
Deep learning based brain age prediction uncovers associated
sequence variants

B.A. Jonssona,b, G. Bjornsdottira, T.E. Thorgeirssona, L.M. Ellingsenb, G. Bragi
Waltersa, D.F. Gudbjartssona, H. Stefanssona, K. Stefanssona,∗, M.O. Ulfarssona,b,∗

adeCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.
bUniversity of Iceland, 101 Reykjavik, Iceland.

Abstract

Machine learning algorithms trained to recognize age-related structural changes in mag-
netic resonance images (MRIs) of healthy individuals can be used to predict biological
brain age in independent samples. The difference between predicted and chronological
age, predicted age difference (PAD), is a phenotype holding promise for the study of nor-
mal brain ageing and brain diseases, and genetic discovery via genome-wide association
studies (GWASs). Here, we present a new deep learning approach to predict brain age
from a T1-weighted MRI. The method was trained on a dataset of healthy Icelanders
(N = 1264) and tested on two datasets, the IXI (N = 544) and UK Biobank (N = 12395)
datasets, utilizing transfer learning to improve accuracy on new sites. A GWAS of PAD
in the UK Biobank data (discovery set: N=12395, replication set: N=4453) yielded two
sequence variants, rs1452628-T (β=-0.08, P = 1.15 · 10−9) and rs2435204-G (β=0.102,
P = 9.73 · 10−12). The former is near KCNK2 and correlates with reduced sulcal width,
whereas the latter correlates with reduced white matter surface area and tags a well-
known inversion at 17q21.31 (H2). The genetic association analysis was also confined
to variants known to associate with brain structure, yielding three additional sequence
variants associating with PAD.

1. Introduction

Ageing has a significant structural impact on the brain that correlates with decreased
mental and physical fitness [12] and increased risk of neurodegenerative diseases such as
Alzheimer’s disease [1] and Parkinson’s disease [59]. Recent publications, have demon-
strated that MRIs can be used to predict chronological age with reasonably good accuracy
[20, 49, 12]. Such predictions provide an estimate of biological brain age in independent
samples. The traditional way to perform brain age prediction is to extract features
from brain MRIs followed by classification or regression analysis. This includes extract-
ing principal components [20], cortical thickness and surface curvature [77], volume of
gray matter (GM), white matter (WM), and cerebrospinal fluid [38], and constructing

∗Corresponding author
Email addresses: kstefans@decode.is (K. Stefansson), mou@hi.is (M.O. Ulfarsson)

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/595801doi: bioRxiv preprint 

https://doi.org/10.1101/595801


a similarity matrix [10]. The drawback of using feature extraction methods is loss of
information since the features are likely not designed explicitly for extracting informa-
tion relevant to brain age. Recently, deep learning (DL) methods have garnered much
interest [46]. These methods learn features that are important without apriori bias or
hypothesis. Convolutional neural networks (CNNs) [45] are deep learning techniques that
are especially powerful for image processing and computer vision. Previously, they have
been applied to brain age prediction [32, 11]. Notably, Cole et al. [11] implemented a 3D
CNN trained on T1-weighted MRIs to predict brain age and achieved promising results.

PAD (the difference between predicted brain age and chronological age) estimates
the deviation from healthy ageing. Studies have shown that positive PAD correlates
with measures of reduced mental and physical fitness; including weaker grip strength,
poorer lung function, slower walking speed, lower fluid intelligence, higher allostatic load
and increased mortality risk [12]. In addition, positive PAD has been shown to asso-
ciate with cognitive impairments [21, 24, 10, 49], diabetes [22], traumatic brain injuries
[10], schizophrenia [41, 64], and chronic pain [43]. On the other hand, a negative PAD
associates with higher educational attainment [72], increased physical activity [72] and
meditation [50]. Moreover, PAD has been demonstrated to be heritable [11, 35] and to
have a polygenic overlap with brain disorders such as schizophrenia, bipolar disorder,
multiple sclerosis, and Alzheimer’s disease [35]. Furthermore, the high degree of ge-
netic correlation found among psychiatric and some neurological disorders suggests that
current diagnostic boundaries do not necessarily reflect underlying biology [14]. Hence,
defining a novel phenotype capturing global age-related changes in brain structure could,
via variants in the sequence of the genome that associate with these changes, provide
novel biological insights.

Here we present a new brain age prediction method (Figure 1A) that uses a 3D CNN
trained on MRIs to predict brain age. The input data are a T1-weighted image registered
to Montréal Neurological Institute (MNI) space and data derived from the T1-weighted
image, i.e., a Jacobian map, and gray and white matter segmented images (Figure 1B).
The input data also include information about the subject’s sex and the type of MRI
scanner. The output of the network is the predicted brain age.

