
Brian 2: an intuitive and efficient neural simulator
Marcel Stimberg1*, Romain Brette1, and Dan F.M. Goodman2

1Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
2Department of Electrical and Electronic Engineering, Imperial College London, UK

Abstract

To be maximally useful for neuroscience research, neural simulators must make it possible to define original models. This
is especially important because a computational experiment might not only need descriptions of neurons and synapses, but
also models of interactions with the environment (e.g. muscles), or the environment itself. To preserve high performance
when defining new models, current simulators offer two options: low-level programming, or mark-up languages (and other
domain specific languages). The first option requires time and expertise, is prone to errors, and contributes to problems with
reproducibility and replicability. The second option has limited scope, since it can only describe the range of neural models
covered by the ontology. Other aspects of a computational experiment, such as the stimulation protocol, cannot be expressed
within this framework. “Brian” 2 is a complete rewrite of Brian that addresses this issue by using runtime code generation with
a procedural equation-oriented approach. Brian 2 enables scientists to write code that is particularly simple and concise, closely
matching the way they conceptualise their models, while the technique of runtime code generation automatically transforms
high level descriptions of models into efficient low level code tailored to different hardware (e.g. CPU or GPU). We illustrate it
with several challenging examples: a plastic model of the pyloric network of crustaceans, a closed-loop sensorimotor model,
programmatic exploration of a neuron model, and an auditory model with real-time input from a microphone.

1 Introduction

Neural simulators are increasingly used to develop models of the nervous system, at different scales and in a variety of contexts
(Brette et al., 2007). Popular tools for simulating spiking neurons and networks of such neurons are NEURON (Carnevale
& Hines, 2006), GENESIS (Bower & Beeman, 1998), NEST (Gewaltig & Diesmann, 2007), and Brian (Goodman & Brette,
2009). Most of these simulators come with a library of standard models that they allow the user to choose from. However, we
argue that to be maximally useful for research, a simulator should also be designed to facilitate work that goes beyond what
is known at the time that the tool is created, and therefore enable the user to investigate new mechanisms. Simulators take
widely different approaches to this issue. For some simulators, adding new mechanisms requires specifying them in a low-level
programming language such as C++, and integrating them with the simulator code (e.g. NEST). Amongst these, some provide
domain-specific languages, e.g. NMODL (Hines & Carnevale, 2000, for NEURON) or NESTML (Plotnikov et al., 2016, for
NEST), and tools to transform these descriptions into compiled modules that can then be used in simulation scripts. Finally, the
Brian simulator has been built around mathematical model descriptions that are part of the simulation script itself.

Another approach to model definitions has been established by the development of simulator-independent markup languages,
for example NeuroML/LEMS (Gleeson et al., 2010; Cannon et al., 2014) and NineML (Raikov et al., 2011). However, markup
languages address only part of the problem. A computational experiment is not fully specified by a neural model: it also includes
a particular protocol, for example a sequence of visual stimuli. Capturing the full range of potential protocols cannot be done
with a purely declarative markup language, but is straightforward in a general purpose programming language. For this reason,
the Brian simulator combines the model descriptions with a procedural, computational experiment approach: a simulation is a

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

user script written in Python, with models described in their mathematical form, without any reference to predefined models.
This script may implement arbitrary protocols by loading data, defining models, running simulations and analysing results.
Due to Python’s expressiveness, there is no limit on the structure of the computational experiment: stimuli can be changed
in a loop, or presented conditionally based on the results of the simulation, etc. This flexibility can only be obtained with a
general-purpose programming language, and is necessary to specify the full range of computational experiments that scientists
are interested in.

While the procedural, equation-oriented approach addresses the issue of flexibility for both the modelling and the computa-
tional experiment, it comes at the cost of reduced performance, especially for small-scale models that do not benefit much
from vectorization techniques (Brette & Goodman, 2011). The reduced performance results from the use of an interpreted
language to implement arbitrary models, instead of the use of pre-compiled code for a set of previously defined models. Thus,
simulators generally have to find a trade-off between flexibility and performance, and previous approaches have often chosen
one over the other. In practice, this makes computational experiments that are based on non-standard models either difficult
to implement or slow to perform. We will describe four case studies in this article: exploring unconventional plasticity rules
for a small neural circuit (Figure 1, Figure 2); running a model of a sensorimotor loop (Figure 3); determining the spiking
threshold of a complex model by bisection (Figure 4, Figure 5); and running an auditory model with real-time input from a
microphone (Figure 6, Figure 7).

Brian 2, a complete rewrite of the Brian simulator, solves the apparent dichotomy between flexibility and performance
using the technique of code generation, which transparently transforms high-level user-defined models into efficient compiled
code (Goodman, 2010; Stimberg et al., 2014; Blundell et al., 2018). This generated code is inserted within the flow of the
simulation script, which makes it compatible with the procedural approach. Code generation is used not only to run the models
but also to build them, and therefore also accelerates stages such as synapse creation. The code generation framework has been
designed to be extensible on several levels. On a general level, code generation targets can be added to generate code for other
architectures, e.g. graphical processing units, from the same simulation description. On a more specific level, new functionality
can be added by providing a small amount of code written in the target language, e.g. to connect the simulation to an input
device. Implementing this solution in a way that is transparent to the user requires solving important design and computational
problems, which we will describe in the following.

2 Design and Implementation

We will explain the key design decisions by starting from the requirements that motivated them. Note that from now on we
will use the term “Brian” as referring to its latest version, i.e. Brian 2, and only use “Brian 1” and “Brian 2” when discussing
differences between them.

Our first requirement is that users can easily define non-standard models, which may include models of neurons and synapses
but also of other aspects such as muscles and environment. This is made possible by an equation-oriented approach, i.e.,
models are described by mathematical equations. We first focus on the design at the mathematical level, and we illustrate with
two unconventional models: a model of intrinsic plasticity in the pyloric network of the crustacean stomatogastric ganglion
(Figure 1, Figure 2), and a closed-loop sensorimotor model of ocular movements (Figure 3).

Our second requirement is that users should be able to easily implement a complete computational experiment in Brian.
Models must interact with a general control flow, which may include stimulus generation and various operations. This is
made possible by taking a procedural approach to defining a complete computational experiment, rather than a declarative
model definition, allowing users to make full use of the generality of the Python language. In the section on the computational
experiment level, we demonstrate the interaction between a general control flow expressed in Python and the simulation run in a
case study that uses a bisection algorithm to determine a neuron’s firing threshold as a function of sodium channel density
(Figure 4, Figure 5).

2/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

(a)

LP PY

AB/PD

Slow cholinergic
Fast glutamatergic

(b)

50
25

initial adapted

50
25

time (in s)

75
50
25v

(in
 m

V)

0 2 4 0 2 4

(c)

60
50

initial adapted

60
40

time (in s)

60
40

V s
 (i

n
m

V)

0 2 0 2

Figure 1. Case study: a model of the pyloric network of the crustacean stomatogastric ganglion, inspired by several modeling
papers on this subject (Golowasch et al., 1999; Prinz et al., 2004; Prinz, 2006; O’Leary et al., 2014) (a) Schematic of the
modeled circuit (after Prinz et al., 2004). The pacemaker kernel is modeled by a single neuron representing both anterior burster
and pyloric dilator neurons (AB/PD, blue). There are two types of follower neurons, lateral pyloric (LP, orange), and pyloric
(PY, green). Neurons are connected via slow cholinergic (thick lines) and fast glutamatergic (thin lines) synapses. (b) Activity
of the simulated neurons. Membrane potential is plotted over time for the neurons in (a). The bottom row shows their spiking
activity in a raster plot, with spikes defined as excursions of the membrane potential over −20mV. (c) Activity of the simulated
neurons of a biologically detailed version of the circuit shown in (a), following Golowasch et al. (1999).

Our third requirement is computational efficiency. Often, computational neuroscience research is limited more by the
scientist’s time spent designing and implementing models, and analysing results, rather than the simulation time. However,
there are occasions where high computational efficiency is necessary. To achieve high performance while preserving maximum
flexibility, Brian generates code from user-defined equations and integrates it into the simulation flow.

Our final requirement is extensibility: no simulator can implement everything that every user might conceivably want,
but users shouldn’t have to discard the simulator entirely if they want to go beyond its built-in capabilities. We therefore
provide the possibility for users to extend the code either at a high or low level. We illustrate these last two requirements at the
implementation level with a case study of a model of pitch perception using real-time audio input (Figure 6, Figure 7).

In this section, we give a high level overview of the major decisions. A detailed analysis of the case studies and the features
of Brian they use can be found in Appendix A.

Mathematical level

Case study: Pyloric network

We start with a case study of a model of the pyloric network of the crustacean stomatogastric ganglion (Figure 1a), adapted and
simplified from earlier studies (Golowasch et al., 1999; Prinz et al., 2004; Prinz, 2006; O’Leary et al., 2014). This network has
a small number of well characterized neuron types – anterior burster (AB), pyloric dilator (PD), lateral pyloric (LP), and pyloric
(PY) neurons – and is known to generate a stereotypical triphasic motor pattern (Figure 1b–c). Following previous studies, we
lump AB and PD neurons into a single neuron type (AB/PD) and consider a circuit with one neuron of each type. The neurons
in this circuit have rebound and bursting properties. We model this using a variant of the model proposed by Hindmarsh & Rose
(1984), a three-variable model exhibiting such properties. We make this choice only for simplicity: the biophysical equations
originally used in Golowasch et al. (1999) can be used instead (see Figure Supplement 1).

