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Alternative splicing (AS) is an important mechanism in the gen-

eration of the great transcript diversity found across mammals.

AS patterns are dynamically regulated during development and

in response to environmental changes. Defects or perturba-

tions in their regulation system may lead to cardiac or neuro-

logical disorders. These regulatory mechanisms are typically

inferred using a two step-framework: differential AS analysis

followed by enrichment methods. These strategies require set-

ting rather arbitrary thresholds and are prone to error propa-

gation between steps. Here, we examined the influence of dif-

ferent sequencing depths in the identification of regulatory pat-

terns of AS using simulated data with traditional workflows,

showing poor performance and high dependence on sequencing

depth. We developed a bayesian model that integrates RNA-seq

and regulatory elements data to simultaneously infer changes

in inclusion rates and in the activity of the underlying regu-

lators. This model pools weak evidence across AS events to

increase the power to infer changes in the regulatory activ-

ity using binding sites information increasing both sensitivity

and specificity on simulated data. Application to a real dataset

provided new insights into the underlying regulatory mecha-

nisms of AS changes, proving the usefulness of our approach

for future studies and reanalyses. dSreg was implemented in

python using stan and is freely available to the community at

https://bitbucket.org/cmartiga/pydsreg/src/master/.
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Introduction

Eukaryotic genes are generally constituted by exons and

introns (23). This structure provides an opportunity for

alternative splicing (AS) to produce different transcripts,

which may encode different proteins, from the same gene

(35). There is evidence of alternative mRNA processing

for most mammalian genes (34, 36) and of widespread

changes of AS patterns throughout brain and heart develop-

ment (4, 5, 15, 18, 21, 39, 40, 52). Defects in mRNA process-

ing of some specific genes often lead to disease (5, 24, 25)

and have been associated with complex neurological disor-

ders, such as autistic syndrome (21, 26, 39, 51), and can-

cer (12, 45). Therefore, understanding the regulatory mech-

anisms underlying physiologic and pathological changes in

splicing patterns is crucial, not only to understand RNA biol-

ogy better, but also to identify key therapeutic targets with a

more general effect in complex diseases.

A typical two step work-flow is generally applied when

studying regulatory mechanisms of AS changes between two

biological conditions, e.g. disease vs control, (see Figure 1

for schematic representation). First, changes in mRNA pro-

cessing must be identified. For this, short reads from RNA

sequencing are typically mapped using splice junctions (SJ)

aware aligners such as STAR or Hisat2 (13, 38). Then, alter-

native mRNA processing can be studied at two different lev-

els: 1) transcript quantification, which can be based on a prior

alignment as in Cufflinks or Stringtie (38, 48), or directly es-

timated from fast pseudoalignment methods such as Kallisto

or Salmon (9, 37); and 2) event level quantification, as per-

formed by popular tools such as MISO, MATS, vast-tools

or DEXseq (3, 21, 22, 43). Alternative splicing events can

also be identified and quantified using transcript quantifica-

tions, which improves sensitivity with low sequencing depths

(1, 49). Regulation is expected to take place locally, making

the AS event level the preferred approach to study the reg-

ulatory mechanisms underlying changes in splicing profiles.

Once AS events have been identified and quantified, different

statistical tests or models are applied to find differential splic-

ing between conditions, being a Generalized Linear Model

(GLM) with binomial likelihood the most natural paramet-

ric approach (43).

The second step aims to statistically associate AS changes

with features related to regulatory elements, mostly

RNA binding proteins (RBPs). Such features often in-

clude nucleotide hexamers, predicted motifs, experimen-

tally determined or predicted binding sites (14, 17, 41, 53).

Over-Representation Analysis (ORA) enables finding over-

represented features in the set of events showing significant

changes compared with events without significant changes,

assuming that they remain mostly unchanged. Therefore,

a sufficiently large set of significantly changed events is

required to reach sufficient power to detect enrichment of

RBP-related features. Since fewer nucleotide positions can

be used for estimation of inclusion rates than for gene ex-

pression, reaching enough power to detect significant dif-

ferences requires higher sequencing depth, yielding many

RNA-seq datasets under-powered for AS analyses and AS

studies more costly overall. ORA requires the discretiza-

tion of splicing changes into different categories e.g. in-

cluded or skipped. Categorization according to changes not

only depends strongly on typically low statistical power,

but also ignores quantitative information about AS changes.

