure	5:	The	percentage	of	total	miRNA	targets	lost	through	expression	filtering	at	a	

threshold	of	0.1	TPM	in	a	set	of	different	cell	lines	and	tissue	types	for	human	and	mouse	species.	
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Supplementary	Figure	6a:	A	scatter	plot	of	the	percentage	gain	in	total	miRNA	target	site	predictions	vs.	

percentage	gain	in	3’UTR	bases	for	a	number	of	cell	lines	and	tissue	datasets	analysed	(black	dots).	A	linear	

regression	model	was	fitted	using	the	‘lm’	function	of	the	R	stats	package	(red)	with	a	95%	confidence	

interval	(grey).	R-squared	is	derived	from	the	Pearson	correlation	coefficient.	
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Supplementary	Figure	6b:	A	scatter	plot	of	the	percentage	loss	in	total	miRNA	target	predictions	vs.	

percentage	loss	in	total	3’UTR	bases.	Otherwise	as	in	supplementary	figure	6a.	
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Supplementary	Figure	7:	As	in	figure	3,	with	the	exception	that	no	expression	threshold	has	been	

implemented. 	
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Supplementary	Table	1:	FilTar	3’UTR	reannotation	summary	statistics	for	cell	line	and	tissue	data	used	in	

this	study.	Statistics	are	the	totial	number	or	proportion	of	bases	or	transcripts	gained	or	lost	through	3’UTR	

reannotation	respectively.	All	comparisons	are	made	against	a	reference	of	Ensembl	annotated	3’UTR	

sequences	associated	exclusively	with	protein-coding	mRNA	transcripts	

 

	

	

	

	

	

	

	 	

Species	 Samples	 Bases		
gained		
(Mb)	

Bases		
gained		
(%)	

Bases		
lost		
(Mb)	

Bases	
lost	
(%)		

3'	UTRs	
elongated	

3‘	UTRs	
elongated	
(%)	

3’UTRs	
truncated	

3‘	UTRs	
truncated	
(%)		

Homo	
sapiens	

U251	 0.08	 0.1	 1.30	 2.1	 352	 0.7	 5730	 10.6	
U343	 0.07	 0.1	 1.32	 2.2	 296	 0.5	 7395	 13.7	
Du145	 0.06	 0.1	 1.40	 2.3	 453	 0.8	 5342	 9.9	
A549	 0.13	 0.2	 1.04	 1.7	 281	 0.5	 6774	 12.5	
16HBE14o- 0.07	 0.1	 1.21	 2.0	 213	 0.4	 6600	 12.2	
HeLa 0.05	 0.1	 1.14	 1.9	 289	 0.5	 4087	 7.6	
U20S 0.01	 0.0	 1.23	 2.0	 120	 0.2	 3614	 6.7	
Kidney 0.20	 0.3	 0.91	 1.5	 708	 1.3	 5738	 10.6	
Lung 0.13	 0.2	 0.89	 1.4	 538	 1.0	 5686	 10.5	
Skeletal 
muscle 

0.05	 0.1	 0.39	 0.6	 136	 0.3	 3018	 5.6	

Thyroid 0.31	 0.5	 1.20	 2.0	 460	 0.9	 7356	 13.6	
Bone 
marrow 

0.13	 0.2	 0.85	 1.4	 292	 0.5	 5444	 10.1	

Mus	
musculus	

NMuMG 0.13	 0.3	 1.18	 2.5	 454	 1.1	 6440	 15.8	
CD4+ 0.05	 0.1	 1.27	 2.7	 345	 0.8	 2447	 6.0	
ESCs 0.41	 0.9	 1.46	 3.1	 493	 1.2	 7502	 18.4	
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Supplementary	Table	2:	Summary	statistics	of	the	effects	of	filtering	protein-coding	transcripts	at	an	

expression	threshold	of	0.1	TPM.	Statistics	are	for	the	total	number	and	proportion	of	bases	and	transcripts	

removed	as	a	result	of	expression	filtering.	