Although this model is based on widely used neuron models, it has the unusual feature that some of the conductances are
regulated by activity as monitored by a calcium trace. One of the first design requirements of Brian, then, is that non-standard
aspects of models such as this should be as easy to implement in code as they are to describe in terms of their mathematical
equations. We briefly summarise how it applies to this model (see appendix A and Stimberg et al. (2014) for more detail). The
three-variable underlying neuron model is implemented by writing its differential equations directly in standard mathematical

3/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

1 from brian2 import *
2 defaultclock.dt = 0.01*ms;
3 Delta_T = 17.5*mV ; v_T = -40*mV ; tau = 2*ms ; tau_adapt = .02*second
4 tau_Ca = 150*ms ; tau_x = 2*second ; v_r = -68*mV ; tau_z = 5*second
5 a = 1/Delta_T**3 ; b = 3/Delta_T**2 ; c = 1.2*nA ; d = 2.5*nA/Delta_T**2
6 C = 60*pF ; S = 2*nA/Delta_T ; G = 28.5*nS
7 eqs = '''
8 dv/dt = (Delta_T*g*(-a*(v - v_T)**3 + b*(v - v_T)**2) + w - x - I_fast - I_slow)/C : volt
9 dw/dt = (c - d*(v - v_T)**2 - w)/tau : amp

10 dx/dt = (s*(v - v_r) - x)/tau_x : amp
11 s = S*(1 - tanh(z)) : siemens
12 g = G*(1 + tanh(z)) : siemens
13 dCa/dt = -Ca/tau_Ca : 1
14 dz/dt = tanh(Ca - Ca_target)/tau_z : 1
15 I_fast : amp
16 I_slow : amp
17 Ca_target : 1 (constant)
18 label : integer (constant)
19 '''
20 ABPD, LP, PY = 0, 1, 2
21 circuit = NeuronGroup(3, eqs, threshold='v>-20*mV', refractory='v>-20*mV', reset='Ca += 0.1',
22 method='rk2')
23 circuit.label = [ABPD, LP, PY]
24 circuit.v = v_r
25 circuit.w = '-5*nA*rand()'
26 circuit.z = 'rand()*0.2 - 0.1'
27 circuit.Ca_target = [0.048, 0.0384, 0.06]
28
29 s_fast = 0.2/mV; V_fast = -50*mV; E_syn = -75*mV
30 eqs_fast = '''
31 g_fast : siemens (constant)
32 I_fast_post = g_fast*(v_post - E_syn)/(1+exp(s_fast*(V_fast-v_pre))) : amp (summed)
33 '''
34 fast_synapses = Synapses(circuit, circuit, model=eqs_fast)
35 fast_synapses.connect('label_pre != label_post and not (label_pre == PY and label_post == ABPD)')
36 fast_synapses.g_fast['label_pre == ABPD and label_post == LP'] = 0.015*uS
37 fast_synapses.g_fast['label_pre == ABPD and label_post == PY'] = 0.005*uS
38 fast_synapses.g_fast['label_pre == LP and label_post == ABPD'] = 0.01*uS
39 fast_synapses.g_fast['label_pre == LP and label_post == PY'] = 0.02*uS
40 fast_synapses.g_fast['label_pre == PY and label_post == LP'] = 0.005*uS
41
42 s_slow = 1/mV; V_slow = -55*mV; k_1 = 1/ms
43 eqs_slow = '''
44 k_2 : 1/second (constant)
45 g_slow : siemens (constant)
46 I_slow_post = g_slow*m_slow*(v_post-E_syn) : amp (summed)
47 dm_slow/dt = k_1*(1-m_slow)/(1+exp(s_slow*(V_slow-v_pre))) - k_2*m_slow : 1 (clock-driven)
48 '''
49 slow_synapses = Synapses(circuit, circuit, model=eqs_slow, method='exact')
50 slow_synapses.connect('label_pre == ABPD and label_post != ABPD')
51 slow_synapses.g_slow['label_post == LP'] = 0.025*uS
52 slow_synapses.k_2['label_post == LP'] = 0.03/ms
53 slow_synapses.g_slow['label_post == PY'] = 0.015*uS
54 slow_synapses.k_2['label_post == PY'] = 0.008/ms
55
56 run(59.5*second)

Figure 2. Case study: a model of the pyloric network of the crustacean stomatogastric ganglion. Simulation code for the model
shown in Figure 1a, producing the circuit activity shown in Figure 1b.
Figure 2–Figure supplement 1. Simulation code for the more biologically detailed model of the circuit shown in Figure 1a, producing the
circuit activity shown in Figure 1c

4/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

form (Figure 2, l. 8–10). The calcium trace increases at each spike (l. 21; defined by a discrete event triggered after a spike,
reset='Ca += 0.1') and then decays (l. 13; again defined by a differential equation). A slow variable z tracks the difference
of this calcium trace to a neuron-type-specific target value (l. 14) which then regulates the conductances s and g (l. 11–12).

Not only the neuron model but also their connections are non-standard. Neurons are connected together by nonlinear graded
synapses of two different types, slow and fast (l. 29–54). These are unconventional synapses in that the synaptic current has a
graded dependence on the pre-synaptic action potential and a continuous effect rather than only being triggered by pre-synaptic
action potentials (Abbott & Marder, 1998). A key design requirement of Brian was to allow for the same expressivity for
synaptic models as for neuron models, which led us to a number of features that allow for a particularly flexible specification of
synapses in Brian. Firstly, we allow synapses to have dynamics defined by differential equations in precisely the same way
as neurons. In addition to the usual role of triggering instantaneous changes in response to discrete neuronal events such as
spikes, synapses can directly and continuously modify neuronal variables allowing for a very wide range of synapse types. To
illustrate this, for the slow synapse, we have a synaptic variable (m_slow) that evolves according to a differential equation
(l. 47) that depends on the pre-synaptic membrane potential (v_pre). The effect of this synapse is defined by setting the value
of a post-synaptic neuron current (I_slow) in the definition of the synapse model (l. 46; referred to there as I_slow_post).
The keyword (summed) in the equation specifies that the post-synaptic neuron variable is set using the summed value of the
expression across all the synapses connected to it. Note that this mechanism also allows Brian to be used to specify abstract
rate-based neuron models in addition to biophysical graded synapse models.

The model is defined not only by its dynamics, but also the values of parameters and the connectivity pattern of synapses. The
next design requirement of Brian was that these essential elements of specifying a model should be equally flexible and readable
as the dynamics. In this case, we have added a label variable to the model that can take values ABPD, LP or PY (l. 18, 20, 23) and
used this label to set up the initial values (l. 36–40, 51–54) and connectivity patterns (l. 35, 50). Human readability of scripts is a
key aspect of Brian code, and important for reproducibility (which we will come back to in the Discussion). We highlight line 35
to illustrate this. We wish to have synapses between all neurons of different types but not of the same type, except that we do not
wish to have synapses from PY neurons to AB/PD neurons. Having set up the labels, we can now express this connectivity pattern
with the expression 'label_pre!=label_post and not (label_pre==PY and label_post==ABPD)'. This example
illustrates one of the many possibilities offered by the equation-oriented approach to concisely express connectivity patterns
(for more details see Appendix A and Stimberg et al. (2014)).

Case study: Ocular model

The second example is a closed-loop sensorimotor model of ocular movements (used for illustration and not intended to be a
realistic description of the system), where the eye tracks an object (Figure 3a, b). Thus, in addition to neurons, the model also
describes the activity of ocular muscles and the dynamics of the stimulus. Each of the two antagonistic muscles is modelled
mechanically as an elastic spring with some friction, which moves the eye laterally. The next design requirement of Brian was
that it should be both possible and straightforward to define non-neuronal elements of a model, as these are just as essential to
the model as a whole, and the importance of connecting with these elements is often neglected in neural simulators. We will
come back to this requirement in various forms over the next few case studies, but here we emphasise how the mechanisms for
specifying arbitrary differential equations can be re-used for non-neuronal elements of a simulation.

The position of the eye follows a second order differential equation, with resting position x0, the difference in resting
positions of the two muscles (Figure 3c, l. 4–5). The stimulus is an object that moves in front of the eye according to a stochastic
process (l. 7–8). Muscles are controlled by two motoneurons (l. 11–13), for which each spike triggers a muscular “twitch”. This
corresponds to a transient change in the resting position x0 of the eye in either direction, which then decays back to zero (l. 6,
15).

Retinal neurons receive a visual input, modelled as a Gaussian function of the difference between the neuron’s preferred
position and the actual position of the object, measured in retinal coordinates (l. 21). Thus, the input to the neurons depends on

5/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

(a)
xeye xobject

retina

motor neurons

ocular muscles

eye

space

(b)

ne
ur

on
 in

de
x

0 2 4 6 8 10
time (s)

left

right
eye
object

(c)

1 from brian2 import *
2
3 alpha = (1/(50*ms))**2; beta = 1/(50*ms); tau_muscle = 20*ms; tau_object = 500*ms
4 eqs_eye = '''dx/dt = velocity : 1
5 dvelocity/dt = alpha*(x0-x)-beta*velocity : 1/second
6 dx0/dt = -x0/tau_muscle : 1
7 dx_object/dt = (noise - x_object)/tau_object: 1
8 dnoise/dt = -noise/tau_object + tau_object**-0.5*xi : 1'''
9 eye = NeuronGroup(1, model=eqs_eye, method='euler')

10
11 taum = 20*ms
12 motoneurons = NeuronGroup(2, model='dv/dt = -v/taum : 1', threshold='v>1', reset='v=0',
13 refractory=5*ms, method='exact')
14
15 motosynapses = Synapses(motoneurons, eye, model='w : 1', on_pre='x0_post += w')
16 motosynapses.connect() # connects all motoneurons to the eye
17 motosynapses.w = [-0.5, 0.5]
18
19 N = 20; width = 2./N; gain = 4.
20 eqs_retina = '''dv/dt = (I-(1+gs)*v)/taum : 1
21 I = gain*exp(-((x_object-x_eye-x_neuron)/width)**2) : 1
22 x_neuron : 1 (constant)
23 x_object : 1 (linked) # position of the object
24 x_eye : 1 (linked) # position of the eye
25 gs : 1 # total synaptic conductance'''
26 retina = NeuronGroup(N, model=eqs_retina, threshold='v>1', reset='v=0', method='exact')
27 retina.v = 'rand()'
28 retina.x_eye = linked_var(eye, 'x')
29 retina.x_object = linked_var(eye, 'x_object')
30 retina.x_neuron = '-1.0 + 2.0*i/(N-1)'
31
32 sensorimotor_synapses = Synapses(retina, motoneurons, model='w : 1 (constant)', on_pre='v_post += w')
33 sensorimotor_synapses.connect(j='int(x_neuron_pre > 0)')
34 # Strength scales with eccentricity:
35 sensorimotor_synapses.w = '20*abs(x_neuron_pre)/N_pre'
36
37 run(10*second)

Figure 3. Case Study: Smooth pursuit eye movements. (a) Schematics of the model. An object (green) moves along a line and
activates retinal neurons (bottom row; black) that are sensitive to the relative position of the object to the eye. Retinal neurons
activate two motor neurons with weights depending on the eccentricity of their preferred position in space. Motor neurons
activate the ocular muscles responsible for turning the eye. (b) Top: Simulated activity of the sensory neurons (black), and the
left (blue) and right (orange) motor neurons. Bottom: Position of the eye (black) and the stimulus (green). (c) Simulation code.

6/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

(a)

step = 25mV

v0 = 25mV

run with
v = v0

neuron
spiked?

decrease
v0 by step

increase
v0 by step

Replace step
by step/2

10 iterations
performed?

stop

yes
no

yes

no

(b)

0 2 4 6 8 10
iteration

0

20

40

20 40 60 80 100
gNA (mS/cm2)

0

20

40

th
re

sh
ol

d
es

tim
at

e
(m

V)

Figure 4. Case study: Using bisection to find a neuron’s voltage threshold. (a) Schematic of the bisection algorithm for finding
a neuron’s voltage threshold. The algorithm is applied in parallel for different values of sodium density. (b) Top: Refinement of
the voltage threshold estimate over iterations for three sodium densities (blue: 23.5mS cm−2, orange: 57.5mS cm−2, green:
91.5mS cm−2); Bottom: Voltage threshold estimation as a function of sodium density.

dynamical variables external to the neuron model. This is a further illustration of the design requirement above that we need to
include non-neuronal elements in our model specifications. In this case, to achieve this we link the variables in the eye model
with the variables in the retina model using the linked_var function (l. 4, 7, 23–24, 28–29).