There are popular methods that enable the inclusion of quan-

titative information in the enrichment procedure, i.e. the

Gene Set Enrichment Analysis (GSEA) tool and some para-
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Fig. 1. General and proposed work-flows for AS regulation analysis. A. Diagram representing the different steps required for a classical analysis of regulation of alternative

splicing using RNA-seq data and the proposed model in dSreg. B. Directed Acyclic Graph (DAG) representing the full probabilistic model integrating both differential AS

analysis with binding sites presence and changes in the activity of RBPs.

metric versions such as Parametric Analysis of Gene Set En-

richment (PAGE) (44, 46). Although these tools were de-

signed for functional analysis, they can also be used to per-

form enrichment of known targets of regulatory elements.

Such GSEA-like methods have been applied to analyze AS

regulation using sequence motifs (42, 49). Even if there is no

systematic evaluation of the performance these approaches,

the inherently noisier nature of the estimation of differences

in AS compared to those of differential gene expression may

limit the applicability of GSEA-like methods. Therefore,

methods that take into account the uncertainty of the esti-

mations would be expected to provide better results. More-

over, an additional limitation affecting both ORA and GSEA

approaches lies on the high number of different features or

binding sites and potential co-linearities among them, result-

ing in a high false positive rate from confounding effects.

In this work, we first studied the performance and limitations

of the classical enrichment approaches (ORA and GSEA) for

the detection of regulatory elements driving AS changes us-

ing simulated data. To tackle some of these limitations, we

developed dSreg, a probabilistic model integrating differen-

tial splicing and regulation analyses. dSreg models latent

changes in inclusion rates as a linear combination of regu-

latory effects of the RBPs binding to each event. We used

a hierarchical shrinkage prior for the changes in the activity

of RBPs with predefined binding sites to promote sparsity i.e.

AS are due only to changes the activity of a limited number of

regulators, and therefore to limit false positive rate due to co-

linearities in binding profiles of different RBPs. This model

showed improved identification of both regulatory mecha-

nisms and AS changes in simulated data under these assump-

tions. We further tested the usefulness of this model in a real

RNA-seq dataset obtained during cardiomyocytes differenti-

ation, which enabled us to considerably reduce the number

of potential AS regulators and unveiled a regulatory role for

some of the core components of the spliceosome in the dif-

ferentiation process.

Methods

dSreg: a mechanistic probability model for differential

splicing.

dSreg models the AS changes between two different condi-

tions as a function of changes in the activity of a few of the

existing RBPs acting through their known binding sites. As a

result of primary processing of RNA-seq data, our data will

consist on a total of K AS events detected across N samples.

For each event k and sample i, we observe Ik,i reads sup-

porting exon inclusion out of a total of Tk,i reads mapping

to the exon skipping event, which depends on the unknown

probability of inclusion Ψk,i. The binomial distribution en-

ables the calculation of the conditional probability of observ-

ing Ik,i reads given Tk,i and Ψk,i.

p(Ik,i | Tk,i,Ψk,i) = Binomial(Ik,i | Tk,i, Ψk,i) (1)

Ψk,i is therefore different for each sample i, but depends on

the condition or group to which it belongs. Since probabil-

ities are bound between 0 and 1, to model this dependency

on the group to which the sample belongs, we take the logit

transformation Xk,i,

Xk,i = log

(

Ψk,i

1−Ψk,i

)

(2)

and assume that it is drawn from a normal distribution with

different means per condition: αk and αk + βk, such that

βk represents the difference between the two conditions; and

with a certain standard deviation σk. For simplicity, we as-

sumed here that the standard deviation σk = σ is the same

across all K AS events:
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p(Xk,i | Di,αk,βk,σ) = Normal
(

Xk,i | αk +Diβk,i, σ
)

(3)

where Di is a variable that takes the value 1 when the sample

belongs to condition 2, and 0 when belongs to condition 1:

Di =

{

1 if sample i in group 2

0 if sample i in group 1

Up to this point, this model is a simple logistic regression

for each event with the only assumption that the sample vari-

ance is common across events. However, we can imagine that

changes in the probability of inclusion of exon k between two

conditions, indirectly modeled by βk, depend on the change

in the activity θj of a particular regulatory RBP j and on

whether it can bind to a specific region of exon k e.g. the

upstream or downstream intron. This information is encoded

in a matrix SK×J , with value 1 whenever the protein binds j

to the exon k and 0 otherwise. The matrix S could also con-

tain continuous values such as the probability of binding, its

affinity, scores given by Position Weighted Matrices (PWMs)

(41) or any other predictive tool (2, 32).