	

Species	 Samples	 Bases		
lost		
(Mb)	

Bases	
lost	
(%)		

3’UTRs	
Removed	

3‘	UTRs	
Removed	
(%)		

Homo	
sapiens	

U251	 19.56	 32.0	 22653	 42.0	
U343	 21.07	 34.4	 21929	 40.6	
Du145	 24.06	 39.3	 25494	 47.2	
A549	 19.50	 31.9	 20783	 38.5	
16HBE14o-	 20.73	 33.9	 21221	 39.3	
HeLa	 15.09	 24.6	 18907	 35.0	
U20S	 19.96	 32.6	 22548	 41.8	
Kidney	 17.78	 29.0	 22476	 41.6	
Lung	 18.68	 30.5	 22647	 42.0	
Skeletal	
muscle	

25.86	 42.2	 28148	 52.1	

Thyroid	 17.84	 29.1	 21529	 39.9	
Bone	
marrow	

22.78	 37.2	 23040	 42.7	

Mus	
musculus	

NMuMG	 20.66	 43.2	 19592	 47.7	
CD4+	 18.61	 38.9	 19862	 48.5	
ESCs	 15.61	 32.6	 15505	 37.9	
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Supplementary	Table	3:	Summed	statistics	from	supplementary	table	1	and	supplementary	table	2	relating	

to	total	combined	3’UTR	bases	and	3’UTRs	affected	by	expression	filtering	and	3’UTR	truncation	

	 	

Species	 Samples	 Bases		
lost		
(Mb)	

Bases	
lost	
(%)		

3’UTRs	
Affected	

3‘	UTRs	
Affected	
(%)		

Homo	
sapiens	

U251	 20.86	 34.1	 28383	 52.6	
U343	 22.39	 36.6	 29324	 54.3	
Du145	 25.45	 41.6	 30836	 57.1	
A549	 20.54	 33.5	 27557	 51.1	
16HBE14o-	 21.94	 35.8	 27821	 51.5	
HeLa	 16.23	 26.5	 22994	 42.6	
U20S	 21.19	 34.6	 26162	 48.5	
Kidney	 18.69	 30.5	 28214	 52.3	
Lung	 19.57	 32.0	 28333	 52.5	
Skeletal	
muscle	 26.26	 42.9	 31166	 57.7	
Thyroid	 19.04	 31.1	 28885	 53.5	
Bone	
marrow	 23.63	 38.6	 28484	 52.8	

Mus	
musculus	

NMuMG	 21.84	 45.7	 25969	 63.5	
CD4+	 19.87	 41.6	 22309	 54.5	
ESCs	 17.07	 35.7	 23007	 56.3	
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Species	 Samples	 Seed	sites	gained		
(	3’UTR	
reannotation)	

Seed	sites	lost	
(3’UTR	
reannotation)		

Seed	sites	lost	
(expression	
filtering)	

Homo	
sapiens	

U251	 49345	 800764	 12942294	
U343	 46701	 816545	 13657488	
Du145	 39571	 872804	 12508511	
A549	 87549	 624503	 15578814	
16HBE14o-	 47031	 735041	 13193677	
HeLa	 38712	 704948	 9792951	
U20S	 6146	 746686	 12879630	
Kidney	 129715	 554534	 11476758	
Lung	 83821	 542432	 12057289	
Skeletal	
muscle	

37028	 237223	 16615464	

Thyroid	 202504	 730038	 11682705	
Bone	
marrow	

88212	 506415	 14632213	

Mus	
musculus	

NMuMG	 62367	 615046	 9858668	
CD4+	 203359	 744867	 7358255	
ESCs	 24318	 659420	 8947356	

	

Supplementary	table	4:	The	total	number	of	miRNA	seed	sites	lost	through	expression	filtering	of	

transcripts	at	TPM	>	0.1	or	gained	and	lost	through	3’UTR	reannotation.	Total	miRNA	seed	sites	for	human:	

52084138	and	mouse:	28216437	
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Supplementary	Table	5:	A	summary	of	all	datasets	used	in	the	analyses	reported	in	this	study	

	