Finally, we implement a simple feedback mechanism by having retinal neurons project onto the motoneuron controlling the
contralateral muscle (l. 33), with a strength proportional to their eccentricity (l. 35): thus, if the object appears on the edge
of the retina, the eye is strongly pulled towards the object; if the object appears in the center, muscles are not activated. This
simple mechanism allows the eye to follow the object (Figure 3b), and the code illustrates the previous design requirement that
the code should reflect the mathematical description of the model.

Computational experiment level

The mathematical model descriptions discussed in the previous section provide only a partial description of what we might
call a “computational experiment”. Let us consider the analogy to an electrophysiological experiment: for a full description,
we would not only state the model animal, the cell type and the preparation that was investigated, but also the stimulation and
analysis protocol. In the same way, a full description of a computational experiment requires not only a description of the
neuron and synapse models, but also information such as how input stimuli are generated, or what sequence of simulations is
run. Capturing all these potential protocols in a single declarative framework is impossible, but it can be easily expressed in a
programming language with control structures such as loops and conditionals. The Brian simulator allows the user to write
complete computational experimental protocols that include both the model description and the simulation protocol in a single,
readable Python script.

2.0.1 Case study: Threshold finding

In this case study, we want to determine the voltage firing threshold of a neuron (Figure 4), modelled with three conductances,
a passive leak conductance and voltage-dependent sodium and potassium conductances (Figure 5 l. 4–24).

To get an accurate estimate of the threshold, we use a bisection algorithm (Figure 4a): starting from an initial estimate
and with an initial step width (Figure 5, l. 30–31), we set the neuron’s membrane potential to the estimate (l. 35) and simulate
its dynamics for 20ms (l. 36). If the neuron spikes, i.e. if the estimate was above the neuron’s threshold, we decrease our

7/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

1 from brian2 import *
2 defaultclock.dt = 0.01*ms
3
4 El = 10.613*mV; ENa = 115*mV; EK = -12*mV
5 gl = 0.3*mS/cm**2; gK = 36*mS/cm**2; C = 1*uF/cm**2
6 gNa0 = 120*mS/cm**2; gNa_min = 15*mS/cm**2; gNa_max = 100*mS/cm**2
7
8 eqs = '''dv/dt = (gl*(El - v) + gNa*m**3*h*(ENa - v) + gK*n**4*(EK - v)) / C : volt
9 gNa : siemens/meter**2

10 dm/dt = alpham*(1 - m) - betam*m : 1
11 dn/dt = alphan*(1 - n) - betan*n : 1
12 dh/dt = alphah*(1 - h) - betah*h : 1
13 alpham = (0.1/mV)*(-v + 25*mV)/(exp((-v + 25*mV)/(10*mV)) - 1)/ms : Hz
14 betam = 4 * exp(-v/(18*mV))/ms : Hz
15 alphah = 0.07 * exp(-v/(20*mV))/ms : Hz
16 betah = 1/(exp((-v+30*mV) / (10*mV)) + 1)/ms : Hz
17 alphan = (0.01/mV) * (-v+10*mV) / (exp((-v+10*mV) / (10*mV)) - 1)/ms : Hz
18 betan = 0.125*exp(-v/(80*mV))/ms : Hz'''
19 neurons = NeuronGroup(100, eqs, method='exponential_euler', threshold='v>50*mV')
20 neurons.gNa = 'gNa_min + (gNa_max - gNa_min)*1.0*i/N'
21 neurons.v = 0*mV
22 neurons.m = '1/(1 + betam/alpham)'
23 neurons.n = '1/(1 + betan/alphan)'
24 neurons.h = '1/(1 + betah/alphah)'
25 S = SpikeMonitor(neurons)
26
27 store()
28
29 # We locate the threshold by bisection
30 v0 = 25*mV*ones(len(neurons))
31 step = 25*mV
32
33 for i in range(10):
34 restore()
35 neurons.v = v0
36 run(20*ms)
37 v0[S.count == 0] += step
38 v0[S.count > 0] -= step
39 step /= 2.0

Figure 5. Simulation code to find a neuron’s voltage threshold, implementing the bisection algorithm detailed in Figure 4a. The
code simulates 100 unconnected axon compartments with sodium densities between 15mS cm−2 and 100mS cm−2, following
the model of Hodgkin & Huxley (1952). Results from these simulations are shown in Figure 4b.

8/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

estimate (l. 38); if the neuron does not spike, we increase it (l. 37). We then halve the step width (l. 39) and perform the same
process again until we have performed a certain number of iterations (l. 33) and converged to a precise estimate (Figure 4b top).
Note that the order of operations is important here. When we modify the variable v in lines 37–38, we use the output of the
simulation run on line 36, and this determines the parameters for the next iteration. A purely declarative definition could not
represent this essential feature of the computational experiment.

For each iteration of this loop, we restore the network state (restore(); l. 34) to what it was at the beginning of the
simulation (store(); l. 27). This store()/restore() mechanism is a key part of Brian’s design for allowing computational
experiments to be easily and flexibly expressed in Python, as it gives a very effective way of representing common computational
experimental protocols. Examples that can easily be implemented with this mechanism include a training/testing/validation
cycle in a synaptic plasticity setting; repeating simulations with some aspect of the model changed but the rest held constant (e.g.
parameter sweeps, responses to different stimuli); or simply repeatedly running an identical stochastic simulation to evaluate its
statistical properties.

At the end of the script, by performing this estimation loop in parallel for many neurons, each having a different maximal
sodium conductance, we arrive at an estimate of the dependence of the voltage threshold on the sodium conductance (Figure 4b
bottom).

Implementation level

2.0.2 Case study: Real-time audio

The case studies so far were described by equations and algorithms on a level that is independent of the programming language
and hardware that will eventually perform the computation. However, in some cases this lower level cannot be ignored. To
demonstrate this, we will consider the example presented in Figure 6. We want to record an audio signal with a microphone and
feed this signal—in real-time—into a neural network performing a crude “pitch detection” based on the autocorrelation of the
signal (Licklider, 1962). This model first transforms the continuous stimulus into a sequence of spikes by feeding the stimulus
into an integrate-and-fire model with an adaptive threshold (Figure 7, l. 36–41). It then detects periodicity in this spike train by
feeding it into an array of coincidence detector neurons (Figure 6a; Figure 7, l. 44–47). Each of these neurons receives the
input spike train via two pathways with different delays (l. 49–51). This arrangement allows the network to detect periodicity in
the input stimulus; a periodic stimulus will most strongly excite the neuron where the difference in delays matches the stimulus’
period. Depending on the periodicity present in the stimulus, e.g. for tones of different pitch (Figure 6b middle), different
sub-populations of neurons respond (Figure 6b bottom).

To perform such a study, our simulator has to meet two new requirements: firstly, the simulation has to run fast enough to
be able to process the audio input in real-time. Secondly, we need a way to connect the running simulation to an audio signal
via low-level code.

The challenge is to make the computational efficiency requirement compatible with the requirement of flexibility. With
version 1 of Brian, wemade the choice to sacrifice computational efficiency, because we reasoned that frequently in computational
modelling, considerably more time was spent developing the model and writing the code than was spent on running it (often
weeks versus minutes or hours) (cf. De Schutter, 1992). However, there are obviously cases where simulation time is a bottleneck.
To increase computational efficiency without sacrificing flexibility, We decided to make code generation the fundamental mode
of operation for Brian 2 (Stimberg et al., 2014). Code generation was used previously in Brian 1 (Goodman, 2010), but only in
parts of the simulation. This technique is now being increasingly widely used in other simulators, see Blundell et al. (2018) for
a review.

In brief, from the high level abstract description of the model, we generate independent blocks of code (in C++ and other
languages) that, when run in sequence, carry out the simulation. To generate this code, we make use of a combination of
various techniques from symbolic mathematics and compilers that are available in third party Python libraries, as well as

9/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

(a)

n0 n1 n2 n3 n4

delay � delay � delay � delay �
(b)

am
pl

itu
de

Raw sound signal

102

6 × 101

2 × 102

3 × 102

4 × 102

Fr
eq

ue
nc

y
(H

z)

Spectrogram of sound signal

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

102

6 × 101

2 × 102

3 × 102

4 × 102

Pr
ef

er
re

d
Fr

eq
ue

nc
y

(H
z)

Spiking activity

Figure 6. Case study: Neural pitch processing with real-time input. (a) Model schematic: Audio input is converted into spikes
and fed into a population of coincidence-detection neurons via two pathways, one instantaneous, i.e. without any delay (top),
and one with incremental delays (bottom). Each neuron therefore receives the spikes resulting from the audio signal twice,
with different temporal shifts between the two. The inverse of this shift determines the preferred frequency of the neuron. (b)
Simulation results for a sample run of the simulation code in Figure 7. Top: Raw sound input (a rising sequence of tones – C,
E, G, C – played on a synthesized flute). Middle: Spectrogram of the sound input. Bottom: Raster plot of the spiking response
of receiving neurons (group neurons in the code), ordered by their preferred frequency.

10/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

1 from brian2 import *
2 import os
3 set_device('cpp_standalone')
4
5 sample_rate = 48*kHz; buffer_size = 128; defaultclock.dt = 1/sample_rate
6 max_delay = 20*ms; tau_ear = 1*ms; tau_th = 5*ms
7 min_freq = 50*Hz; max_freq = 1000*Hz; num_neurons = 300; tau = 1*ms; sigma = .1
8
9 @implementation('cpp','''

10 PaStream *_init_stream() {
11 PaStream* stream;
12 Pa_Initialize();
13 Pa_OpenDefaultStream(&stream, 1, 0, paFloat32, SAMPLE_RATE, BUFFER_SIZE, NULL, NULL);
14 Pa_StartStream(stream);
15 return stream;
16 }
17
18 float get_sample(const double t) {
19 static PaStream* stream = _init_stream();
20 static float buffer[BUFFER_SIZE];
21 static int next_sample = BUFFER_SIZE;
22
23 if (next_sample >= BUFFER_SIZE)
24 {
25 Pa_ReadStream(stream, buffer, BUFFER_SIZE);
26 next_sample = 0;
27 }
28 return buffer[next_sample++];
29 }''', libraries=['portaudio'], headers=['<portaudio.h>'],
30 define_macros=[('BUFFER_SIZE', buffer_size),
31 ('SAMPLE_RATE', sample_rate)])
32 @check_units(t=second, result=1)
33 def get_sample(t):
34 raise NotImplementedError('Use a C++-based code generation target.')
35
36 eqs_ear = '''dx/dt = (sound - x)/tau_ear: 1 (unless refractory)
37 dth/dt = (0.1*x - th)/tau_th : 1
38 sound = clip(get_sample(t), 0, inf) : 1 (constant over dt)'''
39 receptors = NeuronGroup(1, eqs_ear, threshold='x>th',
40 reset='x=0; th = th*2.5 + 0.01',
41 refractory=2*ms, method='exact')
42 receptors.th = 1
43
44 eqs_neurons = '''dv/dt = -v/tau+sigma*(2./tau)**.5*xi : 1
45 freq : Hz (constant)'''
46 neurons = NeuronGroup(num_neurons, eqs_neurons, threshold='v>1', reset='v=0', method='euler')
47 neurons.freq = 'exp(log(min_freq/Hz)+(i*1.0/(num_neurons-1))*log(max_freq/min_freq))*Hz'
48
49 synapses = Synapses(receptors, neurons, on_pre='v += 0.5', multisynaptic_index='k')
50 synapses.connect(n=2) # one synapse without delay; one with delay
51 synapses.delay['k == 1'] = '1/freq_post'
52
53 run(10*second)

Figure 7. Simulation code for the model shown in Figure 6a. The sound input is acquired in real time from a microphone, using
user-provided low-level code written in C that makes use of an Open Source library for audio input (Bencina et al., 1999–).