Sk,j =

{

1 if RBP-region j binds to event k

0 otherwise

Under this model, we assume that regulatory elements have

additive and independent effects on the inclusion rate of a

given exon. Incorporation of synergistic or competitive ef-

fects to the model would require to add interaction terms that

would greatly increase the number of parameters to be esti-

mated so they were left out in dSreg. Under these assump-

tions, we model βk, the change in the logit-transformed in-

clusion rate of exon k, as a normal distribution with a linear

combination of regulatory effects ~θ and Sk (the binding pro-

file of exon k) as mean, and a certain standard deviation ν.

Adding variance to the distribution of βk allows to have some

changes in AS not necessarily due to the regulatory features

included in the model.

p(βk|~θ,Sk,ν) = Normal



βk |

j=J
∑

j=0

Sk,jθj , ν



 (4)

A large number of regulatory proteins are usually tested in

this type of analyses. However, only the binding of a few

RBPs may have an effect on the inclusion rates of target ex-

ons. We formalize this prior belief setting a horseshoe prior

for θj(11). The horseshoe prior, a member of the family of

hierarchical shrinkage priors, specifies a normal prior for θj

with mean 0 and a standard deviation τj , where τj is not a

fixed value, but drawn from a common half Cauchy distribu-

tion with mean 0 and ρ standard deviation. τj represents a lo-

cal shrinkage parameter, as it only affects protein j, whereas

ρ can be understood as a global shrinkage parameter. We fur-

ther set a half Cauchy prior in ρ with mean 0 and standard

deviation 1.

p(θj | τj) = Normal(θj | 0, τj) (5)

p(τj | ρ) = Cauchy+(τj | 0, ρ) (6)

p(ρ) = Cauchy+(ρ | 0, 1) (7)

Finally, we need to specify prior distributions for the remain-

ing parameters αk and σ. Since we expect most of the exons

to be included most of the times and αk is the logit transfor-

mation of the inclusion rate in condition 1, we set a normal

prior centered at 3 (which reflects an expected Ψ = 0.95),

with standard deviation 3 for each exon k to enable some de-

viation from this expectation. Moreover, as we expect little

variation among samples, we set a half Cauchy distribution

with 0 mean and standard deviation 1 on σ.

p(αk) = Normal(α | 3, 3) (8)

p(σ) = Cauchy+(σ | 0, 1) (9)

The joint posterior probability of the parameters Θ given the

data (I) is proportional to the joint probability distribution of

data and Θ, since the probability of obtaining the data p(I) is

constant for any Θ.

p(Θ|I) =
p(Θ,I)

p(I)
∝ p(Θ,I) (10)

Using the conditional probabilities and prior distributions

that we have defined for each variable, we can calculate this

joint probability distribution applying the chain rule.

p(Θ,I) = p(I, T, X,α,β,ν,θ,τ,ρ,D,S) = (11)

= p(σ)p(ν)p(ρ)

J
∏

j

[p(θj |τj)p(τk|ρ)]

K
∏

k

[p(βk|S,θ,ν)p(αk)L(Ik)]

where,

L(Ik) =

N
∏

i

(

p(Ik,i|Tk,i,Xk,i)p(Xk,i|αk,βk,σ,Di)
)

(12)

Once the full posterior distribution is completely specified,

it can be approximated using Markov Chain Monte Carlo

(MCMC) algorithms. In particular, it was implemented using

stan (10) in dSreg, a small python library to fit this model to

analyze AS changes between two conditions and their regu-

lation in any RNA-seq dataset. The model is represented a as

Directed Acyclic Graph (DAG) to show dependencies among

parameters in Fig. 1B.
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Data simulation.

