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ABSTRACT Incorporating measurements on correlated traits into genomic prediction models can increase
prediction accuracy and selection gain. However, multi-trait genomic prediction models are complex and
prone to overfitting which may result in a loss of prediction accuracy relative to single-trait genomic prediction.
Cross-validation is considered the gold standard method for selecting and tuning models for genomic prediction
in both plant and animal breeding. When used appropriately, cross-validation gives an accurate estimate of
the prediction accuracy of a genomic prediction model, and can effectively choose among disparate models
based on their expected performance in real data. However, we show that a naive cross-validation strategy
applied to the multi-trait prediction problem can be severely biased and lead to sub-optimal choices between
single and multi-trait models when secondary traits are used to aid in the prediction of focal traits and these
secondary traits are measured on the individuals to be tested. We use simulations to demonstrate the extent
of the problem and propose three partial solutions: 1) a parametric solution from selection index theory, 2)
a semi-parametric method for correcting the cross-validation estimates of prediction accuracy, and 3) a fully
non-parametric method which we call CV2*: validating model predictions against focal trait measurements
from genetically related individuals. The current excitement over high-throughput phenotyping suggests that
more comprehensive phenotype measurements will be useful for accelerating breeding programs. Using an
appropriate cross-validation strategy should more reliably determine if and when combining information across
multiple traits is useful.
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2 INTRODUCTION3

Genomic Selection (GS) aims to increase the speed and accuracy of4

selection in breeding programs by predicting the genetic worth of5

candidate individuals or lines earlier in the selection process, or6

for individuals that cannot be directly phenotyped (Meuwissen7
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et al. 2001; Hayes et al. 2009; Crossa et al. 2017). Genomic selec-8

tion works by training statistical or Machine Learning models on9

a set of completely phenotyped and genotyped individuals, and10

then using the trained model to predict the genetic worth of un-11

measured individuals. If the predictions are reasonably accurate,12

selection intensity can be increased either because the population13

size of candidate individuals is larger or their true genetic worth is14

estimated more accurately.15

Predictions of genetic values are usually based only on the geno-16
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types or pedigrees of the new individuals. However predictions17

can in some cases be improved by including measurements of18

“secondary" traits that may not be of direct interest but are easier or19

faster to measure (Thompson and Meyer 1986; Pszczola et al. 2013;20

Lado et al. 2018). This is one goal of multi-trait genomic prediction.21

Multi-trait prediction is most useful for increasing the accuracy of22

selection on a single focal trait when that trait has low heritability,23

the “secondary" traits have high heritability, and the genetic and24

non-genetic correlations between the traits are large and opposing25

(Thompson and Meyer 1986; Jia and Jannink 2012; Cheng et al.26

2018). With the advent of cheap high-throughput phenotyping,27

there is great interest in using measurements of early-life or easily28

accessible traits to improve prediction of later-life or more expen-29

sive traits, and multi-trait prediction models are attractive methods30

for leveraging this information (Pszczola et al. 2013; Rutkoski et al.31

2016; Fernandes et al. 2017; Lado et al. 2018).32

A large number of genomic prediction methods are available,33

and the best model varies across systems and traits (Heslot et al.34

2012; de Los Campos et al. 2013). Due to their complexity and often35

high-dimensional nature, genomic prediction methods are prone36

to overfitting and require regularization to perform well on new37

data. Therefore, comparing models based on their ability to fit38

existing data (ex. with R2) is unreliable; every candidate model39

could explain 100% of the variation in a typical-size dataset.40

Instead, prediction models are generally compared by cross-41

validation (Meuwissen et al. 2001; Utz et al. 2000; Gianola and42

Schon 2016). The basic idea of cross-validation is to separate the43

model fitting and tuning process from the model evaluation pro-44

cess by using separate datasets for each (Hastie et al. 2009). This45

penalizes models that fit too closely to one data set at the expense46

of generalization. In this way, cross-validation is meant to accu-47

rately simulate the real-world usage of the model: predicting the48

genetic values of un-phenotyped individuals; i.e. those not avail-49

able during the model fitting process itself. Rather than requiring50

new data per se, cross-validation works by splitting an existing51

dataset into non-overlapping “training" and “testing" partitions,52

fitting the candidate model to the former, and then evaluating it on53

its accuracy at predicting the latter. Common measures of accuracy54

include Pearson’s ρ or the square root of the average squared error55

(RMSE) (Daetwyler et al. 2013). This process of splitting, training,56

and predicting is typically repeated several times on the same57

dataset to get a combined or averaged measure of accuracy across58

different random partitions of the data.59

Estimates of model accuracy by cross-validation are not perfect60

(Hastie et al. 2009). They are subject to sampling error as are any61

other statistic. They are also typically downwardly biased because62

smaller training datasets are used for the cross-validation than in63

the actually application of a model. However in typical cases, this64

downward bias is the same for competing models and thus does65

not impact model choice (Hothorn et al. 2005).66

However, cross-validation can give upwardly biased estimates67

of model accuracy when misused due to various forms of “data-68

leakage” between the training and testing datasets, leading to69

overly optimistic estimates of model performance (Kaufman et al.70

2012). Several potential mistakes in cross-validation experiments71

are well known:72

• Biased testing data selection. The individuals in the model73

testing partitions should have the same distribution of genetic74

(and environmental) relatedness to the training population75

as individuals in the remaining target population (Amer and76

Banos 2010; Daetwyler et al. 2013). For example, if siblings or77

clones are present in the data, they should not be split between78

testing and training partitions unless siblings or clones of indi-79

viduals in the training partition are also at the same frequency80

in the target population. Similarly, if the goal is to predict into81

a diverse breeding population, the cross-validation should82

not be performed only within one F2 mapping population.83

• Overlap between the testing and training datasets. The ob-84

servations used as testing data should be kept separate from85

the training data at all stages of the cross-validation proce-86

dure. For example, if data from individuals in the testing87

dataset are used to calculate estimated genetic values (EBVs)88

for model training, then the testing and training datasets are89

overlapping, even if the testing individuals themselves are90

excluded from model training (Amer and Banos 2010).91

• Pre-selection of features (e.g. markers) based on the full92

dataset before cross-validation. All aspects of model speci-93

fication and training that rely on the observed phenotypes94

should be performed only on the training partitions, with-95

out respect to the testing partition. For example, if a large96

number of candidate markers are available but only a portion97

will be included in the final model, the selection of markers98

(i.e. features) should be done using only the training parti-99

tion of phenotypes and the selection itself should be repeated100
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each replicate of the cross-validation on each new training101