11/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

102 103 104 105

Number of neurons

10 1

100

101

102

Ru
nt

im
e

vs
. r

ea
lti

m
e

runtime: Python
runtime: C++
standalone: C++

Figure 8. Benchmark of the simulation time for the CUBA network (Vogels & Abbott, 2005; Brette et al., 2007) on a Intel®
Xeon(R) CPU E5-1630. This benchmark measures the simulation time relative to the simulated biological time, not taking
account any preparation time for compilation, synapse creation etc. The simulation has been executed in runtime mode
generating either Python (blue) or C++ (orange) code, or in the standalone mode for C++ code (green). Note that this example
has been adapted to use a connection probability that scales with the size of the network. Every neuron targets on average 80
other neurons.

some domain specific optimisations to further improve performance (see Appendix A for more details). These “code objects”
implement fundamental operations such as numerically integrating a group of differential equations from time t to time t + Δt,
or propagating the effect of spikes via synapses. We can then run the complete simulation in one of two modes.

In runtime mode, the overall simulation is controlled by Python code, which calls out to the compiled code objects to do the
heavy lifting. This method of running the simulation is the default, because despite some computational overhead associated
with repeatedly switching from Python to another language, it allows for a great deal of flexibility in how the simulation is run:
whenever Brian’s model description formalism is not expressive enough for a task at hand, the researcher can interleave the
execution of generated code with a hand-written function that can potentially access and modify any aspect of the model. This
facility is widely used in computational models using Brian.

In standalone mode, additional low-level code is generated that controls the overall simulation, meaning that during the
main run of the simulation it is not necessary to switch back to Python. This gives an improvement to performance, but at the
cost of reduced flexibility since we cannot translate arbitrary Python code into low level code. The standalone mode can also be
used to generate code to run on a platform where Python is not available or not practical (such as a GPU; Stimberg et al. 2018).

The choice of which mode to use is left to the user, and will depend on details of the simulation and how much additional
flexibility is required. In Figure 8 we see a fairly common pattern in performance, that in small networks the standalone mode
can be dramatically faster, with diminishing returns at larger network sizes where the fixed cost Python overhead is smaller
relative to the total time.

The second issue we needed to address for this case study was how to connect the running simulation to an audio signal via
low-level code. The general issue here is how to extend the functionality of Brian. While Brian’s syntax allows a researcher to
define a wide range of models within its general framework, it inevitably will not be sufficient for all computational research
projects. Taking this into account, Brian has been built with extensibility in mind. Importantly, it should be possible to extend

12/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

Brian’s functionality and still include the full description of the model in the main Python script, i.e. without requiring the user
to edit the source code of the simulator itself or to add and compile separate modules. As discussed previously, the runtime mode
offers researchers the possibility to combine their simulation code with arbitrary Python code. However, in some cases such as
a model that requires real-time access to hardware (Figure 6), it may be necessary to add functionality at the target-language
level itself. To this end, simulations can use a general extension mechanism: model code can refer not only to predefined
mathematical functions, but also to functions defined in the target language by the user (Figure 7, l. 9–34). This can refer to
code external to Brian, e.g. to third-party libraries (as is necessary in this case to get access to the microphone). In order to
establish the link, Brian allows the user to specify additional libraries , header files or macro definitions (l. 29–31) that will
be taken into account during the compilation of the code. With this mechanism the Brian simulator offers researchers the
possibility to add functionality to their model at the lowest possible level, without abandoning the use of a convenient simulator
and forcing them to write their model “from scratch” in a low-level language. We think it is important to acknowledge that a
simulator will never have every possible feature to cover all possible models, and we therefore provide researchers with the
means to adapt the simulator’s behaviour to their needs at every level of the simulation.

3 Discussion

Brian 2 was designed to overcome some of the major challenges we saw for neural simulators (including Brian 1). Notably:
the flexibility/performance dichotomy (including the use of non-standard computational hardware such as GPUs that are
increasingly important in computational science); and the need to integrate complex computational experiments that go beyond
their neuronal and network components. As a result of this work, Brian can address a wide range of modelling problems faced
by neuroscientists, as well as giving more robust and reproducible results and therefore contributing to a solution to the crisis of
reproducibility in computational science. We now discuss these challenges in more detail.

Brian’s code generation framework allows for a solution to the dichotomy between flexibility and performance. Flexibility
is essential to be useful for fundamental research in neuroscience, where basic concepts and models are still being actively
investigated and have not settled to the point where they can be standardised. Performance is increasingly important, for example
as researchers begin to model larger scale experimental data such as that provided by the Neuropixels probe (Jun et al., 2017),
or when doing comprehensive parameter sweeps to establish robustness of models (O’Leary et al., 2015). The focus of Brian 1
was on flexibility, with performance a secondary concern. Brian 2 improves on Brian 1 both in terms of flexibility (particularly
the new, very general synapse model) and performance, where it performs similarly to simulators written in low-level languages
which do not have the same flexibility (Tikidji-Hamburyan et al., 2017).

The modular structure of the code generation framework is also designed to be proof against future trends in both high
performance computing and computational neuroscience research. Increasingly, high performance scientific computing relies
on the use of heterogeneous computing architectures such as GPUs, FPGAs, and even more specialised hardware (Fidjeland et
al., 2009; Richert et al., 2011; Brette & Goodman, 2012; Moore et al., 2012; Furber et al., 2014; Cheung et al., 2016), as well as
techniques such as approximate computing (Mittal, 2016). In addition to the existing standalone mode, it is possible to write
plugins for Brian to generate code for these platforms and techniques without modifying the core code, and there are several
ongoing projects to do so. These include Brian2GeNN (Stimberg et al., 2018) which uses the GPU-enhanced Neural Network
simulator (GeNN; Yavuz et al. 2016) to accelerate simulations in some cases by tens to hundreds of times, and Brian2CUDA
(https://github.com/brian-team/brian2cuda). In addition to basic research, spiking neural networks may increasingly
be used in applications thanks to their low power consumption (Merolla et al., 2014), and the standalone mode of Brian is
designed to facilitate the process of converting research code into production code.

A neural computational model is more than just its components (neurons, synapses, etc.) and network structure. In designing
Brian, we put a strong emphasis on the complete computational experiment, including specification of the stimulus, interaction
with non-neuronal components, etc. This is important both to minimise the time and expertise required to develop computational

13/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://github.com/brian-team/brian2cuda
https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

models, but also to reduce the chance of errors (see below). Part of our approach here was to ensure that features in Brian are as
general and flexible as possible. For example the equations system intended for defining neuron models can easily be repurposed
for defining non-neuronal elements of a computational experiment (Figure 3). However, ultimately we recognise that any
way of specifying all elements of a computational experiment would be at least as complex as a fully featured programming
language. We therefore simply allow users to define these aspects in Python, the same language used for defining the neural
components, as this is already highly capable and readable. We made great efforts to ensure that the detailed work in designing
and implementing new features should not interfere with the goal that the user script should be a readable description of the
complete computational experiment, as we consider this to be an essential element of what makes a computational model
valuable.

Finally, a major issue in computational science generally, and computational neuroscience in particular, is the crisis of
reproducibility of computational models (LeVeque et al., 2012; Eglen et al., 2017; Podlaski et al., 2017; Manninen et al., 2018).
A frequent complaint of students and researchers at all levels, is that when they try to implement published models using their
own code, they get different results. A fascinating and detailed description of one such attempt is given in Pauli et al. (2018).
These sorts of problems led to the creation of the ReScience journal, dedicated to publishing replications of previous models or
describing when those replication attempts failed (Rougier et al., 2017). A number of issues contribute to this problem, and we
designed Brian with these in mind. So, for example, users are required to write equations that are dimensionally consistent, a
common source of problems. In addition, by requiring users to write equations explicitly rather than using pre-defined neuron
types such as “integrate-and-fire” and “Hodgkin-Huxley”, as in other simulators, we reduce the chance that the implementation
expected by the user is different to the one provided by the simulator (see discussion below). Perhaps more importantly, by
making user-written code simpler and more readable, we increase the chance that the implementation faithfully represents
the description of a model. Allowing for more flexibility and targeting the complete computational experiment increases the
chances that the entire simulation script can be compactly represented in a single file or programming language, further reducing
the chances of such errors. Brian’s approach to defining models leads to particularly concise code (Tikidji-Hamburyan et al.,
2017), as well as code whose syntax matches closely natural language descriptions of models in papers. This is important not
only because it saves scientists time if they have to write less code, but also because such code is easier to verify and reproduce.
It is difficult for anyone, the authors of a model included, to verify that thousands of lines of model simulation code match the
description they have given of it.

3.1 Comparison to other approaches

We have described some of the key design choices we made for version 2 of the Brian simulator. These represent a particular
balance between the conflicting demands of flexibility, ease-of-use, features and performance, and we now compare the results
of these choices to other available options for simulations.

There are two main differences of approach between Brian and other simulators. Firstly, we require model definitions to be
explicit. Users are required to give the full set of equations and parameters that define the model, rather than using “standard”
model names and default parameters (cf. Brette, 2012). This approach requires a slightly higher initial investment of effort
from the user, but ensures that users know precisely what their model is doing and reduces the risk of a difference between the
implementation of the model and the description of it in a paper (see discussion above).

The second main difference is that we consider the complete computational experiment to be fundamental, and so everything
is tightly integrated to the extent that an entire model can be specified in a single, readable file, including equations, protocols,
data analysis, etc. In Neuron and NEST, model definitions are separate from the computational experiment script, and indeed
written in an entirely different language (see below). This adds complexity and increases the chance of errors. In NeuroML and
NineML, there is no way of specifying the computational experiment.

A consequence of the requirement to make model definitions explicit, and an important feature for doing novel research, is
that the simulator must support arbitrary user-specified equations. This is available in Neuron via the NMODL description

14/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

format (Hines & Carnevale, 2000), and in a limited form in NEST using NESTML (Gewaltig & Diesmann, 2007). In principle,
NeuroML and NineML now both include the option for specifying arbitrary equations, although the level of simulator support for
these aspects of the standards is unclear. Although some level of support for arbitrary model equations is now fairly widespread
in simulators, Brian makes this a fundamental, core concept that is applied universally. One aspect of this approach that is
missing from other simulators is the specification of additional defining network features, such as synaptic connectivity patterns,
in an equally flexible, equation-oriented way. Neuron is focused on single neuron modeling rather than networks, and only
supports directly setting the connectivity synapse-by-synapse. NEST, PyNN (Davison et al., 2008), NeuroML, and NineML
support this too, and also include some predefined general connectivity patterns such as one-to-one and all-to-all. NEST further
includes a system for specifying connectivity via a “connection set algebra” (Djurfeldt, 2012) allowing for combinations of a
few core types of connectivity. However, none have yet followed Brian in allowing the user to specify connectivity patterns via
equations, as is commonly done in research papers.