Species	 BioProject	
Accession	

Source/Study	 Sample	 Run	Accessions	

Homo	
sapiens	

PRJNA231155	
	

Tamim	et	al.	
2014	

U251	 SRR1047622,SRR1047623,SRR1047624,SRR1047625	

U343	 SRR1047630,SRR1047631,SRR1047632,SRR1047633	

PRJNA292016	 Liu	et	al.	2017	 Du145	 SRR2146408,SRR2146409,SRR2146410,SRR2146411	

PRJNA304643	 Stolzenburg	et	al.	2016	

A549	
SRR2968576,SRR2968577,SRR2968578,SRR2968579	
SRR2968580,SRR2968581,SRR2968582,SRR2968583	

16HBE14o-	 SRR2968584,SRR2968586,SRR2968588,SRR2968590	SRR2968592,SRR2968594,SRR2968596,SRR2968598	

PRJNA512378	 Liu	et	al.	2019	 HeLa	

SRR8382192,SRR8382193,SRR8382194,SRR8382195	
SRR8382196,SRR8382197,SRR8382198,SRR8382199	
SRR8382200,SRR8382201,SRR8382202,SRR8382203	
SRR8382204,SRR8382205,SRR8382206,SRR8382207	
SRR8382208,SRR8382209,SRR8382210,SRR8382211	
SRR8382212,SRR8382213,SRR8382214,SRR8382215	
SRR8382216,SRR8382217,SRR8382218,SRR8382219	
SRR8382220,SRR8382221,SRR8382222,SRR8382223	
SRR8382224,SRR8382225,SRR8382226,SRR8382227	
SRR8382228,SRR8382229,SRR8382230,SRR8382231	
SRR8382232,SRR8382233,SRR8382234,SRR8382235	
SRR8382236,SRR8382237,SRR8382238,SRR8382239	
SRR8382240,SRR8382241,SRR8382242,SRR8382243	
	

PRJNA223608	 Guo	et	al.	
2014	 U20S	 SRR1598955,SRR1598970,SRR1598976,SRR1598977	

SRR1598972,SRR1598973	

PRJEB2445	
Illumina	
BodyMap2	

transcriptome	

Kidney	 ERR030885,ERR030893	

Lung	 ERR030879,ERR030896	

PRJEB6971	
	

Science	for	
Life	

Laboratory,	
Stockholm	

Skeletal	
Muscle	

ERR579142,ERR579143	

Thyroid	 ERR315358,ERR315422	
Bone	
Marrow	

ERR315404,ERR315406	

Mus	
Musculus	

PRJNA340017	 Diepenbruck	
et	al.	2017	 NMuMG	 SRR4054984,SRR4054985,SRR4054992,SRR4054995	

SRR4054996,SRR4054999,SRR4055002,SRR4055005	

PRJNA309441	 Pua	et	al.	
2016	 CD4+	

SRR3112249,SRR3112250,SRR3112251,SRR3112252	
SRR3112245,SRR3112246,SRR3112247,SRR3112248	
SRR3112237,SRR3112238,SRR3112239,SRR3112240	
SRR3112241,SRR3112242,SRR3112243,SRR3112244	

PRJNA270999	 Cao	et	al.	
2015	 ESCs	 SRR1734389,SRR1734391,SRR1734393,SRR1734395	
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Supplementary Files 

• Supplementary	File	1a:	Cumulative	plots	of	predicted	targets	and	non-targets	for	

datasets	which	did	not	pass	the	QC	stage	of	the	study.	

• Supplementary	File	1b:	A	table	of	metadata	for	Supplementary	File	1a	

• Supplementary	File	2:	A	compressed	and	archived	folder	of	MultiQC	Reports	

• Supplementary	File	3:	The	analysis	presented	in	figure	1	as	applied	to	all	datasets	

• Supplementary	File	4:	The	analysis	presented	in	figure	2	as	applied	to	all	datasets	

• Supplementary	File	5:	The	analysis	presented	in	figure	3	as	applied	to	all	available	

datasets	(datasets	with	insufficiently	high	number	of	‘added	targets’	were	discarded).	
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