Data can be simulated by setting fixed values of the parent

nodes of the DAG representing the probabilistic model (Fig.

1B) and drawing samples from the corresponding distribu-

tions for each parameter. We therefore needed to have fixed

values for the parent nodes σ, αk, θk,Tk,i, and S. We simu-

lated 20 datasets per initial set of conditions, all with K=2000

events, 3 samples per condition (N=6) and J=50 potential reg-

ulatory elements with correlated binding profiles, of which

only 5 showed non-zero effects on splicing changes between

the two conditions.

To simulate realistic values of inclusion rates for the condi-

tion 1 (Ψk,a) across the K=2000 exons, we assumed that 20%

of the exons are alternative, with inclusion rates following a

uniform distribution between 0 and 1; and 80% are consitu-

tive, with inclusion rates drawn from a Beta(10, 1), to pro-

mote generally high inclusion rates.

uk ∼ Uniform(0,1) (13)

Ψk,a ∼

{

Beta(10,1) if uk > 0.2

Uniform(0,1) if uk < 0.2
(14)

αk = logit(Ψk,a) = log

(

Ψk,a

1−Ψk,a

)

(15)

We aimed to simulate matrices of correlated binding profiles

to take into account that certain groups of RBPs often bind to

similar regions in the exons. To do so, we first simulated a co-

variance matrix Σ of size J sampling from an inverse Wishart

distribtuion,

ΣJ×J ∼ InvWishart

(

J +1,
1

J
IJ

)

(16)

and used it to simulate K samples from a multivariate normal

distribution using a mean of -2.5. This value represents an

expected 7.5% of events bound by a particular RBP.

~Mk ∼ MvNormal(−2.5,Σ) (17)

Then, we took the inverse logit to transform M matrix into

the probability matrix P and use these probabilities to sim-

ulate discrete binding profiles across exons (SK×J matrix)

by sampling from a Bernoulli distribution for each element

in the PK×J matrix.

Pk,j = InvLogit(Mk,j) =
eMk,j

1+eMk,j
(18)

Sk,j ∼ Bernoulli(Pk,j) (19)

Next, we needed to simulate changes in the activity of

a few RBPs. For that, we randomly draw a set A =
{A1,A2,A3,A4,A5} of 5 active regulatory proteins (with

non-zero effects on changes in the inclusion rates) from the

whole set of regulatory proteins R = {1,2, ...,J}. The reg-

ulatory effect for RBP j θj was then drawn from a uniform

distribution between -2.5 and 2.5 if j belonged to the set of

active regulatory elements A and set to zero otherwise. These

values of θj represent the mean increase in the log(odds ra-

tio) of exons having a binding site for that protein compared

with those without a binding site.

θj ∼

{

Uniform(−2.5,2.5) if j ∈ A

0 otherwise
(20)

Once the parent nodes of the DAG were simulated, we could

easily simulate the final data by sampling parameter values

along the graph according to our model. First, we drew

changes in the logit-transformed inclusion rates βk from a

normal distribution with mean obtained from a linear com-

bination of effects ~θ and binding sites ~Sk and standard de-

viation ν = 0.1. This way we introduced noise with small

random changes in inclusion rates of exons that were not tar-

gets of any of the differentially active RBP.

βk ∼ Normal





j=J
∑

j=1

Sk,jθj , ν



 (21)

We then combined αk and βk to obtain the mean logit(Ψ)
for condition 2, and sample 3 samples from each mean using

σ = 0.2 to introduce some inter-individual variability. Being

Di a variable that takes value 1 when sample i belongs to

condition 2 and 0 otherwise,

Xk,i ∼ Normal(αk +Dk,iβk,σ) (22)

The total number of reads mapping to each event Tk,i were

drawn from a Poisson distribution with log-mean 2 (log(λ) =
2) by default,

Tk,i ∼ Poisson(λ) (23)

They were subsequently used to sample the corresponding

reads supporting inclusion Ik,i from the binomial distribution

with p = Ψk,i, obtained from the inverse logit transformation

of Xk,i.