Running compiled code for arbitrary equations means that code generation must be used. This requirement leads to a
problem: a simulator that makes use of a fixed set of models can provide hand-optimised implementations of them, whereas a
fully flexible simulator must rely on automated techniques. Brian’s automatic optimisations are, however, very competitive, and
indeed faster than the hand-optimised code of NEST in some cases (Tikidji-Hamburyan et al., 2017). In particular, version 2 of
Brian introduces the standalone mode in which the simulator converts the Python model definition into a complete C++ project,
and then compiles and runs this for maximum computational efficiency (this mode was not tested in Tikidji-Hamburyan et
al. 2017). This standalone code can then be used and further developed entirely independently of Python and Brian, and we
include mechanisms to make it simple to extend the generated project to use other code, as in Figure 6, or to embed Brian’s
code in another project (e.g. as a robot controller). Apart from Brian, this standalone approach has so far only been taken by
GeNN and (in an undocumented way) by jLEMS, the former specifically for GPU and the latter intended primarily as a proof
of concept for NeuroML. Neither includes a mechanism for easily extending and embedding this code as Brian does.

The main limitation of Brian compared to other simulators is the lack of support for supercomputers and specialised, high
performance clusters, which puts a limit on the maximum feasible size of a simulation. However, the majority of neuroscientists
do not have direct access to such equipment, and few computational neuroscience studies require such large scale simulations
(tens of millions of neurons). More common is to run smaller networks but multiple times over a large range of different
parameters. This “embarrassingly parallel” case can be easily and straightforwardly carried out with Brian at any scale, from
individual machines to cloud computing platforms or the non-specialised clusters routinely available as part of university
computing services.

3.2 Development and availability

Brian is released under the free and open CeCILL 2 license. Development takes place in a public code repository at https://
github.com/brian-team/brian2. All examples in this article have been simulated with Brian 2 version 2.2.2.1 (Stimberg,
Goodman, & Brette, 2019). Brian has a permanent core team of three developers (the authors of this paper), and regularly
receives substantial contributions from a number of students, postdocs and users (see Acknowledgements). Code is continuously
and automatically checked against a comprehensive test suite run on all platforms, with almost complete coverage. Extensive
documentation, including installation instructions, is hosted at http://brian2.readthedocs.org. Brian is available for
Python 2 and 3, and for the operating systems Windows, OS X and Linux; our download statistics show that all these versions
are in active use. More information can be found at http://briansimulator.org/.

4 Acknowledgements

We thank the following contributors for having made contributions, big or small, to the Brian 2 code or documentation:
Moritz Augustin, Victor Benichoux, Werner Beroux, Edward Betts, Daniel Bliss, Jacopo Bono, Paul Brodersen, Romain

15/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://github.com/brian-team/brian2
https://github.com/brian-team/brian2
http://brian2.readthedocs.org
http://briansimulator.org/
https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

Cazé, Meng Dong, Guillaume Dumas, Adrien F. Vincent, Charlee Fletterman, Dominik Krzemiński, Kapil Kumar, Thomas
McColgan, Matthieu Recugnat, Dylan Richard, Cyrille Rossant, Jan-Hendrik Schleimer, Alex Seeholzer, Martino Sorbaro,
Daan Sprenkels, Teo Stocco, Mihir Vaidya, Konrad Wartke, Pierre Yger, Friedemann Zenke. Three of these contributors (CF,
DK, KK) contributed while participating in Google’s Summer of Code program.

This work was supported by Agence Nationale de la Recherche (Axode ANR-14-CE13-0003).

References

Abbott, L. F., & Marder, E. (1998). Modeling small networks. In C. Koch & I. Segev (Eds.),Methods in Neuronal Modeling
(pp. 361–410). MIT Press, Cambridge, MA, USA.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D., & Smith, K. (2011, March/April). Cython: The best of both
worlds. Computing in Science Engineering, 13(2), 31–39. doi: 10.1109/MCSE.2010.118

Bencina, R., Burk, P., et al. (1999–). PortAudio: Portable real-time audio library. http://www.portaudio.com/.
Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., . . . Eppler, J. M. (2018). Code Generation
in Computational Neuroscience: A Review of Tools and Techniques. Frontiers in Neuroinformatics. doi: 10.3389/
fninf.2018.00068

Bower, J. M., & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural models with the GEneral NEural
SImulation System (2nd ed.). Springer-Verlag.

Brette, R. (2012). On the design of script languages for neural simulation. Network, 23(4), 150–156. doi: 10.3109/
0954898X.2012.716902

Brette, R., & Goodman, D. (2012). Simulating spiking neural networks on GPU. Network: Computation in Neural Systems,
23(4). doi: 10.3109/0954898X.2012.730170

Brette, R., & Goodman, D. F. M. (2011, June). Vectorized algorithms for spiking neural network simulation. Neural Comput,
23(6), 1503–1535. doi: 10.1162/NECO_a_00123

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., . . . Destexhe, A. (2007, December). Simulation
of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci, 23(3), 349–398. doi: 10.1007/
s10827-007-0038-6

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., & Silver, R. A. (2014, September). LEMS: a
language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2.
Front Neuroinform, 8. doi: 10.3389/fninf.2014.00079

Carnevale, N. T., & Hines, M. L. (2006). The NEURON Book. Cambridge University Press.
Cheung, K., Schultz, S. R., & Luk, W. (2016). NeuroFlow: A general purpose spiking neural network simulation platform
using customizable processors. Frontiers in Neuroscience, 9(JAN). doi: 10.3389/fnins.2015.00516

Crook, S. M., Bednar, J. A., Berger, S., Cannon, R., Davison, A. P., Djurfeldt, M., . . . van Albada, S. (2012). Creating,
documenting and sharing network models. Network: Computation in Neural Systems, 23(4), 131–149. doi: 10.3109/
0954898X.2012.722743

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., . . . Yger, P. (2008). PyNN: A Common Interface
for Neuronal Network Simulators. Frontiers in Neuroinformatics, 2, 11. doi: 10.3389/neuro.11.011.2008

16/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

http://www.portaudio.com/
https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

De Schutter, E. (1992, November). A consumer guide to neuronal modeling software. Trends in Neurosciences, 15(11),
462–464. doi: 10.1016/0166-2236(92)90011-V

Djurfeldt, M. (2012). The Connection-set Algebra—A Novel Formalism for the Representation of Connectivity Structure in
Neuronal Network Models. Neuroinformatics, 10(3), 287–304. doi: 10.1007/s12021-012-9146-1

Eglen, S. J., Marwick, B., Halchenko, Y. O., Hanke, M., Sufi, S., Gleeson, P., . . . Poline, J.-B. (2017). Toward standard
practices for sharing computer code and programs in neuroscience. Nature Neuroscience. doi: 10.1038/nn.4550

Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., & Luk, W. (2009, jul). NeMo: A platform for neural modelling of spiking
neurons using GPUs. In Proceedings of the international conference on application-specific systems, architectures and
processors (pp. 137–144). doi: 10.1109/ASAP.2009.24

Furber, S. B., Galluppi, F., Temple, S., & Plana, L. A. (2014). The SpiNNaker project. Proceedings of the IEEE, 102(5),
652–665. doi: 10.1109/JPROC.2014.2304638

Gewaltig, M.-O., & Diesmann, M. (2007). Nest (neural simulation tool). Scholarpedia, 2(4), 1430.
Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M., . . . Silver, R. A. (2010). NeuroML:
A language for describing data driven models of neurons and networks with a high degree of biological detail. PLOS
Computational Biology, 6(6), 1–19. doi: 10.1371/journal.pcbi.1000815

Golowasch, J., Casey, M., Abbott, L. F., & Marder, E. (1999). Network Stability from Activity-Dependent Regulation of
Neuronal Conductances. Neural Computation, 11(5), 1079–1096. doi: 10.1162/089976699300016359

Goodman, D. F. M. (2010, October). Code generation: A strategy for neural network simulators. Neuroinform, 8(3), 183–196.
doi: 10.1007/s12021-010-9082-x

Goodman, D. F. M., & Brette, R. (2009). The Brian simulator. Front Neurosci, 3. doi: 10.3389/neuro.01.026.2009
Hettinger, R. (2002). PEP 289 – Generator Expressions. Retrieved 2017-09-06, from https://www.python.org/dev/

peps/pep-0289/

Hindmarsh, J. L., & Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations.
Proceedings of the Royal Society of London. Series B, Biological Sciences, 221(1222), 87–102.

Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Comput.,
12(5), 995–1007. doi: 10.1162/089976600300015475

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and
excitation in nerve. J Physiol, 117(4), 500–544.

Jones, E., Oliphant, T., Peterson, P., et al. (2001–). SciPy: Open source scientific tools for Python. Retrieved from http://

www.scipy.org/

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., . . . Harris, T. D. (2017, nov). Fully integrated
silicon probes for high-density recording of neural activity. Nature, 551(7679), 232–236. doi: 10.1038/nature24636

LeVeque, R. J., Mitchell, I. M., & Stodden, V. (2012, jul). Reproducible research for scientific computing: Tools and strategies
for changing the culture. Computing in Science & Engineering, 14(4), 13–17. doi: 10.1109/MCSE.2012.38

Licklider, J. C. R. (1962). Periodicity pitch and related auditory process models. International Audiology, 1(1), 11–34.

17/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://www.python.org/dev/peps/pep-0289/
https://www.python.org/dev/peps/pep-0289/
http://www.scipy.org/
http://www.scipy.org/
https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

Manninen, T., Aćimović, J., Havela, R., Teppola, H., & Linne, M.-L. (2018). Challenges in Reproducibility, Replicability,
and Comparability of Computational Models and Tools for Neuronal and Glial Networks, Cells, and Subcellular Structures.
Frontiers in neuroinformatics, 20. doi: 10.3389/fninf.2018.00020

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., . . . Modha, D. S. (2014). A million
spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345(6197), 668–673. doi:
10.1126/science.1254642

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., . . . Scopatz, A. (2017, January). SymPy:
symbolic computing in Python. PeerJ Comput. Sci., 3, e103. doi: 10.7717/peerj-cs.103

Mittal, S. (2016). A Survey of Techniques for Approximate Computing. ACM Computing Surveys, 48(4), 1–33. doi:
10.1145/2893356

Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, A. T., & Mujumdar, A. (2012). Bluehive - A field-programable custom
computing machine for extreme-scale real-time neural network simulation. In Proceedings of the 2012 ieee 20th international
symposium on field-programmable custom computing machines, fccm 2012 (pp. 133–140). doi: 10.1109/FCCM.2012.32

O’Leary, T., Sutton, A. C., & Marder, E. (2015). Computational models in the age of large datasets. Current Opinion in
Neurobiology, 32, 87–94. doi: 10.1016/j.conb.2015.01.006

O’Leary, T., Williams, A. H., Franci, A., &Marder, E. (2014). Cell Types, NetworkHomeostasis, and Pathological Compensation
from a Biologically Plausible Ion Channel Expression Model. Neuron, 82(4), 809–821. doi: 10.1016/j.neuron.2014.04.002

Pauli, R., Weidel, P., Kunkel, S., & Morrison, A. (2018). Reproducing Polychronization: A Guide to Maximizing the
Reproducibility of Spiking Network Models. Frontiers in neuroinformatics, 12, 46. doi: 10.3389/fninf.2018.00046

Platkiewicz, J., & Brette, R. (2011, May). Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and
Synaptic Integration. PLoS Comput Biol, 7(5), e1001129. doi: 10.1371/journal.pcbi.1001129

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Morrison, A., & Rumpe, B. (2016). Nestml: a modeling language for
spiking neurons. In A. Oberweis & R. Reussner (Eds.), Modellierung 2016 (pp. 93–108). Bonn: Gesellschaft für Informatik
e.V.