dataset. If the feature selection is only done once on the whole102

dataset before cross-validation begins, this can lead to biased103

estimates of model accuracy (Hastie et al. 2009).104

If these mistakes are avoided, cross-validation generally works105

well for comparing among single-trait methods, and in some cases106

for multi-trait methods. However, our goal in this paper is to107

highlight a challenge with using cross-validation to choose be-108

tween single-trait methods and multi-trait methods; specifically109

multi-trait methods that use information from “secondary" traits110

measured on the target individuals to inform the prediction of their111

focal trait(s). In this case, standard cross-validation approaches112

lead to biased results. As we discuss below, the source of bias is113

not data leakage between the training and testing data per se, but114

correlated errors with respect to the true genetic merit between115

the secondary traits in the training data and the focal train in the116

testing data. Note that this issue only occurs when the multiple117

traits are measured on the same individuals, and the traits share118

non-genetic covariance. When traits are measured on different119

individuals, the standard cross-validation approach is appropriate.120

In the following sections, we first describe the opportunity of-121

fered by multi-trait genomic prediction models in this setting, and122

the challenge in evaluating them. We then develop a simulation123

study that highlights the extent of the problem. Next, we pro-124

pose three partial solutions that lead to fairly consistent model125

selections between single and multi-trait models under certain sit-126

uations. Finally, we draw conclusions on when this issue is likely127

to arise and when it can be safely ignored.128

GENERAL SETTING129

Multi-trait genomic prediction is useful in two general settings:130

1) When the overall value of an individual depends on each trait131

simultaneously (ex. fruit number and fruit size) and these traits132

are correlated, and 2) When a focal trait is difficult or expensive to133

measure on every individual, but other correlated traits are more134

readily available (Thompson and Meyer 1986; Pszczola et al. 2013;135

Lado et al. 2018). While multi-trait models are clearly necessary136

in the first setting, in the second the value of the secondary traits137

depends on several factors including i) the repeatability of the focal138

and secondary traits, ii) the correlations among the traits and the139

cause of the correlations (i.e. genetic vs non-genetic), and iii) the140

relative expenses of collecting data on each trait.141

Here we focus on the goal of predicting a single focal trait using142

information from both genetic markers (or pedigrees) and pheno-143

typic information on other traits. Even within this context, there144

are also two distinct prediction settings: 1) Predicting the focal trait145

value for new individuals that are yet to be phenotyped for any146

of the traits, and 2) Predicting the focal trait value for individuals147

that have been partially phenotyped; phenotypic values for the148

secondary traits are known and we wish to predict the individual’s149

genetic value for the focal trait. These settings were described by150

(Burgueño et al. 2012) as CV1 and CV2, respectively, although those151

authors focused on multi-environment trials rather than single ex-152

periments with multiple traits per individual. The same naming153

scheme has since been extended to the more general multiple-trait154

prediction scenarios (Lado et al. 2018).155

The key difference between CV1 and CV2-style multi-trait pre-156

diction is that in the former, the secondary traits help refine esti-157

mates of the genetic values of relatives of the individuals we wish to158

predict, while in the latter, the secondary traits provide information159

directly about the genetics of the target individuals themselves.160

This direct information on the target individuals is generally useful161

(as we demonstrate below). However, it comes with a cost for the162

evaluation of prediction accuracy by cross-validation. Since we do163

not know the true genetic values for the testing individuals, we164

must either use a model to estimate the genetic values or simply165

use their phenotypic value as a proxy. Unfortunately, if we use166

our genetic model to estimate these values, we are breaking the167

independence between the testing and training data, and therefore168

have biased estimates of cross-validation accuracy. On the other169

hand, if we simply use the phenotypic values of the focal trait170

as our predictand, these may be biased towards or away from171

the true genetic values depending on the non-genetic correlation172

between the focal and secondary traits. This leads to either over-173

or under-estimation of the prediction accuracy of our multi-trait174

models. In realistic scenarios, this can lead users to select worse175

models.176

MATERIALS AND METHODS177

We used a simulation study to explore conditions when naive cross-178

validation experiments as described above lead to sub-optimal179

choices between single and multi-trait genomic prediction meth-180

ods. Our simulations were designed to mimic the process of using181

cross-validation to compare single and multi-trait models based182
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on their prediction accuracies. We repeated this simulation across183

scenarios with different genetic architectures for two traits: a single184

“focal" trait and a single “secondary" trait. Specifically, we modified185

the heritability and correlation structure of the two traits. These186

are the most important parameters for determining the relative187

efficiencies of single- and multi-trait prediction models (Thompson188

and Meyer 1986). Sample size and level of genomic relatedness189

will also affect the comparisons, but are likely to only quantita-190

tively (but not qualitatively) change the relative performances of191

the models and the accuracy of cross-validation.192

To make our simulations realistic, we based them on genomic

marker data from 803 lines from a real wheat breeding program

(Lopez-Cruz et al. 2015). We downloaded the genomic relation-

ship matrix K based on 14,217 GBS markers from this popula-

tion. We used this relationship matrix to generate a set of sim-

ulated datasets covering all combinations of the following pa-

rameters: the relative proportions of genetic and non-genetic

variation for each trait (h2 = {0.2, 0.6}), and the genetic and

non-genetic correlations between the traits ρg = {0, 0.3, 0.6},

ρR = {−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6}, drawing trait values for

each simulation from multivariate normal distributions. In partic-

ular, we set:

Y = U + E, U ∼ MN(0, K, G), E ∼ MN(0, In, R)

G =

g11 g12

g21 g22

 =

 h2
1 ρgh1h2

g12 h2
2



R =

r11 r12

r21 r22

 =

(1− h2
1) ρR

√
(1− h2

1)(1− h2
2)

r12 (1− h2
2)



(1)

where MN(.) is the Matrix normal distribution, Y = [y1, y2] are193

the phenotypic values for the two traits in the n individuals, U =194

[u1, u2] are the true genetic values for the two traits, and E =195

[e1, e2] are the true non-genetic deviations for the two traits. We196

repeated this process 500 times for each of the 42 combinations of197

the genetic architecture parameters. To improve the consistency of198

the simulations, we used the same draws from a standard-normal199

distribution for all 42 parameter combinations, but new draws for200

each of the 500 simulations.201

After creating the 803 simulated individuals, we randomly di-

vided them into a training partition and a testing partition. We

arranged the rows of Y so that the testing individuals were first,

and correspondingly partitioned K into:

K =

Knn Kno

Kon Koo

 . (2)

Here and below, the subscript n refers to the testing partition (i.e.202

“new” individuals) and the subscript o refers to the training parti-203

tion (i.e. “old” individuals). We use the hat symbol (ˆ) to denote204

parameter estimates or predictions.205

We then fit single- and multi-trait linear mixed models to the206

training data and used these model fits to predict the genetic values207

for the focal trait (trait 1) in the testing partition.208

Specifically, for the single-trait method we fit a univariate linear

mixed model to the training data yo1:

yo1 = µ1 + uo1 + eo1, uo1 ∼ N(0, g11Koo), eo1 ∼ N(0, r11Ino )

(3)

by Restricted Maximum Likelihood using the relmatlmer function

of R package (Ziyatdinov et al. 2018) and extracted the BLUPs ûo1.