Ik,i ∼ Binomial
(

Tk,i, InvLogit(Xk,i)
)

(24)

Using these default parameter values, we additionally simu-

lated data for increasing sequencing depths (from log(λ) = 1
to log(λ) = 5.5) and with an increasing number of total reg-

ulatory proteins (from J=50 to J=250), maintaining a total of

5 differentially active RBPs to evaluate the effect of this vari-

ables on the methods performance.

Differential splicing analysis.

In order to identify exons with significant changes in in-

clusion rates, a GLM with binomial likelihood was used to

model the probability of inclusion of a particular exon us-

ing the sample condition Di as only predictor. After fitting

the model, we extracted the estimate and p-value for the co-

efficient representing the condition of interest. We then ob-

tained adjusted p-values by means of Benjamini-Hochberg

(BH) multiple test correction.
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Over-Representation Analysis (ORA).

We tested over-representation of binding sites for a partic-

ular RBP on the set of significantly changed exons using a

Generalized Linear Model (GLM) with binomial likelihood

to model the probability of being significantly changed as a

function of the presence of a binding site for a particular RBP.

We then extracted the p-value for the coefficient for each RBP

and applied BH multiple test correction.

Gene Set Enrichment Analysis (GSEA).

We implemented an in-house algorithm for GSEA in python

following (46). We sorted exons according to the estimated

coefficient representing log-transformation of change in exon

inclusion odds between the two conditions under study. We

then used the matrix with binding sites for each exon and

RBP and subtracted the mean for each column. This way,

we give weight to each binding site depending on the number

of binding sites present for a particular RBP. We then calcu-

lated the cumulative sum and took the maximum and mini-

mum values as enrichment scores. We permuted 10000 times

the list of exons to calculate a null distribution of enrichment

scores, estimated p-values as the proportion of permutations

with bigger enrichment scores and performed BH multiple

test correction.

Bayesian inference.

The probabilistic models were implemented in Stan (10)

using non-centered parametrization, whenever it was pos-

sible, to improve sampling efficiency (7). The joint

posterior distributions of the parameters were approxi-

mated using No-U Turn Sampler (NUTS) as implemented

in Stan (19), running 4 chains along 4000 iterations, be-

ing 2000 of them for warming up. Convergence of

the Markov Chain Monte Carlo (MCMC) algorithm was

checked in each case by means of the split Gelman-Rubin R

(R̂) (16).

Real data analysis.

GSE59383 fastq data were downloaded and mapped using

vast-tools 0.2.0 (21) to identify AS events. We restricted our

analysis to exon cassette events that showed at least 1 inclu-

sion and skipping read in at least one sample. Once extracted

the number of inclusion and total counts for each event and

sample, we used all the methods described here to find reg-

ulatory patterns using a compendium of CLiP-seq binding

sites from several databases in BED format (8, 14, 28, 53).

Human binding sites and mouse binding sites in mm10 were

transformed to mm9 coordinates using liftOver tool for com-

patibility with vast-tools. For simplicity, only binding sites

mapping to the 250bp upstream or downstream the alterna-

tive exons were included in the analysis.

Results

Traditional differential splicing analysis shows poor

performance and threshold dependence.

First, we assessed the performance of a classical GLM ap-

proach for its ability to detect significant changes in inclu-

sion rates and how it was influenced by sequencing depth λ

using simulated data (20 datasets per condition; see Methods

section for details). λ represents the mean of a Poisson dis-

tribution used to simulate the total number of counts arisen

from a particular event. We found that, at low sequencing

depths λ, the sensitivity at 5% FDR is very low (< 10% with

log(λ) ≥ 1) when using a simple GLM. This is expected since

there is very little information to estimate the inclusion rate

in each exon and sample.

As λ increases, so does the sensitivity of GLM (Fig. 2A).

However, the specificity also tends to decrease: as the

inclusion rate is better estimated in each sample, differ-

ences arisen by chance from the selection of only 3 sam-

ples per condition accumulate more evidence and become

significant. As expected, the specificity is lower when re-

laxing the threshold on the FDR (Fig. 2B). Interestingly,

the F1 score, which integrates both sensitivity and speci-

ficity, is higher with higher FDR thresholds (Fig. 2C).