Podlaski, W. F., Seeholzer, A., Groschner, L. N., Miesenböck, G., Ranjan, R., & Vogels, T. P. (2017, mar). Mapping the
function of neuronal ion channels in model and experiment. eLife, 6, e22152. doi: 10.7554/eLife.22152

Prinz, A. A. (2006). Insights from models of rhythmic motor systems. Current Opinion in Neurobiology, 16(6), 615–620. doi:
10.1016/j.conb.2006.10.001

Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nat Neurosci, 7(12),
1345–1352. doi: 10.1038/nn1352

Raikov, I., Cannon, R., Clewley, R., Cornelis, H., Davison, A., Schutter, E. D., . . . Szatmary, B. (2011, July). NineML:
the network interchange for neuroscience modeling language. BMC Neuroscience, 12(Suppl 1), P330. doi: 10.1186/
1471-2202-12-S1-P330

Richert, M., Nageswaran, J. M., Dutt, N., & Krichmar, J. L. (2011). An Efficient Simulation Environment for Modeling
Large-Scale Cortical Processing. Frontiers in Neuroinformatics, 5, 19. doi: 10.3389/fninf.2011.00019

Rougier, N. P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L. A., Benureau, F. C., . . . Zito, T. (2017, dec). Sustainable
computational science: the ReScience initiative. PeerJ Computer Science, 3, e142. doi: 10.7717/peerj-cs.142

18/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

Rudolph, M., & Destexhe, A. (2007, June). How much can we trust neural simulation strategies? Neurocomputing, 70(10-12),
1966–1969. doi: 10.1016/j.neucom.2006.10.138

Stimberg, M., Goodman, D. F., & Brette, R. (2019, March). Brian 2 (version 2.2.2.1). doi: 10.5281/zenodo.2619969
Stimberg, M., Goodman, D. F., Brette, R., & De Pittà, M. (2019). Modeling neuron–glia interactions with the brian 2 simulator.
In M. De Pittà & H. Berry (Eds.), Computational glioscience (pp. 471–505). Springer.

Stimberg, M., Goodman, D. F. M., Benichoux, V., & Brette, R. (2014). Equation-oriented specification of neural models for
simulations. Front Neuroinform, 8. doi: 10.3389/fninf.2014.00006

Stimberg, M., Goodman, D. F. M., & Nowotny, T. (2018, oct). Brian2GeNN: a system for accelerating a large variety of
spiking neural networks with graphics hardware. bioRxiv, 448050. Retrieved from https://www.biorxiv.org/content/

early/2018/10/20/448050 doi: 10.1101/448050
Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z., & El-Ghazawi, T. A. (2017, jul). Software for Brain Network Simulations:
A Comparative Study. Frontiers in Neuroinformatics, 11, 46. doi: 10.3389/fninf.2017.00046

Vogels, T. P., & Abbott, L. F. (2005, November). Signal Propagation and Logic Gating in Networks of Integrate-and-Fire
Neurons. The Journal of Neuroscience, 25(46), 10786 –10795. doi: 10.1523/JNEUROSCI.3508-05.2005

Yavuz, E., Turner, J., & Nowotny, T. (2016). GeNN: A code generation framework for accelerated brain simulations. Sci. Rep.,
6, 18854. doi: 10.1038/srep18854

A Design details

In this appendix, we provide further details about technical design decisions behind the Brian simulator. We also more
exhaustively comment on the simulation code of the four case studies. Note that the example code provided as jupyter notebooks
(https://github.com/brian-team/brian2_paper_examples) has extensive additional annotations as well.

Mathematical level

Physical units

Neural models are models of a physical system, and therefore variables have physical dimensions such as voltage or time.
Accordingly, the Brian simulator requires quantities provided by the user, such as parameters or initial values of dynamical
variables, to be specified in consistent physical units such asmV or s. This is in contrast to the approach of most other simulators,
which simply define expected units for all model components, e.g. units of mV for the membrane potential. This is a common
source of error because conventions are not always obvious and can be inconsistent. For example, while membrane surface area
is often stated in units of µm2, channel densities are often given in mS cm−2. To remove this potential source of error, the Brian
simulator enforces explicit use of units. It automatically takes care of conversions—multiplying a resistance (dimensions of Ω)
with a current (dimensions of A) will result in a voltage (dimensions of V)—and raises an error when physical dimensions are
incompatible, e.g. when adding a current to a resistance. Unit consistency is also checked within textual model descriptions (e.g.
Figure 2, l. 8–18) and variable assignments (e.g. l. 23–27). To make this possible, a dimension in SI units has to be assigned to
each dimensional model variable in the model description (l. 8–18).

19/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://www.biorxiv.org/content/early/2018/10/20/448050
https://www.biorxiv.org/content/early/2018/10/20/448050
https://github.com/brian-team/brian2_paper_examples
https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

Model dynamics

Neuron and synapse models are generally hybrid systems consisting of continuous dynamics described by differential equations
and discrete events (Brette et al., 2007).

In the Brian simulator, differential equations are specified in strings using mathematical notation (Figure 2, l. 8–18).
Differential equations can also be stochastic by using the symbol xi representing the noise term �(t) (Figure 3c, l. 8). The
numerical integration method can be specified explicitly, e.g. the pyloric circuit model chooses a second-order Runge-Kutta
method (Figure 2, l. 22); without specification, an appropriate method is automatically chosen and reported. To this end, the
user-provided equations are analysed symbolically using the Python package sympy (Meurer et al., 2017), and transformed into
a sequence of operations to advance the system’s state by a single time step (for more details, see Stimberg et al., 2014).

This approach applies both to neuron models and to synaptic models. In many models, synaptic conductances do not need
to be calculated for each synapse individually, instead they can be lumped into a single post-synaptic variable that is part of the
neuronal model description. In contrast, non-linear synaptic dynamics as in the pyloric network example need to be calculated
for each synapse individually. Using the same formalism as for neurons, the synaptic model equations can describe dynamics
with differential equations (e.g. Figure 2, l. 31–32/44–47). Post-synaptic conductances or currents can then be calculated
individually and summed up for each post-synaptic neuron as indicated by the (summed) annotation (l. 32 and 46).

Neuron- or synapse-specific values which are not updated by differential equations are also included in the string description.
This can be used to define values that are updated by external mechanisms, e.g. the synaptic currents in each neuron (l. 15–16)
are updated by the respective synapses (l. 32 and l. 46). The same mechanism can also be used for neuron-specific parameters
such as the calcium target value (l. 17), or the label identifying the neuron type (l. 18). For optimisation, the flag(constant)
can be added to indicate that the value will not change during a simulation.

Neural simulations typically refer to two types of discrete events: production of a spike, and reception of a spike. A spike is
produced by a neuron when a certain condition on its variables is met. A typical case is the integrate-and-fire model, where
a spike is produced when the potential reaches a threshold of a fixed value. But there are other cases when the condition is
more complex, for example when the threshold is adaptive (Platkiewicz & Brette, 2011). To support conditions of all kind,
Brian expects the user to define a mathematical expression as the threshold. In the pyloric network example, a spike is
triggered whenever v > −20mV (Figure 2, l. 21). No explicit resetting takes place, since the model dynamics describe the
membrane potential trajectory during an action potential. For a simpler integrate-and-fire model as the one used in the example
modelling eye movements, the membrane potential is reset to a fixed value after the threshold crossing (Figure 3, l. 12). Such
spike-triggered actions are most generally specified by providing one or more assignments and operations (reset) that should
take place if the threshold condition is fulfilled; in the pyloric network example, this is mechanism is used to update the calcium
trace (Figure 2, l. 21).

Once a spike is produced, it may affect variables of synapses and post-synaptic neurons (possibly after a delay). Again, this
is specified generally as a series of assignments and operations. In the pyloric circuit example, this does not apply because the
synaptic effect is continuous and not triggered by discrete spikes. In the eye movement example (Figure 3) however, each spike
has an instantaneous effect. For example, when a motoneuron spikes, the eye resting position is increased or decreased by a
fixed amount. This is specified by on_pre='x0_post += w' (l. 15), where on_pre is a keyword for stating what operations
should be executed when a pre-synaptic spike is received. These operations can refer to both local synaptic variables (here
w, defined in the synaptic model) and variables of the pre- and postsynaptic neuron (here x0, a variable of the post-synaptic
neuron). In the same way, the on_post keyword can be used to specify operations executed when a postsynaptic spike is
received, which allows defining various types of spike-timing-dependent models.

This general definition scheme applies to neurons and synapses, but as the eye movement example illustrates (Figure 3), it
can also be used to define dynamical models of muscles and the environment. It also naturally extends to the modelling of
non-neuronal elements of the brain such as glial cells (Stimberg, Goodman, Brette, & De Pittà, 2019).

20/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

Links between model components

The equations defining the dynamics of variables can only refer to other variables within the same model component, e.g.
within the same group of neurons or synapses. Connections to other components have to be explicitly modelled using synaptic
connections as explained above. However, we may sometimes also need to directly refer to the state of variables in other
model component. For example, in the eye movement model (Figure 3), the input to retinal neurons depends on eye and object
positions, which are updated in a group separate from the group representing the retinal neurons (Figure 3c, l. 3–9). This can
be expressed by defining a “linked variable”, which refers to a variable defined in a different model component. In the group
modelling the retinal neurons, the variables x_object and x_eye are annotated with the (linked) flag to state that they are
references to variables defined elsewhere (l. 23–24). This link is then made explicit by stating the group and variable they refer
to via the linked_var function (l. 28–29).

Initialisation

The description of its dynamics does not yet completely define a model, we also need to define its initial state. For some
variables, this initial state can simply be a fixed value, e.g. in the pyloric network model, the neurons’ membrane potential is
initialised to the resting potential vr (Figure 2 l. 23). In the general case, however, we might want to calculate the initial state;
Brian therefore accepts arbitrary mathematical expressions for setting the initial value of state variables. These expressions can
refer to model variables, as well as to pre-defined constant such as the index of a neuron within its group (i), or the total number
of neurons within a group (N), as well as to pre-defined functions such as rand() (providing uniformly distributed random
numbers between 0 and 1). In the pyloric circuit example, we use this mechanism to initialise variables w and z randomly
(Figure 2, l. 25–26); in the eye movement example, we assign individual preferred positions to each retinal neuron, covering
the space from −1 to 1 in a regular fashion (Figure 3c, l. 30).