Note: an expanded version of these derivations are provided in

the Appendix. We then calculated predicted genetic values for the

testing partition un1 as:

û(1)
n1 |ûo1 = KnoK−1

oo ûo1. (4)

For the multi-trait model, we stacked the vectors of the two

traits in the training dataset into the vector yo =

yo1

yo2

 and fit:

yo = µ + uo + eo, uo ∼ N(0, G⊗Koo), eo ∼ N(0, R⊗ Ino )

(5)

using the relmatLmer function, extracted estimates µ̂ = [µ̂ᵀ
1 , µ̂ᵀ

2 ]
ᵀ,209

Ĝ, R̂, and BLUPs ûo.210

To make predictions of the genetic values for the focal trait

in the testing partition in the CV1 case without use of yn2, we

calculated:

û(2)
n1 |ûo1 = KnoK−1

oo ûo1 (6)

which has the same form as for the single trait model, but the input211

BLUPs ûo1 are different.212

To make predictions of the genetic values for the focal trait in the

testing partition in the CV2 case, using the phenotypic observations

of the secondary trait yn2, we used a two step method. First, we
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estimated ûo above based on both traits in the training data. Then

we combined these estimates with the observed phenotypes of the

testing data to calculate genetic predictions for the testing data:

û(3)
n1 |yn2, ûo = KnoK−1

oo ûo1

+ ĝ12(K−1)nn(V̂c)
−1(yn2 − µ̂2 −KnoK−1

oo ûo2),
(7)

where V̂c = ĝ22(K−1)nn + r̂22In. This two-step method will be213

slightly less accurate than a one-step method that used yn2 during214

the estimation of ûo, but is much easier to implement in breeding215

programs because no genotype or phenotype data of the evaluation216

individuals is needed during the model training stage.217

We measured the accuracy of these three predictions by calcu-218

lating the correlation between the prediction û(i)
n1 and three predic-219

tands over the 500 simulations:220

• un1: The true genetic value.221

• yn1: The phenotypic values of the testing individuals.222

• ũn1: The estimated genetic values of the validation individuals223

using the full dataset (including yn1).224

For the second accuracy measure that uses phenotypic values225

as predictands, we “corrected“ the correlations by dividing by the226

true value of
√

h2 to account for the larger variance of yn1 relative227

to un1. This impacts the denominator of the correlation (Daetwyler228

et al. 2013), but since it is the same across methods, does not impact229

their comparison.230

As described below, we also simulated phenotypes for an addi-231

tional set of individuals yx not included in either the validation or232

testing partitions. These individuals were selected to be close rela-233

tives of each of the validation partition individuals but experienced234

different micro-environments.235

For each combination of genetic parameters, we declared the236

“best” prediction method to be the one with the highest average237

correlation with the true genetic values across the 500 simulations.238

Then we counted the proportion of the simulations in which this239

“best” method actually had the highest estimated accuracy when240

scored against yn1.241

Data availability242

Scripts for running all simulations and analyses described here are243

available at https://github.com/deruncie/multiTrait_crossValidation_244

scripts.245

RESULTS246

Although we ran simulations for two levels of heritability for247

the focal trait (h2
1 = {0.2, 0.6}) we present results only for h2

1 =248

0.2. This is the “most-difficult” setting for prediction–when the249

heritability of the trait is low–but also the setting when we would250

expect the greatest benefit of using multi-trait models. Results251

for h2
1 = 0.6 were qualitatively similar, but with higher overall252

prediction accuracies of all methods.253

Accuracy of single and multi-trait methods in simulated data254

With h2
1 = 0.2 the true accuracy of prediction was moderate for255

all methods (cor(ûn1, un1) ∼ 0.4− 0.6, Figure 1). Prediction ac-256

curacies for the single-trait method were constant across settings257

with different correlation structures because information from the258

secondary trait was not used.259

The “standard” muti-trait model (i.e. CV1-style) that used phe-260

notypic information only on the training partition slightly out-261

performed the single-trait model in some settings, more-so when262

the genetic and non-genetic correlations between traits were large263

and opposing and when the genetic determinacy of the secondary264

trait was high (Thompson and Meyer 1986). However it performed265

slightly worse whenever the genetic and residual correlations be-266

tween traits were low. This was caused by inaccuracy in the estima-267

tion of the two covariance parameters (ĝ12, r̂12). Neither multi-trait268

model performed worse than the single-trait model when the true269

G and R matrices were used Supplemental Figure 1, which we270

also verified by calculating the expected prediction accuracies ana-271

lytically (See Appendix). In real data, multi-trait models require272

estimating more (co)variance parameters and therefore can show273

reduced performance when data are limited.274

The CV2-style multi-trait method, which leverages additional275

phenotypic information on the secondary trait from the testing par-276

tition itself, showed dramatic improvements in prediction accuracy277

whenever genetic correlations among traits were large, irregardless278

of the non-genetic correlation between the traits. This is similar279

to the benefits seen by (Rutkoski et al. 2016) and (Lado et al. 2018).280

When the heritability of the secondary trait was high, the improve-281

ment in prediction accuracy was particularly dramatic (increasing282

to ∼ ρ = 0.6). This is the potential advantage of incorporating sec-283

ondary traits into prediction methods. However, the CV2 method284

also requires estimating G and R, and its performance was lower285

than the single-trait method whenever both genetic and residual286
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Figure 1 True prediction accuracy of single-trait and multi-trait pre-

diction methods in simulated data. 500 simulations were run for

each heritability of the secondary trait (h2
2 = {0.2, 0.6}), and each

combination of genetic and non-genetic correlation between the two

traits (ρg = {0, 0.3, 0.6}, ρR = {−0.6,−0.4,−0.2, 0, 0.2, 0, 4, 0.6}),

all with h2
1 = 0.2. For each simulation, we used 90% of the individu-

als as training to fit linear mixed models (either single or multi-trait),

predicted the genetic values of the remaining validation individuals,

and then measured the Pearson’s correlation between the predicted

(ûn1) and true (un1) genetic values. In the CV1 method, we used

only information on the training individuals to calculate ûn1. In the

CV2 method, we used the training individuals to calculate ûo and

combined this with the observed phenotypes for the secondary trait

on the validation individuals (yn2). Curves show the average corre-

lation for each method across the 500 simulations. Ribbons show

±1.96× SE over the 500 simulations.

correlations were low.287

Therefore, multi-trait methods will not always be useful and288

it is important to test the relative performance of the different289

methods in real breeding scenarios. Unfortunately, we never know290

the true genetic values (un1), and so must use proxy predictands to291

evaluate our methods in real data (Daetwyler et al. 2013; Legarra292

and Reverter 2018). In Figures 2A-B, we compare the prediction293

accuracies of the three methods using two candidate predictands:294

the observed phenotypic values (yn1) and estimated genetic values295

from a joint model fit to the complete dataset (ũn1).296

Using the observed phenotypic values (yn1) as the predictand,297

the estimated accuracy of both the single-trait and CV1-style multi-298

trait prediction methods consistently under-estimated their true299

prediction accuracies. This is expected because in this setting300

80% of the phenotypic variation is non-genetic and cannot be301

predicted based on relatives alone. We therefore follow common302

practice to report a “corrected” estimate of the prediction accuracy303

by dividing by
√

h2 in Figure 2A. This correction factor itself must304

be estimated in real data, but when comparing models the same305

value of ĥ2 should be used for each model so that differences in306

these estimates do not bias model selection.307

In contrast, the estimated accuracy of the CV2-style multi-trait308

method varied dramatically across simulated datasets. We tended309

to overestimate the true accuracy when both genetic and non-310

genetic correlations were large and in the same direction, and311

dramatically underestimate the true accuracy when the two corre-312

lations were opposing. Importantly, there are situations where the313

CV2-style method appears to perform worse than the single-trait314

method based on yn1 but actually performs better. Therefore, the315

observed phenotypic values are not reliable predictands to evalu-316

ate CV2-style methods when the intent is to estimate true genetic317

values and ρR 6= 0.318

On the other hand, using estimated genetic values from a joint319

model fit to the complete dataset (ũn1) as the predictand led to320

dramatic over-estimation of the true prediction accuracy for all321

methods. This is also expected because the training data are used322

both to train the prediction model and also to create the testing323

dataset, a clear violation of the cross-validation rules that these324

datasets must be kept separate at all stages of the analysis. Again,325

the bias was most severe for the CV2-style method. Since this326

method is clearly invalid, we do not consider it further.327
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Figure 2 Estimated prediction accuracies based on candidate predictands. For the same set of simulations described in Figure 1, we estimated

the prediction accuracies of the three methods using two different candidate predictands: (A) The observed phenotypic value yn1 for each

training individual (with the correlation corrected by 1/
√

h2
1), or (B) An estimate of the genetic value of each training individual based on BLUPs

calculated using the complete phenotype data (ũn1). Solid lines in each panel show the average estimated accuracy for each method across

the 500 simulations. Ribbons show ±1.96× SE over the 500 simulations. Dotted lines show the average true accuracy from Figure 1.