To avoid the need to select an arbitrary threshold to as-

sess the performance of the different methods, we calculated

the Receiver Operating Characteristic (ROC) curves for each

simulated dataset and the area under them (AUROC, Fig. 2D

and E). These results show that, at low sequencing depths

(log(λ) < 3), the performance is rather poor, with AUROC

values of 0.7 at most.

Incorporation of information about regulatory ele-

ments increases the power to detect AS changes.

We then run dSreg to evaluate if there were improvements

in the identification of splicing changes. Additionally, we

also fitted a reduced model that only pools variance from all

exons without taking into account of the binding sites and

changes in regulatory activities (Null model). This was to

check whether potential improvements were due to the in-

clusion of binding sites and changes in RBPs activity in the

model or just to variance pooling. We selected significantly

changed events as those with a posterior probability higher

than 95% of having a difference βk larger than 0. dSreg but

not the Null model showed increased sensitivity, even at very

low sequencing depths, when there was practically no infor-

mation from individual events (Fig. 2A). This increased sen-

sitivity did not come with a decrease in specificity as could be

expected, but it was 1 for all the simulations performed (Fig.

2C), with consequently very high F1 scores and area under

the ROC curves, suggesting that differences in performance

are intrinsic to the method and not threshold dependent (Fig.

2C,D and E). Results with the Null model suggest that vari-

ance pooling across events only marginally improves infer-

ence of splicing changes, at least with the low variance used

in these simulations. Therefore, dSreg effectively used infor-

mation about the underlying regulatory mechanisms to cor-

rect differences that easily arise by chance in datasets with

sample size, as simulations were done with only 3 samples

per condition.
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Fig. 2. Comparison of the performance for the identification of different event inclusion rates of a standard method using a single GLM per exon considering two FDR thresholds

(0.05 and 0.2),a bayesian model that pools variance across all exons (Null model) and dSreg. Performance was analyzed in simulations with increasing sequencing depths

λ (the mean of the Poisson distribution used to simulate the total number of reads mapping to an exon skipping event). A. Sensitivity. B Specificity. C F1 score. D, E

Receiver Operating Characteristic (ROC) curves (D) and the area under them (E) .

dSreg improves the detection of changes in the activ-

ity of RBPs.

We then focused on the identification of regulatory elements

that drive splicing changes in our simulated datasets compar-

ing dSreg with the traditional ORA and GSEA approaches.

As FDR<0.2 filtering showed higher F1 score in the identifi-

cation of splicing changes (Fig. 2C), we used this threshold

to select significantly changed events to perform downstream

enrichment analyses. The dependency of ORA on the detec-

tion of significant changes led to low F1 scores at any tested

FDR threshold, specially at low sequencing depths (Fig. 3A).

We also used an in-house version of GSEA to take advan-

tage of quantitative information in the identification of reg-

ulatory elements. Briefly events were ranked according to

their Maximum Likelihood Estimation (MLE) of the coeffi-

cient of the GLM, which represents the log of the odds ratio

of inclusion between the two conditions. Then, we looked for

non-random distributions of binding sites along the ranked

list (46) (see Methods section for details). We found a sub-

stantial improvement over ORA, with higher F1 scores, spe-

cially at low sequencing depths. Interestingly, GSEA did not

seem to benefit from higher sequencing depths, which would

help improve the quality of estimated changes in inclusion

rates (Fig. 3A). However, dSreg outperformed both ORA

and GSEA, as it takes into account both quantitative infor-

mation (opposed to mere ranking) and the uncertainty of the

estimations, showing much higher F1 scores for any of the se-

quencing depths tested (Fig. 3A). Furthermore, it uses infor-

mation about the regulatory mechanisms to infer single event

changes (Fig. 2). Therefore, integration of the two sources

of information improves results both in terms of inference of

differential inclusion rates and the identification of the mech-

anisms driving those changes.

dSreg is robust when testing high numbers of regula-

tory elements.