Mathematical expressions can also be used to select a subset of neurons and synapses and make conditional assignments. In
the pyloric circuit example, we assign a specific value to the conductance of synapses between ABPD and LP neurons by using
the selection criterion 'label_pre == ABPD and label_post == LP' (Figure 2, l. 36), referring to the custom label

identifier of the pre- and post-synaptic neuron that has been introduced as part of the neuron model definition (l. 18). In this
example there is only a single neuron per type, but the syntax generalises to groups of neurons of arbitrary size and is therefore
preferable to the explicit use of numerical indices.

Synaptic connections

The second main aspect of model construction is the creation of synaptic connections. For maximal expressivity, we again
allow the use of mathematical expressions to define rules of connectivity. For example, in the pyloric circuit example, following
the schematic shown in Figure 1a, we would like to connect neurons with fast glutamatergic synapses according to two rules:
1) connections should occur between all groups, but not within groups of the same neuron type; 2) there should not be any
connections from PY neurons to AB/PD neurons. We can express this with a string condition following the same syntax that we
used to set initial values for synaptic conductances earlier (Figure 2, l. 35):
fast.connect('label_pre!=label_post and not (label_pre==PY and label_post==ABPD)')

For more complex examples, in particular connection specifications based on the spatial location of neurons, see Stimberg et al.
(2014).

For larger networks, it can be wasteful to check a condition for each possible connection. Brian therefore also offers the
possibility to use a mathematical expression to directly specify the projections of each neuron. In the eye movement example,
each retinal neuron on the left hemifield (i.e. xneuron < 0) should connect to the first motoneuron (index 0), while neurons on the
right hemifield (i.e. xneuron > 0) should connect to the second motoneuron (index 1). We can express this connection scheme by

21/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

defining j, the postsynaptic target index, for each presynaptic neuron accordingly (with the int function converting a truth
value into 0 or 1):
sensorimotor_synapses.connect(j='int(x_neuron_pre > 0)')

This syntax can also be extended to generate more than one post-synaptic target per pre-synaptic neuron, using a syntax borrowed
from Python’s generator syntax (Hettinger, 2002, see the Brian 2 documentation at http://brian2.readthedocs.io for
more details) These mechanisms can also be used to define stochastic connectivity schemes, either by specifying a fixed
connection probability that will be evaluated in addition to the given conditions, or by specifying a connection probability as a
function of pre- and post-synaptic properties.

Specifying synaptic connections in the way presented here has several advantages over alternative approaches. In contrast to
explicitly enumerating the connections by referring to pre- and post-synaptic neuron indices, the use of mathematical expressions
transparently conveys the logic behind the connection pattern and automatically scales with the size of the connected groups
of neurons. These advantages are shared with simulators that provide pre-defined connectivity patterns such as “one-to-one”
or “all-to-all”. However, such approaches are not as general—e.g. they could not concisely define the connectivity pattern
shown in Figure 1a—and can additionally suffer from ambiguity. For example, should a group of neurons that is “all-to-all”
connected to itself form autapses or not (cf. Crook et al., 2012)?

Computational experiment level

The Brian simulator allows the user to write complete experiment descriptions that include both the model description and the
simulation protocol in a single Python script as exemplified by the case studies in this article. In this section, we will discuss
how the Brian simulator interacts with the statements and programming logic expressed in the surrounding script code.

Simulation flow

In the case study of finding a neuron’s voltage threshold we use a specific simulation workflow, an iterative approach to finding
a parameter value (Figure 4a). Many other simulation protocols are regularly used. For example, a simulation might consist of
several consecutive runs, where some model aspect such as the external stimulation changes between runs. Alternatively, several
different types of models might be tested in a single script where each is run independently. Or, a non-deterministic simulation
might be run repeatedly to sample its behaviour. Capturing all these potential protocols in a single descriptive framework is
hopeless, we therefore need the flexibility of a programming language with its control structures such as loops and conditionals.

Brian offers two main facilities to assist in implementing arbitrary simulation protocols. Simulations can be continued at
their last state, potentially after activating/deactivating model elements, or changing global or group-specific constants and
variables as shown above. Additionally, simulations can revert back to a previous state using the functions store and restore
provided by Brian. In the example script shown in Figure 5, this mechanism is used to reset the network to an initial state after
each iteration. The same mechanism allows for more complex protocols by referring to multiple states, e.g. to implement a
train/test/validate protocol in a synaptic plasticity setting.

Providing explicit support for this functionality is not only a question of convenience; while the user could approximate
this functionality by storing and resetting the systems state variables (membrane potentials, gating variables, etc.) manually,
some model aspects such as action potentials that have not yet triggered synaptic effects (due to synaptic delays) are not easily
accessible to the user.

Model component scheduling

During each time step of a simulation run, several operations have to be performed. These include the numerical integration of
the state variables, the propagation of synaptic activity, or the application of reset statements for neurons that emitted an action

22/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

http://brian2.readthedocs.io
https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

potential. All these operations have to be executed in a certain order. The Brian simulator approaches this issue in a flexible and
transparent way: each operation has an associated clock with a certain time granularity dt, as well as a “scheduling slot” and a
priority value within that slot. Together, these elements determine the order of all operations across and within time steps.

By default, all objects are associated with the same clock, which simplifies setting a global simulation timestep for all
objects (Figure 5, l. 2). However, individual objects may chose a different timestep, e.g. to record synaptic weights only
sporadically during a long-running simulation run. In the same way, Brian offers a default ordering of all operations during a
time step, but allows to change the schedule that is used, or to reschedule individual objects to other scheduling slots.

This amount of flexibility might appear to be unnecessary at a first glance and indeed details of the scheduling are rarely
reported when describing models in a publication. Still, subtle differences in scheduling can have significant impact on
simulation results (see Figure 9 in section 4 for an illustration). This is most obvious when investigating paradigms such as
spike-timing-dependent-plasticity with a high sensitivity to small temporal differences (Rudolph & Destexhe, 2007).

Name resolution

Model descriptions refer to various “names”, such as variables, constants, or functions. Some of these references, such as
function names or global constants, will have the same meaning everywhere. Others, such as state variables or neuron indices,
will depend on the context. This context is defined by the model component, i.e. the group of neurons or the set of synapses,
to which the description is attached. For example, consider the assignment to gNa (the maximum conductance of the sodium
channel) in Figure 5 (l. 20). Here, gNa_min and gNa_max refer to global constants (defined in l. 6)1, whereas i, the neuron
index, is a vector of values with one value for each neuron, and N refers to the total number of elements in the respective group.

It is important to note that the context is also given by its position in the program flow. For example, if we want to set
the initial value for the gating variable m to its steady value, then this value will depend on the membrane potential v via the
expressions for �m and �m. The order in which we set the values for v and m does therefore matter:
neuron.v = 0*mV

neuron.m = '1/(1 + betam/alpham)'

While this might appear trivial, it shows how the procedural aspect of models, i.e. the order of operations, can be important.
A purely descriptive approach, for example stating initial values for all variables as part of the model equations, would not
always be sufficient.2

Some Python statements are translated into code that is run immediately, for example initialising a variable or creating
synapses. Others are translated into code that is run at a later time. For example, the code to numerically integrate differential
equations is not run at the point where those equations are defined, but rather at the point when the simulation is run via a call to
the run() function. In this case, any named constants referred to in the equations will use their value at the time that the run()
function is called, and not the value at the time the equations are defined. This allows for that value to change between multiple
calls to run(), which may be useful to switch between global behaviours. For example, a typical use case is running with no
external input current for a certain time to allow a neuron to settle into its stationary state, and then running with the current
switched on by just changing the value of a constant from zero to some nonzero value between two consecutive run() calls.

Implementation level

Code generation

In order to combine the flexibility and ease-of-use of high-level descriptions with the execution speed of low-level programming
languages such as C, we employ a code generation approach (Goodman, 2010). This code generation consists of three steps.

1Brian also offers an alternative system where global constants and functions are explicitly provided via a Python dictionary instead of being deduced from
values defined in the execution environment, but this system will not be further discussed here.

2However, in this specific case, setting v to 0mV is unnecessary, since Brian automatically assigns the value 0 to all uninitialised variables.

23/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

The textual model description will first be transformed into a “code snippet”. The generation of such a code snippet requires
various transformations of the provided model description: some syntax elements have to be translated (e.g. the use of the **
operator to denote the power operation to a call to the pow function for C/C++), variables that are specific to certain neurons or
synapses have to be properly indexed (e.g. a reset statement v = -70*mV has to be translated into a statement along the lines
of v[neuron_index] = -70*mV), and finally sequences of statements have to be expressed according to the target language
syntax (e.g. by adding a semicolon to the end of each statement for C/C++). In a second step, these code snippets will then be
embedded into a predefined target-code template, specific to the respective computation performed by the code. For example,
the user-provided description of an integrate-and-fire neuron’s reset would be embedded into a loop that iterates over all the
neurons that emitted an action potential during the current time step. Finally, the code has to be compiled and executed, giving it
access to the memory location that the code has to read and modify. For further details on this approach, see Goodman (2010);
Stimberg et al. (2014).

Code optimisation

Code resulting from the procedure described above will not necessarily perform computations in the most efficient way. Brian
therefore uses additional techniques to further optimise the code for performance. Consider for example the x variable—
representing the receptor activity—in Figure 7, described by the differential equation in l. 36. This equation can be integrated
analytically, and the above described code generation process would therefore generate code like the following (here presented
as “pseudo-code”):
for each neuron:

x_new = sound + exp(-dt / tau_ear) * (sound - x_old)

However, the expression that is calculated for every neuron contains exp(-dt / tau_ear) which is not only identical for
all neurons but also relatively costly to evaluate. Brian will identify such constant expressions, and calculate them only once
outside of the loop:
c = exp(-dt / tau_ear)

for each neuron:

x_new = sound + c * (sound - x_old)

In addition to this type of optimisation, the Brian simulator will also simplify arithmetic expressions, such as replacing 0 * x

by 0, or x / x by 1. While all these optimizations could in principle also be performed by the programming-language compiler
(e.g. gcc), we have found that performing these changes before handing over the code to the compiler led to bigger and more
reliable performance benefits.

Code execution: runtime mode

After the code generation process, each model component has been transformed into one or more “code objects”, each performing
a specific computational task. For example, a group of integrate-and-fire neurons would typically result in three code objects.
The first would be responsible for integrating the state variables over a single timestep, the second for checking the threshold
condition to determine which neurons emit an action potential, and the third for applying the reset statements to those neurons.
By default, these code objects will be executed in Brian’s “runtime mode”, meaning that the simulation loop will be executed in
Python and then call each of the code objects to perform the actual computation (in the order defined by the scheduling as
described in the previous section). Note that while the code objects will typically be based on generated C++ code, they can be
compiled and executed from within Python using binding libraries such as weave (formerly part of scipy ; Jones et al. 2001–) or
Cython (Behnel et al., 2011).