Effects of predictand on model selection328

To demonstrate the impact of biased estimates of model accuracy329

using yn1 on the effectiveness of model selection, we assessed in330

each simulation whether the single-trait or multi-trait methods331

had a higher estimated accuracy, and compared this result to the332

true difference in prediction accuracies in that simulation setting.333

Figure 3 shows that selecting between the single-trait and CV1-334

style multi-trait models based on estimated accuracy using yn1335

generally works well. Whenever one method is clearly better, we336

are able to choose that method > 50% of the time. But we never337

choose correctly < 50% of the time, even when the methods are338

approximately equivalent.339

In contrast, when selecting between the single-trait and CV2-340

style multi-trait methods based on estimated accuracy using yn1,341

the differential bias in estimated accuracy between the two meth-342

ods frequently lead to sub-optimal model selection (Figure 3B).343

With opposing genetic and non-genetic covariances between the344

two traits, the better model was chosen < 10% of the time. In these345

situations, using yn1 to select a prediction method will obscure346

real opportunities to enhance prediction accuracy using multi-trait347

prediction models.348
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Figure 3 Impact of using phenotypic data to select between single-

trait and multi-trait prediction methods. For each of the 500 simula-

tions per genetic architecture described in Figure 1, we compared

the estimated accuracy of a multi-trait prediction to the single-trait

prediction. We then calculated the fraction of times that the selected

model had higher average true accuracy in that setting (as shown in

Figure 1).
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Alternative estimates of multi-trait prediction accuracy349

The CV2-style prediction method can be powerful because yn2 pro-350

vides information on the genetic value of the testing individuals351

themselves (through un2), while yo1 only provides indirect infor-352

mation on the genetic values of the testing individuals through the353

relatives. However, estimating prediction accuracy using yn1 fails354

for the CV2-style prediction method because both the focal and355

secondary traits are observed on the same individual and there-356

fore share the same non-genetic sources of variation. Since the357

CV2 method uses yn2, non-genetic deviations for the secondary358

trait en2 push ûn1 either towards or away from yn1 depending on359

the estimated correlation r̂12. This either inflates or deflates the360

estimated accuracy, leading to incorrect model choices.361

We now compare the effectiveness of three strategies for esti-362

mating cross-validation accuracy of CV2-style methods. To our363

knowledge, the second and third strategies are novel. Because the364

three methods have different data requirements, we implemented365

different experimental designs for each evaluation strategy.366

Parametric estimate of accuracy. Our prediction ûn1 is similar to367

a selection index because it combines multiple pieces of infor-368

mation into a linear prediction. The accuracy of an index I is:369

corg(I, y)
√

h2
I , the genetic correlation between the index and phe-370

notype multiplied by the heritability of the index (Falconer and371

Mackay 1996; Lopez-Cruz et al. 2019). Neither the genetic corre-372

lation nor the heritability can be directly observed, but we can373

estimate both as parameters of a multi-trait linear mixed model374

with the same form as (5). To be a valid cross-validation score,375

these parameters must be estimated with data only in the valida-376

tion partition, rather than reusing estimates from model training.377

Since both model training and model evaluation equally require378

estimates of G and R, we divided the data 50:50 into training and379

validation partitions in each simulation, thus using 404 lines to380

train the prediction models and 403 lines to evaluate the prediction381

accuracy.382

The parametric estimates of prediction accuracy for the383

CV2 method were less biased than the cor(û(3)
n1 , yn1), the non-384

parametric estimates using yn1 as a predictand (Figure 4A, com-385

pare to Figure 2). This led to more consistent model selections386

between the CV2 and single-trait methods (Figure 4B). However,387

the parametric approach still underestimated the accuracy of the388

CV2 method when the genetic and residual correlations were in389

opposite directions, leading to model selection accuracies <50%.390

This negative bias was due to poor estimation of G and R for the391

selection indices, given the limited sample sizes remaining after392

the data were partitioned.393

Semi-parametric estimate of accuracy. In principle, we can

correct for the bias in the non-parametric accuracy estimate

(cor(û(3)
n1 , yn1)) from the CV2-style method by calculating an ad-

justment factor based on the theoretical bias relative to the true

accuracy (cor(û(3)
n1 , un1)). This is similar to the semi-parametric

accuracy estimates presented by (Legarra and Reverter 2018), and

the “correction” of accuracy estimates by 1/
√

h2 used above to

account for the difference in variance between yn1 and un1. As we

derive in the Appendix, the difference between the true correlation

from a CV2-style methods and its CV2 cross-validation estimate

when a single secondary trait is used is:

ĝ12r21√
var(û(3)

n1 )var(yn1)

tr(S(K−1)nnV̂−1
c Knn)

n− 1
. (8)

with Vc defined above and S = I− 11ᵀ
n . The bias is a function394

of the the correlation among traits through the product ĝ12r21 (as395

the second term does not involve these parameters, and in most396

cases is ≈ 1), and is large and positive (i.e. accuracy is overes-397

timated) when ĝ12 and r12 are large and in the same direction,398

and large and negative (i.e. accuracy is underestimated) when399

these covariances are in opposite directions. Given this result,400

we can correct cor(û(3)
n1 , yn1) by subtracting 8 from the estimated401

correlation, again corrected by 1/
√

h2 (Figure 5).402

Clearly, the quality of this correction will depend on the accu-403

racy of ĝ12 and r̂12 as estimates of g12 and r12. In Figure 5A, we404

show that the corrected correlation estimate has greatly reduced405

bias, particularly the dependence of the bias on the non-genetic406

covariance between the traits r12. However the correction is not407

perfect. Corrected accuracy estimates tend to overestimate the true408

accuracy. This over-estimation is caused by error in Ĝ and R̂ as409

estimates of the true covariances: The correction factor is nearly410

perfect when the true covariance matrices are used in place of their411

estimates Supplemental Figure 2.412

Using the semi-parametric accuracy estimates, we are more413

successful at selecting the best model over the range of genetic414

architectures (Figure 5B). The frequency of selecting the correct415

model rarely drops below 50% and is relatively constant with416

respect to the residual correlation between traits.417
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Figure 4 Parametric accuracy estimates.Estimated prediction accuracies and model selection accuracies for CV2-style methods using the

parametric method. (A) Solid curves: estimates of prediction accuracy. Dashed curves: true prediction accuracy based on un1. Dotted curves:

estimated prediction accuracy using yn1 from Figure 2A. Ribbons show ±1.96× SE over the 500 simulations. (B) Solid curves: Fraction of the