We had so far explored the effect of sequencing depth on

results using simulations. We then wanted to assess how a

higher number of potential regulatory elements J influenced

the results, since the number of false positives is expected to

increase. In addition, co-linearities among binding profiles

of different RBPs might hinder the identification of the real

regulatory elements. With this aim, we simulated datasets

with only 5 active RBPs as in the previous simulations, but

increasing the number of total RBPs included in the anal-

ysis up to 250. We found that the F1 score tended to de-

crease as the number of potential regulators increased with

either ORA or GSEA, despite multiple test correction to con-

trol false discovery rate. Once more, dSreg outperforms both

methods and remained unaffected by the inclusion of other

inactive regulatory elements, at least up to the 250 regulators

that were tested here (Fig. 3B).
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Fig. 3. Performance of methods for the detection of regulatory elements: ORA with

variable FDR thresholds (0.05 and 0.2), non-parametric GSEA and dSreg. Perfor-

mance was analyzed in simulations with increasing sequencing depths λ, which

is the mean of the Poisson distribution used to simulate the total number of reads

mapping to an exon skipping event. A, B. Mean F1 scores obtained with differ-

ent coverages λ (A) and total number of regulators (B) for the different enrichment

approaches. C, D Calibration, measured as the proportion of times the real value

lies within the 95%CI of differentially spliced exons and regulatory elements for in-

creasing sequencing depth (C) or increasing number of total regulatory elements

(D)..

Model calibration depends on the proportion of active

RBP.

We further analyzed the performance of dSreg in terms of

calibration. A model is well calibrated when inferred proba-

bilities actually represent the real frequency of a given phe-

nomena i.e. a model is calibrated when the uncertainty of

the parameter estimate matches the evidence contained in the

data. Calibration was calculated as the proportion of events

and regulators whose real change in logit-transformed inclu-

sion rates (βk) or activity (θj) is within the estimated 95%CI.

Whereas changes in inclusion rates were well calibrated, the

uncertainty of the changes in the activity of RBPs seemed to

be underestimated, given that 95%CI included the real values

less than 95% of the times, independently on the sequenc-

ing depth λ (Fig. 3C). We then tested how different numbers

of total regulatory elements affected model calibration with

the previous simulations using active 5 out of an increasing

number of candidates RBPs. Calibration did depend on the

number of total regulatory elements to be tested, such that

best calibration was reached with 2-2.5% active RBPs (5 out

of 150-200 regulators, Fig. 3C). The prior distribution on

the global shrinkage parameter ρ may need to be adjusted ac-

cording to our expectation of the proportion of independently

active regulatory elements contributing to splicing changes in

a particular experiment.

AS regulation in cardiomyocyte differentiation by

core-spliceosomal factors.

We then tested our model on a real dataset of mouse

cardiomyocyte differentiation from cardiac precursors

(GSE59383) with 3 samples per condition as in our simu-

lated scenario. Binding sites for a number of RNA binding

proteins were obtained from Cross Linking and immunopre-

cipitation followed by sequencing (CLiP-seq) experiments

and only those located in the upstream and downstream

intronic flanking 250bp were used, reaching a total 286

binding profiles to test (see Methods section for details).

We run the 3 approaches explored in this work and found

that ORA results in a high number of significantly enriched

candidates, most of which are likely to represent false

positives as in our simulation analysis (Fig. 4A). GSEA,

on the other hand, showed no significant enrichment at

FDR < 0.05, and only a few at nominal p − values < 0.05,

which suggest that these p-values can easily arise by chance.

Indeed, there is little concordance with results from the

over-representation analysis (Fig. 4A and B). dSreg showed

an overall agreement with ORA results, as top hits showed

differential activity in dSreg. However, dSreg provided a

reduced number of RBPs whose binding site profiles helped

explain the observed AS changes, suggestive of higher

specificity (Fig. 4, Table 1). Our results highlighted the

role of PTBP1 in cardiac myocytes differentiationm which

has been recently suggested (30) and unveiled an additional

role of its paralog PTBP2. Interestingly, a great deal of

the identified regulatory RBPs are considered members of

the core spliceosome (BUD13, EFTUD2, PRPF8, SF3A3,

SF3BA4), suggesting that changes in the activity of these

particular components might be key for the AS changes

underlying cardiomyocyte differentiation. In this regard,

the core spliceosomal machinery has been shown to have

extensive regulatory potential (50) and mutations in one of

these genes (EFTUD2) have been associated with congenital

heart defects, among other phenotypes (29).