24/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

This “mixed” approach to model execution leaves the simulation control to the main Python process while the actual
computations are performed in compiled code, operating on shared memory structures. This results in a considerable amount
of flexibility: whenever Brian’s model description formalism is not expressive enough for a task at hand, the researcher can
interleave the execution of generated code with a hand-written function that can potentially access and modify any aspect of
the model. In particular, such a function could intervene in the simulation process itself, e.g. by interrupting the simulation if
certain criteria are met. The jupyter notebook at https://github.com/brian-team/brian2_paper_examples contains
an the interactive version of the eye movement example (Figure 3). In this example, the aforementioned mechanism is used to
allow the user to interactively control a running Brian simulation, as well as for providing a graphical representation of the
results that updates continuously.

While having all these advantages, the back-and-forth between the main loop in Python and the code objects also entails a
performance overhead. This performance overhead takes a constant amount of time per code object and time step and does
therefore matter less if the individual components perform long-running computations, such as for large networks (Brette &
Goodman, 2011, see also Figure 8). On the other hand, for simulations of small or medium-sized networks, such as the network
presented in Figure 6, this overhead can be considerable and the alternative execution mode presented in the following section
might provide a better alternative.

Code execution: standalone mode

As an alternative to the mode of execution presented in the previous section, the Brian simulator offers the so-called “standalone
mode”, currently implemented for the C++ programming language. In this mode, Brian generates code that performs the
simulation loop itself and executes the operations according to the schedule. Additionally, it creates code to manages the
memory for all state variables and other data structures such as the queuing mechanism used for applying synaptic effects
with delays. This code, along with the code of the individual code objects, establishes a complete “standalone” version of the
simulation run. When the resulting binary file is executed, it will perform the simulation and write all the results to disk. Since
the generated code does not depend on any non-standard libraries, it can be easily transferred to other machines or architectures
(e.g. for robotics applications). The generated code is free from any overhead related to Python or complex data structures and
therefore executes with high performance.

For many models, the use of this mode only requires the researcher to add a single line to the simulation script (declaring
set_device('cpp_standalone')), all aspects of the model descriptions, including assignments to state variables and the
order of operations will be faithfully conserved in the generated code. The Python script will transparently compile and execute
the standalone code, and then read the results back from disk so that the researcher does not have to adapt their analysis routines.

However, in contrast to the runtime execution mode presented earlier, it is not possible to interact with the simulation during
its execution from within the Python script. In addition, certain programming logic is no longer possible, since all actions such
as synapse generation or variable assignments are not executed when they are stated, but only as part of the simulation run.

In this execution mode, simulations of moderate size and complexity can be run in real-time (Figure 8), enabling studies
such as the one presented in Figure 6. Importantly, this mode does not require the researcher to be actively involved in any
details of the compilation, execution of the simulation or the retrieval of the results.

25/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://github.com/brian-team/brian2_paper_examples
https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

B Simulation scheduling

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (ms)

thresholds before synapses
synapses before thresholds

(b)
1 from brian2 import *

2

3 tau = 1*ms

4 spikes = SpikeGeneratorGroup(1, [0], [1]*ms)

5 target = NeuronGroup(1, 'dv/dt = -v/tau : 1')

6 synapses = Synapses(spikes, target,

7 on_pre='v += 1')

8 synapses.connect()

9 mon = StateMonitor(target, 'v', record=True)(c)
10 # thresholds before synapses (default)

11 magic_network.schedule = ['start',

12 'groups',

13 'thresholds',

14 'synapses',

15 'resets',

16 'end']

17 run(3*ms)

synapses before thresholds

magic_network.schedule = ['start',

'groups',

'synapses',

'thresholds',

'resets',

'end']

run(3*ms)

(d)
object part of Clock dt when order active
mon (StateMonitor) mon (StateMonitor) 100. us (every step) start 0 yes
target_stateupdater (StateUpdater) target (NeuronGroup) 100. us (every step) groups 0 yes
spikes (SpikeGeneratorGroup) spikes (SpikeGeneratorGroup) 100. us (every step) thresholds 0 yes
synapses_pre (SynapticPathway) synapses (Synapses) 100. us (every step) synapses -1 yes
Figure 9. Demonstration of the effect of scheduling simulation elements. (a) Timing of synaptic effects on the post-synaptic cell
for the two simulation schedules defined in (c). (b) Basic simulation code for the simulation results shown in (a). (c) Definition
of a simulation schedule where threshold crossings trigger spikes and – assuming the absence of synaptic delays – their effect
is applied directly within the same simulation time step (left; see blue line in (a)), and a schedule where synaptic effects are
applied in the time step following a threshold crossing (right; see orange line in (a)). (d) Summary of the scheduling of the
simulation elements following the default schedule (left code in (c)), as provided by Brian’s scheduling_summary function.
Note that for increased readibility, the objects from (b) have been explicitly named to match the variable names. Without this
change, the code in (b) leads to the use of standard names for the objects (spikegeneratorgroup, neurongroup, synapses,
and statemonitor).

26/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

1 from brian2 import *
2
3 defaultclock.dt = 0.01*ms
4 E_L = -68*mV; E_Na = 20*mV; E_K = -80*mV; E_Ca = 120*mV; E_proc = -10*mV
5 C_s = 0.2*nF; C_a = 0.02*nF; g_E = 10*nS; g_La = 7.5*nS; g_Na = 300*nS;
6 g_Kd = 4*uS; G_Ca = 0.2*uS; G_K = 16*uS; tau_h_Ca = 150*ms; tau_m_A = 0.1*ms;
7 tau_h_A = 50*ms; tau_m_proc = 6*ms; tau_m_Na = 0.025*ms; tau_z = 5*second
8
9 eqs = '''# somatic compartment

10 dV_s/dt = (-I_syn - I_L - I_Ca - I_K - I_A - I_proc - g_E*(V_s - V_a))/C_s : volt
11 I_L = g_Ls*(V_s - E_L) : amp
12 I_K = g_K*m_K**4*(V_s - E_K) : amp
13 I_A = g_A*m_A**3*h_A*(V_s - E_K) : amp
14 I_proc = g_proc*m_proc*(V_s - E_proc) : amp
15 I_syn = I_fast + I_slow: amp
16 I_fast : amp
17 I_slow : amp
18 I_Ca = g_Ca*m_Ca**3*h_Ca*(V_s - E_Ca) : amp
19 dm_Ca/dt = (m_Ca_inf - m_Ca)/tau_m_Ca : 1
20 m_Ca_inf = 1/(1 + exp(0.205/mV*(-61.2*mV - V_s))): 1
21 tau_m_Ca = 30*ms -5*ms/(1 + exp(0.2/mV*(-65*mV - V_s))) : second
22 dh_Ca/dt = (h_Ca_inf - h_Ca)/tau_h_Ca : 1
23 h_Ca_inf = 1/(1 + exp(-0.15/mV*(-75*mV - V_s))) : 1
24 dm_K/dt = (m_K_inf - m_K)/tau_m_K : 1
25 m_K_inf = 1/(1 + exp(0.1/mV*(-35*mV - V_s))) : 1
26 tau_m_K = 2*ms + 55*ms/(1 + exp(-0.125/mV*(-54*mV - V_s))) : second
27 dm_A/dt = (m_A_inf - m_A)/tau_m_A : 1
28 m_A_inf = 1/(1 + exp(0.2/mV*(-60*mV - V_s))) : 1
29 dh_A/dt = (h_A_inf - h_A)/tau_h_A : 1
30 h_A_inf = 1/(1 + exp(-0.18/mV*(-68*mV - V_s))) : 1
31 dm_proc/dt = (m_proc_inf - m_proc)/tau_m_proc : 1
32 m_proc_inf = 1/(1 + exp(0.2/mV*(-55*mV - V_s))) : 1
33 # axonal compartment
34 dV_a/dt = (-g_La*(V_a - E_L) - g_Na*m_Na**3*h_Na*(V_a - E_Na)
35 -g_Kd*m_Kd**4*(V_a - E_K) - g_E*(V_a - V_s))/C_a : volt
36 dm_Na/dt = (m_Na_inf - m_Na)/tau_m_Na : 1
37 m_Na_inf = 1/(1 + exp(0.1/mV*(-42.5*mV - V_a))) : 1
38 dh_Na/dt = (h_Na_inf - h_Na)/tau_h_Na : 1
39 h_Na_inf = 1/(1 + exp(-0.13/mV*(-50*mV - V_a))) : 1
40 tau_h_Na = 10*ms/(1 + exp(0.12/mV*(-77*mV - V_a))) : second
41 dm_Kd/dt = (m_Kd_inf - m_Kd)/tau_m_Kd : 1
42 m_Kd_inf = 1/(1 + exp(0.2/mV*(-41*mV - V_a))) : 1
43 tau_m_Kd = 12.2*ms + 10.5*ms/(1 + exp(-0.05/mV*(58*mV - V_a))) : second
44 # class-specific fixed maximal conductances
45 g_Ls : siemens (constant)
46 g_A : siemens (constant)
47 g_proc : siemens (constant)
48 # Adaptive conductances
49 g_Ca = G_Ca/2*(1 + tanh(z)) : siemens
50 g_K = G_K/2*(1 - tanh(z)) : siemens
51 I_diff = (I_target + I_Ca) : amp
52 dz/dt = tanh(I_diff/nA)/tau_z : 1
53 I_target : amp (constant)
54 # Neuron class
55 label : integer (constant)'''
56 circuit = NeuronGroup(3, eqs, method='rk2',
57 threshold='m_Na > 0.5', refractory='m_Na > 0.5')
58 ABPD, LP, PY = 0, 1, 2
59 # class-specific constants
60 circuit.label = [ABPD, LP, PY]
61 circuit.I_target = [0.4, 0.3, 0.5]*nA; circuit.g_Ls = [30, 25, 15]*nS
62 circuit.g_A = [450, 100, 250]*nS; circuit.g_proc = [6, 8, 0]*nS
63 # Initial conditions
64 circuit.V_s = E_L; circuit.V_a = E_L
65 circuit.m_Ca = 'm_Ca_inf'; circuit.h_Ca = 'h_Ca_inf'; circuit.m_K = 'm_K_inf';
66 circuit.m_A = 'm_A_inf'; circuit.h_A = 'h_A_inf'; circuit.m_proc = 'm_proc_inf'
67 circuit.m_Na = 'm_Na_inf'; circuit.h_Na = 'h_Na_inf'; circuit.m_Kd = 'm_Kd_inf'

Figure 2–Figure supplement 1. Simulation code for the more biologically detailed model of the circuit shown in Figure 1a
(based on Golowasch et al., 1999). The code for the synaptic model and connections is identical to the code shown in Figure 2,
except for acting on Vs instead of v in the target cell.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595710doi: bioRxiv preprint

https://doi.org/10.1101/595710
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Design and Implementation
	Case study: Threshold finding
	Case study: Real-time audio

	Discussion
	Comparison to other approaches
	Development and availability

	Acknowledgements
	Design details
	Simulation scheduling