500 simulations in which the better method (between CV2 and single-trait) for predicting the true genetic values was correctly selected. Dotted

curve: model selection based on the naive prediction accuracy.
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Figure 5 Semi-parametric accuracy estimates. Estimated prediction accuracies and model selection accuracies for CV2-style methods after

semi-parametric correction. (A) Solid curves: corrected estimates of prediction accuracy. Dashed curves: uncorrected estimates of prediction

accuracy based on yn1 (mirroring Figure 3). Dotted curves: true prediction accuracy. Ribbons show ±1.96× SE over the 500 simulations. (B)

Solid curves: Fraction of the 500 simulations in which the better method (between CV2 and single-trait) for predicting the true genetic values

was correctly selected. Dotted curve: model selection based on the naive un-corrected prediction accuracy.
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CV2* cross-validation strategy. Since the biased estimate of pre-418

diction accuracy for CV2-style methods is due to non-genetic cor-419

relations between yn2 used for prediction and the predictand yn1,420

an alternative strategy, which we call CV2*, is to use phenotypic421

information on close relatives of the testing individuals (yx1) to422

validate the model predictions in place of their own focal trait423

phenotypes (yn1). These “surrogate" validation individuals must424

also be excluded from the model training and raised so that they425

do not share the same non-genetic deviations as the testing indi-426

viduals: cor(ex1, en1) = 0. Therefore, ûx1 will not be artificially427

pushed towards or away from ux1 (measured on relatives) by yn2428

(measured on testing individuals), preventing this source of bias429

in the estimated accuracy.430

We implemented the CV2* cross-validation strategy in two431

ways, simulating two different breeding schemes.432

First, we considered the situation common in plant breeding433

where inbred lines (i.e. clones) are tested, and each line is grown434

in several plots in a field Bernardo (2002). Here, we can use one435

set of clones for prediction (yn2), and the other set of clones as436

trait-1 surrogates (yx1). Since they are clones, ux1 = un1 and yy2437

is just as good for predicting ux1 as yx2. Generally in this type of438

experiment, replicate plots of each line will be combined prior to439

analysis into a single line mean (or BLUP). But since we require440

yn2 and yx1 to be recorded from separate individuals, each value441

will have 2× the residual variance because it is based on 1/2 as442

much data as the line means used for model training. Therefore,443

in our simuulations we drew two independent residual values for444

each line in the validation partition, each with a variance of 2R.445

For these simulations, we used a 90:10 training:validation split.446

Second, we considered the situation more common in animal447

breeding where clones are not available. In this case, the best op-448

tion for CV2* would be to select pairs of closely related individuals449

to include in the training set; we use the first individual of the450

pair as yn2 and the second as yx1. To implement this strategy, we451

again started with a validation partition of 10% of the lines. Then452

for each line, we selected the most closely related remaining line453

(arg maxj Kij for validation line i) and held this additional set of454

10% of the lines as yx1. This left a training partition with only 80%455

of the lines. The average genetic relatedness of validation partition456

pairs in these simulations was 0.38.457

Figure 6A shows that for the first setting with split clones, es-458

timates of prediction accuracy for CV2-style predictions by CV2*459

are vastly more accurate than the naive estimates based on yn1,460

but they are slightly downwardly biased because of the increased461

residual variance of yn1 and yx2. Model selection works fairly462

well across all settings when clones are used (Figure 6B, blue463

lines), although with slightly lower success rates than for the semi-464

parametric method. However, when we implementing the second465

approach with nearest relatives (not clones), model selection was466

rarely successful - we consistently chose the wrong model across467

most simulation settings unless the genetic and residual correla-468

tions were opposing. This is because the validation pairs were469

too distantly related to provide any additional information on470

genetic merit relative to individuals in the training partition. In-471

terestingly, this method is relatively successful in the situations472

where the parametric method fails (see Figure 4B), and so may be473

complimentary.474

DISCUSSION475

Our study highlights a potential pitfall in using cross-validation to476

estimate the accuracy of multi-trait genomic prediction methods.477

When secondary traits are used to aid in the prediction of focal478

traits and these secondary traits are measured on the individuals479

to be tested, cross-validation evaluated against phenotypic obser-480

vations can be severely biased and result in poor model choices.481

Unfortunately, we rarely know the true genetic value of any indi-482

vidual and therefore can only evaluate our models with phenotypic483

data (since multi-trait-derived estimated genetic values are even484

more severely biased as we demonstrated above (Figure 2B)). We485

cannot find earlier discussions of this problem in the literature.486

However a growing number of studies aim to use cheap or early-487

life traits to improve predictions of genetic worth for individuals488

in later-life traits (ex. Pszczola et al. 2013; Rutkoski et al. 2016; Fer-489

nandes et al. 2017; Lado et al. 2018). Therefore the issue is becoming490

more important.491

The problematic bias in the cross-validation-based accuracy492

estimates is caused by non-genetic correlations between the pre-493

dictors that we want to use (i.e. the secondary traits) and our best494

predictand (the phenotypic value of the trait in the testing indi-495

viduals) – non-genetic correlations between two traits measured496

on the same individual are expected. However, in some cases this497

correlation is zero by construction, and standard cross-validation498

approaches can be valid. For example, in the original description499

of the CV2 cross-validation method by (Burgueño et al. 2012), each500
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Figure 6 Non-parametric CV* accuracy estimates. Estimated prediction accuracies and model selection accuracies based on the phenotypic

values of close relatives. (A) Solid curves: Estimated prediction accuracies of the CV2-style and Single-trait methods evaluated against yx1

using clones. Dashed curves: True prediction accuracies of each method. Ribbons show ±1.96× SE over the 500 simulations. (B) Solid curves:

Fraction of the 500 simulations in which the better method (between CV2 and single-trait) for predicting the true genetic values was correctly

selected based on the phenotypes of relatives of the testing individuals. Dotted curve: Fraction of correct models selected based on the naive

estimator.

trait was measured in a different environment. In this case, the501

traits were measured on different individuals and therefore did502

not share any non-genetic correlation. Also, CV1-style methods503

do not suffer from this problem because phenotypic information504

on the secondary traits in the testing individuals is not used for505

prediction. Similarly, this bias does not occur when the target of506

prediction is the phenotypic value itself (rather than the individ-507

ual’s genetic value). For example, in medical genetics the aim is508

to predict whether or not a person will get a disease or not, not509

her genetic propensity to get a disease had she been raised in a510

different environment (ex Spiliopoulou et al. 2015; Dahl et al. 2016).511

We note that the common strategy of two-step genome selection:512

using single-trait methods to calculate estimated genetic values513

for each line:trait and then using these estimated genetic values514

as training (and validation) data, does not get around the prob-515

lem identified here. Using estimated genetic values instead of516

phenotypic values will tend to increase the genetic repeatability517

of the training and validation values, and therefore increase the518

overall prediction accuracy of all methods. But these estimated519

genetic values will still be biased by the non-genetic variation, and520

the biases across traits will still be correlated by the non-genetic521

correlations. Therefore the same issue will arise.522

Also, while we have used a GBLUP-like genomic prediction523

method for the analyses presented here, the same result will hold524

for any multi-trait prediction method that aims to use information525

from yn2 when there are non-genetic correlations with yn1, i.e. any526

method that is evaluated with the CV2 cross-validation method527

on multiple traits measured on the same individual (Calus and528

Veerkamp 2011; Jia and Jannink 2012; Fernandes et al. 2017). This529

includes multi-trait versions of the Bayes Alphabet methods (Calus530

and Veerkamp 2011; Cheng et al. 2018), or neural network or Deep531

Learning methods (Montesinos-López et al. 2018).532

We presented three partial solutions to this problem, spanning533

from fully parametric to fully non-parametric.534

The parametric solution relies on fitting a new multi-trait mixed535

model to the predicted values and the predictand, with the accu-536

racy estimated as the genetic correlation scaled by the heritability537

of the prediction. This solution is always available as long as the538

individuals in the validation partition have non-zero genomic re-539

latedness and the full dataset is large enough to estimate genetic540
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correlations in both training and validation partitions. However541