Discussion

Here we propose dSreg, a new method that integrates the

analysis of differential splicing and the identification of the

underlying regulatory mechanisms in a single model. Our

single-step model bypasses the need to call for differential

splicing before enrichment and therefore improves sensitiv-

ity, specially at low sequencing depths. It also increases

specificity as it uses information from the underlying changes

in RBPs activity to avoid false positives derived from the

small sample size. Moreover, dSreg analyzes the regulatory

activity all RBPs simultaneously to correct for possible co-

linearities in the binding profiles and uses a horseshoe prior

to force most of the RBPs activities to remain constant. Joint

modeling also provides higher specificity in the detection of

regulatory mechanisms as it reduces the number of false posi-

tives due to co-occurrence of binding sites of different RBPs,

leading to an improved overall performance compared with

classical enrichment approaches for regulatory elements. Our

model opens up the possibility to analyze AS more accurately

using RNA-seq data with low sequencing depth, both for re-

analysis of previously sequenced samples or for more cost-

effective new RNA-seq experiments. Whereas transcript-

based methods also lower the requirements on sequencing

depths (1, 49), our model works directly at the event level,
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reducing the dependency on the transcript annotation (54).

In contrast to previous approaches, including bayesian meth-

ods like MISO (22), our model is motivated by how splicing

changes arise between two biological conditions rather than

on how inclusion and skipping reads are generated from the

inclusion rate (Ψ) in a particular sample. In any case, inte-

gration of these two types of models is not only possible, but

also a clear way for future improvements.

Our good results on simulations are, however, restricted to

those cases in which splicing changes are mediated only by

a subset of differentially active RBPs binding to completely

known sites. Although we have included a high number of

RBPs without any effect on the changes in inclusion rates be-

tween the two conditions, alternative sources of errors, such

as errors in the binding profiles or missing information might

have a negative impact on the sensitivity of dSreg. Indeed,

we found that in the cardiomyocyte differentiation experi-

ment, GSEA lacks sufficient power to detect regulators un-

like the other two approaches. In contrast, in the simulations,

GSEA showed better performance than ORA on included and

skipped exons, which indicates that our model is somehow

incomplete and that there are other factors contributing to

changes in AS. This is expected. as previous results sug-

gest that AS regulation is far more complex than a sum of

effects of a number of RBPs and that RNA structure plays

a critical role (6, 27, 47). Since our aim is to identify reg-

ulatory mechanisms in a particular scenario rather than pre-

dicting splicing patterns, our model is more appropriate than

black box neural networks. Yet, we expect that careful mod-

eling of additional AS regulatory mechanisms will improve

the results, e.g. nucleosome positioning and histone modi-

fications, which would require also more layers of informa-

tion (20, 31, 33). Moreover, this model is limited so far to

pairwise comparisons, whereas we are often interested in an-

alyzing enrichment over a number of conditions, such as time

series and dose-response experiments. Integrative modeling

of clustering methods with enrichment would be an interest-

ing way forward for more complex experimental designs.

Conclusions

Our model provides an example of how joint modeling of in-

terdependent phenomena can improve results compared with

completely separated analysis relying on discretization ac-

cording to rather arbitrary thresholds. Bayesian inference
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through MCMC methods provide a general framework to fit

very flexible models that adapt to each particular analysis

and to easily extend currently existing models to integrate

different sources of information. In our case, we only in-

tegrated binding sites information with alternative splicing

data, but these models are flexible enough to easily include

information about regulators expression, post-transcriptional

modifications or any other information supporting a change

in the activity of a particular regulatory protein. This model

is not only limited to regulation analysis, but can also be used

with functional annotations such as the presence of func-

tional domains, phosphorylation sites, protein-protein inter-

action motifs, or any other property that may be associ-

ated with AS. Moreover, we have implemented the model

in dSreg (https://bitbucket.org/cmartiga/pydsreg/src/master/),

which enables running the model using only the matrices of

inclusion and total number of reads per event and a matrix S

with the event features to be taken into account in the anal-

ysis i.e. the binding sites. Therefore, dSreg adds a valuable

statistical framework to existing software aimed at identify-

ing AS events, such as rMATS, vast-tools, (21, 43), for more

accurate identification of AS regulatory mechanisms using

RNA-seq data.
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