it generally worked poorly in our simulations because G and R542

were not estimated accurately. It may work better with very large543

datasets. Also, because this parametric approach relies on the same544

assumptions about the data (i.e. multivariate normality) as the545

prediction model, it loses some of the guarantees of reliability that546

completely non-parametric cross-validation methods can claim.547

The semi-parametric solution aims to correct the non-548

parametric correlation estimate for the bias caused by the non-null549

residual correlation among traits. This correction factor is only550

needed for CV2-style multi-trait prediction approaches, and is sim-551

ilar to the approach of (Legarra and Reverter 2018) for single-trait552

models. We show that this correction factor can work well, par-553

ticularly if the covariances among traits are well estimated. We554

only derived this correction method for prediction methods based555

on linear mixed effect models with a single known genetic covari-556

ance structure (i.e. GBLUP and RKHS-style methods with fixed557

kernels), although the approximation ĝ12 r̂12√
(var(û)var(u)

will probably558

be approximately correct for other methods. However, when co-559

variances are poorly estimated, the correction factor can still lead560

to biased estimates of model accuracy. We are currently investigat-561

ing whether Bayesian methods that sample over this uncertainty562

can be useful, and will implement this method in JWAS (Cheng563

et al. 2018). This method is semi-parametric, so also relies on dis-564

tributional assumptions about the data and may fail when these565

assumptions are not met.566

As a third alternative, we proposed the CV2* cross-validation567

method, a fully non-parametric approach for assessing CV2-style568

multi-trait prediction accuracy. CV2* uses phenotypic values of569

the focal trait from relatives of the testing individuals in place of570

the phenotypic values of that trait from the testing individuals571

themselves. If the close relatives are raised independently, they572

will not share non-genetic variation, removing the source of bias in573

the cross-validation estimate (Figure 6A). The CV2* method works574

best when clones of the testing individuals are available. With575

clones, secondary trait phenotypes of the testing individuals can576

be used directly to predict focal trait genetic values of their clones577

because the genetic values are identical. Replicates of inbred lines578

are frequently used in plant breeding trials (Bernardo 2002). In579

this case, all replicates should be held-out as a group from the580

training data. Then the replicates can be partitioned again into581

two sets; secondary trait phenotypes from one set can be incor-582

porated into the genetic value predictions for the lines, and these583

predictions evaluated against the phenotypic values of the other584

set. To compare this estimate of CV2-style prediction accuracy to585

the prediction accuracy for a single-trait method, the single-trait586

method’s predictions should be compared against the same set of587

replicates of each line (i.e., not a joint average over all replicates588

of the line as would be typical for single-trait cross-validation).589

However, because of the separation of the replicates, each replicate590

will have higher residual variance, which reduces the accuracy of591

this method. Clones are less common outside of plant breeding,592

so more distant relatives need to be used instead. In this case,593

the estimated prediction accuracies of CV2-style methods will be594

downwardly biased. In our simulations, despite relatively close595

relatives for each validation line being available, this approach was596

not successful.597

In our simulations, the semi-parametric approach was the most598

reliable, and the fully parametric approach the least reliable. How-599

ever the fully parametric approach is always possible to implement600

while our semi-parametric and non-parametric approaches may601

not be possible depending on the prediction model used and the602

structure of the experimental design.603

CONCLUSIONS604

We expect that multi-trait methods for genomic prediction carry605

great promise to accelerate both plant and animal breeding. How-606

ever there is a need to design better methods to evaluate and train607

the prediction methods to ensure that models can be accurately608

compared. We have presented and compared three contrasting609

methods to evaluating multi-trait methods. Each of these methods610

is preferred to naive cross-validation when secondary traits of the611

target individuals are used to predict their focal traits. However612

the methods can give contrasting answers for different datasets, so613

careful consideration of which evaluation method to use is critical614

when choosing among prediction methods.615
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SUPPLEMENTAL FIGURES627

Supplemental Figure 1 Actual prediction accuracy of single-trait628

and multi-trait prediction methods in simulated data when G629

and R are known. 500 simulations were run for each heritabil-630

ity of the secondary trait (h2
2 = {0.2, 0.6}), and each combina-631

tion of genetic and non-genetic correlation between the two traits632

(ρg = {0, 0.3, 0.6}, ρR = {−0.6,−0.4,−0.2, 0, 0.2, 0, 4, 0.6}), all with633

h2
1 = 0.2. For each simulation, we used the 900 training individuals634

to fit linear mixed models (either single or multi-trait) condition-635

ing on the true values for G and R, predicted the genetic values636

of the 100 testing individuals, and then measured the Pearson’s637

correlation between the predicted (ûn1) and true (un1) genetic val-638

ues. In the CV1 method, we used only information on the testing639

individuals to calculate ûn1. In the CV2 method, we used the640

training individuals to calculate ûo and combined this with the641

observed phenotypes for the secondary trait on the testing individ-642

uals (yn2). Curves show the average correlation for each method643

across the 500 simulations. Ribbons show ±1.96× SE over the644

500 simulations. Dashed lines show analytical calculations of the645

expected correlation given one representative training:validation646

data partition.647

Supplemental Figure 2 Estimated prediction accuracies and648

model selection accuracies for single-trait and multi-trait pre-649

diction methods after semi-parametric correction when G and650

R are known. Ribbons show ±1.96 × SE over the 500 simula-651

tions. Dashed lines show the mean actual prediction accuracy:652

cor(ûn1, un1).653
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APPENDIX768

Here, we derive the genomic predictions ûn1 given y for the three prediction models that we use in the main text, and then evaluate the769

expected covariances between these predictions and the predictands un1 and yn1. We derive these relations for the more general situation770

with p ≥ 1 “secondary” traits and a single “focal” trait.771

We start with a phenotypic data matrix Y with n individuals and p + 1 traits, where the first trait (first column of Y) is the “focal” trait,

and the other p traits are “secondary” traits. We first divide Y into a training partition (“old” individuals) and a testing partition (“new”

individuals), and arrange them with the testing partition first, so we can partition Y =

Yn

Yo

 =


[

yn1 Yn2

]
[

yo1 Yo2

]
. We then work with

stacked versions of these phenotype matrices: y = vec(Y), yn = vec(Yn), yo = vec(Yo). Our genetic model for y is:

y = Xβ + u + e

β = [β1, β2]
ᵀ

u ∼ N(0, G⊗K)

e ∼ N(0, R⊗ In)

where G and R are genetic and phenotypic covariance matrices for the p + 1 traits, and K is the n× n genomic relationship matrix among

the lines. For convenience below, we partition the following matrices as follows: We partition the trait vectors for the training individuals

and covariance matrices between the “focal” (index 1) and “secondary traits” (index 2):

yo =

yo1

yo2

 , uo =

uo1

uo2

 , eo =

eo1

eo2

 , Xoβ =

Xo1β1

Xo2β2



G =

g11 g12

g21 G22

 =

g1·

G2·

 =

[
g·1 G·2

]

R =

r11 r12

r21 R22

 =

 r1·

R2·

 =

[
r·1 R·2

]
,

where scalars are normal text, vectors are bold-face lower case letters, and matrices are bold-face capital letters. Partitions for the testing

individuals are similar. We also partition the genomic relationship matrix and its inverse between the training and testing individuals:

K =

Knn Kno

Kon Koo

 , K−1 =

(K
−1)nn (K−1)no

(K−1)on (K−1)oo


Derivation of genomic predictions772

Single trait predictions For the single-trait prediction, we begin by estimating ĝ11, r̂11 and β̂1 by REML using only yo1. The joint distribution

of un1 and yo1 is: un1

yo1

 ∼ N


 0

Xo1β1

 ,

g11Knn g11Kno

g11Kon g11Koo + r11I


 .
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Let: Vo1 = g11Koo + r11I. Therefore E[un1|yo1] = g11KnoV−1
o1 (yo1 − Xo1β1), so our prediction is:

û(1)
n1 = ĝ11KnoV̂−1

o1 (yo1 − Xo1 β̂1). (9)

To simplify, note that the joint distribution of uo1 and yo1 in the training data is:uo1

yo1

 ∼ N


 0

Xo1β1

 ,

g11Koo g11Koo

g11Koo g11Koo + r11I




Therefore, ûo1|yo1 = ĝ11KooV̂−1
o1 (yo1 − Xo1 β̂1). Rearranging and plugging this in above simplifies to: û(1)

n1 = KnoK−1
oo ûo1.773

CV1-style multi-trait predictions For CV1-style multi-trait prediction, we begin by estimating Ĝ, R̂ and β̂ by REML using yo. The joint

distribution of un1 and yo is: un1

yo

 ∼ N


 0

Xoβ

 ,

 g11Knn g1· ⊗Kno

g·1 ⊗Kon G⊗Koo + R⊗ I




Let Vo = G⊗Koo + R⊗ I. Therefore, E[un1|yo] = (g1· ⊗Kno)V−1
o (yo − Xoβ), so our prediction is:

û(2)
n1 = (ĝ1· ⊗Kno)V−1

o (yo − Xo β̂). (10)

As above, to simplify this expression, we form the joint distribution of uo and yo in the training data as:uo

yo

 ∼ N


 0

Xoβ

 ,

G⊗Koo G⊗Koo

G⊗Koo G⊗Koo + R⊗ I




Therefore, ûo1|yo = (Ĝ⊗Koo)V̂−1
o (yo − Xo β̂). Rearranging and plugging this in above simplifies to: û(2)

n1 = KnoK−1
oo ûo1.774

CV2-style multi-trait predictions For our CV2-style multi-trait prediction, we take a two-step approach. We first estimate ûo from the

training individuals and then supplement this with yn2 from the testing individuals. The joint distribution of un1, yn2 and uo is:

un1

yn2


uo


∼ N





 0

X2β2


0


,


G⊗Knn +

0 0

0 R22

⊗ Inn G⊗Kno

G⊗Kon G⊗Koo





Conditional on a known value of uo from the training individuals, the distribution of

un1

yn2

 would be:

un1

yn2

 |uo ∼ N


 KnoK−1

oo uo1

X2β2 + KnoK−1
oo uo2

 , (G⊗Knn) +

0 0

0 R22

⊗ Inn −
[
(G⊗Kno)(G−1 ⊗K−1

oo )(G⊗Kon)

] ,
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which simplifies to: un1

yn2

 |uo ∼ N


 KnoK−1

oo uo1

X2β2 + KnoK−1
oo uo2

 ,

 g11(K−1)−1
nn g12 ⊗ (K−1)−1

nn

g21 ⊗ (K−1)−1
nn G22 ⊗ (K−1)−1

nn + R22 ⊗ Inn


 .

Let Vc = G22 ⊗ (K−1)−1
nn + R22 ⊗ Inn. Now, conditioning on observed values of both uo from the training data and yn2 from the testing

data, the expectation of un1 would be:

E[un1|yn2, uo] = KnoK−1
oo uo1 + (g12 ⊗ (K−1)−1

nn )V
−1
c (yn2 − X2β2 −KnoK−1

oo uo2).

Using this, we form our prediction as:

û(3)
n1 = KnoK−1

oo ûo1 + (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (yn2 − X2 β̂2 −KnoK−1

oo ûo2), (11)

where ûo1 and ûo2 are extracted from the calculation of ûo for the CV1-style prediction. Plugging in the solutions for these values expands775

to:776

û(3)
n1 = (ĝ1· ⊗Kno)V̂−1

o (yo − Xo β̂)

+ (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (yn2 − X2 β̂2 − (Ĝ2· ⊗Kno)V̂−1

o (yo − Xo β̂)).

Expectations of prediction accuracy777

Now, we evaluate the expected correlation between a random sample of pairs of elements from our three candidate predictions and the

predictand yn1. We compare these expected correlations with the expected “true” correlations with un1. Below, let var(x) denote the

variance of a random sample from a random vector x; cov(x, y) and cor(x, y) denote the covariance and correlation between a random

sample of pairs of elements from x and y; and Cov(x, y) denote the covariance matrix between vectors x and y. We use the following results:

cor(x, y) =
cov(x, y)√

var(x)var(y)
=

1
n− 1

(x− µx)ᵀ(y− µy)√
var(x)var(y)

=
1

n− 1
xᵀSy√

var(x)var(y)

where S = I− 11ᵀ
n .

E[xᵀSy] = tr(SCov(x, y)) + µᵀ
xSµy = tr(SCov(x, y))

where tr(·) is the matrix trace, and µx = 0 and/or µy = 0. Therefore, the expected correlation between x and y is approximately:

E[cor(x, y)] ≈ 1
n− 1

tr(SCov(x, y))√
E[var(x)]E[var(y)]

.

Our goal with cross-validation is to estimate cor(ûn1, un1). Since we do not know un1, we approximate the correlation with778

cor(ûn1, yn1)/
√

h2
1. The factor of

√
h2

1 corrects the correlation for the larger variance of yn1 relative to un1. Otherwise, any differ-779

ence between these two correlations must be due to their numerators: tr(SCov(ûn1, un1)) and tr(SCov(ûn1, yn1)). Thus, for each of the780

three prediction methods we compare these two numerators to evaluate the accuracy and bias in the approximation.781

Single trait predictions The numerator of the expected correlation between u(1)
n1 and the true genetic values un1 is:

tr(SCov(û(1)
n1 , un1)) = tr

(
SCov(ĝ11KnoV̂−1

o1 (yo1 − Xo1 β̂1), un1)
)

= tr
(

ĝ11SKnoV̂−1
o1 Cov(uo1 + eo1, un1)

)
= tr

(
ĝ11SKnoV̂−1

o1 (g11Kon)
)

= ĝ11g11tr
(

SKnoV̂−1
o1 Kon

)
.
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where we assume that β̂1 = β1 and Cov(eo1, un1) = 0. The same result for the numerator of the expected correlation between u(1)
n1 and the

observed phenotypic values yn1 is:

tr(SCov(û(1)
n1 , yn1)) = tr

(
SCov(ĝ11KnoV̂−1

o1 (yo1 − Xo1 β̂1), yn1)
)

= tr
(

ĝ11SKnoV̂−1
o1 Cov(uo1 + eo1, un1 + en1)

)
= tr

(
ĝ11SKnoV̂−1

o1 (g11Kon)
)

= ĝ11g11tr
(

SKnoV̂−1
o1 Kon

)
,

where we additionally assume Cov(uo1, en1) = 0 and Cov(eo1, en1) = 0. Therefore, the numerators are the same, and cor(û(1)
n1 , yn1)/

√
ĥ2

1 is782

a consistent estimator for cor(û(1)
n1 , un1).783

CV1-style multi-trait predictions The numerator of the expected correlation between u(2)
n1 and the true genetic values un1 is:784

tr(SCov(û(2)
n , un1)) = tr(SCov((ĝ1· ⊗Kno)V̂−1

o (yo − Xo β̂), un1))

= tr(S(ĝ1· ⊗Kno)V̂−1
o Cov(uo + eo, un1))

= tr(S(ĝ1· ⊗Kno)V̂−1
o (g·1 ⊗Kon)),

again assuming β̂ = β and now also Cov(eo, un1) = 0. The same result for the numerator of the expected correlation between u(2)
n1 and the785

observed phenotypic values yn1 is:786

tr(SCov(û(2)
n1 , yn1)) = tr(SCov((ĝ1· ⊗Koo)V̂−1

o (yo − Xo β̂), yn1))

= tr(S(ĝ1· ⊗Koo)V̂−1
o Cov(uo + eo, un1 + en1))

= tr(S(ĝ1· ⊗Koo)V̂−1
o (g21 ⊗Kon)),

where we additionally assume Cov(uo, en1) = 0 and Cov(eo, en1) = 0. Therefore, the numerators are the same, and cor(û(2)
n1 , yn1)/

√
ĥ2

1 is a787

consistent estimator for cor(û(2)
n1 , un1).788
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CV2-style multi-trait predictions The numerator of the expected correlation between u(3)
n1 and the true genetic values un1 is:

tr(SCov(û(3)
n1 , un1)) = tr(S[Cov

(
(ĝ1· ⊗Kno)V̂−1

o (yo − Xo β̂)

− (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o (yo − Xo β̂)

+ (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (yn2 − X2 β̂2), un1

)
])

= tr(S[Cov((ĝ1· ⊗Kno)V̂−1
o (yo − Xo β̂), un1)

− Cov((ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o (yo − Xo β̂), un1)

+ Cov((ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (yn2 − X2 β̂2), un1)])

= tr(S[(ĝ1· ⊗Kno)V̂−1
o Cov(uo + eo, un1)

− (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o Cov(uo + eo, un1)

+ (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c Cov(un2 + en2, un1)])

= tr(S[(ĝ1· ⊗Kno)V̂−1
o (g·1 ⊗Kon)

− (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o (g·1 ⊗Kon)

+ (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (g21 ⊗Knn)])

= tr(S(ĝ1· ⊗Kno)V̂−1
o (g·1 ⊗Kon))

− tr(S(ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o (g·1 ⊗Kon))

+ tr(S(ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (g21 ⊗Knn)),

again assuming β̂ = β, Cov(eo, un1) = 0, and Cov(en2, un1) = 0. From this, we can see the potential benefit of the CV2-style method:

tr(SCov(û(3)
n1 , un1))− tr(SCov(û(2)

n , un1))

= tr(S(ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (g21 ⊗Knn))− tr(S(ĝ12 ⊗ (K−1)−1

nn )V̂
−1
c (Ĝ2· ⊗Kno)V̂−1

o (g21 ⊗Kon))

= tr(S(ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (g21 ⊗Knn − (Ĝ2· ⊗Kno)V̂−1

o (g21 ⊗Kon))),

which is generally (but maybe not necessarily) positive. This means that cor(û(3)
n1 , un1) is generally greater than cor(û(2)

n1 , un1).789
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The same result for the numerator of the expected correlation between u(3)
n1 and the observed phenotypic values yn1 is:

tr(SCov(û(3)
n1 , yn1)) = tr(S[Cov((ĝ1· ⊗Kno)V̂−1

o (yo − Xo β̂), un1 + en1)

− Cov((ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o (yo − Xo β̂), un1 + en1)

+ Cov((ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (yn2 − X2 β̂2), un1 + en1)])

= tr(S[(ĝ1· ⊗Kno)V̂−1
o Cov(uo + eo, un1 + en1)

− (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o Cov(uo + eo, un1 + en1)

+ (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c Cov(un2 + en2, un1 + en1)])

= tr(S[(ĝ1· ⊗Kno)V̂−1
o (g·1 ⊗Kon)

− (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o (g·1 ⊗Kon)

+ (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (g21 ⊗Knn)])

+ (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (r21 ⊗ I)])

= tr(S(ĝ1· ⊗Kno)V̂−1
o (g·1 ⊗Kon))

− tr(S(ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o (g·1 ⊗Kon))

+ tr(S(ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (g21 ⊗Knn))

+ tr(S(ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (r21 ⊗ Inn)),

From this, we see that the numerator of the correlation cor(û(3)
n1 , yn1) is not equal to that of cor(û(3)

n1 , un1):

tr(SCov(û(3)
n1 , yn1))− tr(SCov(û(3)

n1 , un1)) = tr(S(ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (r21 ⊗ Inn)).

If p = 1, then ĝ12 and r12 are scalars and this excess covariance is approximately nĝ12r12.790

CV2* approach In our new CV2* cross-validation approach, we replace yn1 with yx1–the phenotypes of a new set of individuals (x) that are791

relatives of the testing partition and were not part of the training partition. Let Kxx be the genetic relationships among these nx individuals,792

and Kxo be their genetic relationships with the training partition. The numerator of the expected correlation cor(û(3)
n1 , yx1)/

√
h2

1 is:793

tr(SCov(û(3)
n1 , yx1)) = tr(S[Cov((ĝ1· ⊗Kno)V̂−1

o (yo − Xo β̂), ux1 + ex1)

− Cov((ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o (yo − Xo β̂), ux1 + ex1)

+ Cov((ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (yn2 − X2 β̂2), ux1 + ex1)])

= tr(S[(ĝ1· ⊗Kno)V̂−1
o Cov(uo + eo, ux1 + ex1)

− (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o Cov(uo + eo, ux1 + ex1)

+ (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c Cov(un2 + en2, ux1 + ex1)])

= tr(S[(ĝ1· ⊗Kno)V̂−1
o (g21 ⊗Kox)

− (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o (g21 ⊗Kox)

+ (ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (g21 ⊗Kxx)])

= tr(S(ĝ1· ⊗Kno)V̂−1
o (g21 ⊗Kox))

− tr(S(ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (Ĝ2· ⊗Kno)V̂−1

o (g21 ⊗Kox))

+ tr(S(ĝ12 ⊗ (K−1)−1
nn )V̂

−1
c (g21 ⊗Kxx)).
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If these new individuals are clones of the original testing set, then Kxx = Knn, Kox = Kon and tr(SCov(û(3)
n1 , yx1)) = tr(SCov(û(3)

n1 , un1)).794

However, if clones are not available, then this equality will not hold.795

Given these analytical results for the numerator of the expected correlations, we can estimate the correlation itself by calculating the796

expected variances of ûn1 and un1 or yn1. We do not go through these calculations as they follow directly from the calculations given above.797
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