As mentioned above, Cole et al. [11] trained a 3D CNN to perform brain age pre-
diction. Our network is different in four key ways. 1) We use a significantly different
architecture. While their architecture resembles a standard VGGNet architecture [66]
our architecture uses the recent ResNet design [26]. One of the drawbacks of the VGG
architecture is that the vanishing gradient problem limits the potential depth of the net-
work. In contrast, the ResNet architecture has no such depth limits. ResNets also have
smoother loss surfaces [48], which in turn helps speeding up convergence. 2) We add
inputs to the final CNN layer to factor in information about sex and scanner. 3) Our
technique is the first to use deformation information encoded in Jacobian maps to predict
brain age. 4) As we have mentioned, our method combines predictions from multiple
CNNs by either averaging predictions or by training a data blender.

In experiments, we compare our proposed method to a few brain age prediction
methods based on feature extraction and machine learning. We also demonstrate that
transfer learning is useful for adapting a CNN trained to predict brain age on one site to
a new site while retaining predictive accuracy. And we look at how the PAD calculated
with our method is affected by random weight initialization and retraining.We then check
for associations between PAD and performance on neuropsychological tests. Finally, we
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perform genetic analysis on PAD using UK Biobank data, resulting in identification
of associations with five sequence variants for which we provide detailed phenotypic
characterizations.

(A)

(B)

Figure 1: (A) A flowchart showing a high-level overview of the proposed brain age prediction system.
(B) Examples of image types generated by the preprocessing step. From left to right: a registered
T1-weighted slice, a Jacobian map slice, a GM segmented slice and a WM segmented slice.

2. Results

2.1. Combining CNN outputs improves prediction accuracy
Our brain age prediction method was developed using images from structural brain

MRIs for 1264 healthy Icelanders. To overcome problems caused by training a DL method
on such a small dataset we use multiple images of the same individuals and utilize a data
augmentation strategy. We start off by training the method independently on the four
previously mentioned image types (Table 1A). The CNN that predicts the test set with
the least error is the CNN trained on T1-weighted images followed by the CNN trained
on WM segmented images.1

Having four predictions from four different data sources opens up the possibility of
combining the predictions. The most straightforward way of fusing the forecasts is by
using a majority voting scheme, e.g. by averaging the predictions made by the four
CNNs. Another way to combine forecasts is to implement a data blender, for example,
by implementing a linear regression model trained to predict brain age from the four
CNN brain age predictions. This technique attempts to find the best linear combination
of the four brain age predictions so in theory it should be guaranteed to be at least as

1Appendix D includes scatter plots of the CNN test set predictions against chronological age.
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good as the best predicting CNN method. To demonstrate this, we tried combining CNN
brain age predictions using majority voting and linear regression data blending (Table
1B). Comparing the test set results of Table 1B to the results in Table 1A, we see that
combining predictions results in lower test error than achieved by the CNN trained on
T1-weighted images.

It is not straightforward to compare the accuracy of our method to previous brain age
prediction methods, because they are evaluated on other datasets. However, to establish
a baseline for the CNN based techniques, we investigated methods based on feature
extraction such as surface-based morphometry (SBM) [19], voxel-based morphometry
(VBM) [3], and similarity matrices. Machine learning regression methods were trained
on these three types of features separately (Table 1C).2 If we compare the results in
Table 1B and 1C we see that by combining CNN outputs we get predictions that are
more accurate than those based on the feature extraction methods.

Table 1: (A) The performance of the CNNs that were trained using T1-weighted images, Jacobian
maps, GM and WM segmented images. Training set (N = 1171), validation set (N = 298), and test set
(N = 346). The best results are shown in bold. (B) The performance when combining CNN predictions.
The training/validation/test split is the same as for Table 1A. (C) The results of the best methods
trained on SBM, VBM and similarity matrix features. The cross validation was performed using 10-fold
cross validation. The SBM feature training/test split was 1056/264, the VBM feature training/test split
was 1438/356, and the SM feature training/test split was 1469/346. Abbreviations: cross validation
(CV), gray matter (GM), images (I), Jacobian map (JM), linear regression blender (LRB), majority
voting (MV), mean absolute error (MAE), similarity matrix (SM), surface-based morphometry (SBM),
validation (val), voxel-based morphometry (VBM), white matter (WM).

(A)
Type Method Val MAE Val R2 Test MAE Test R2 No. I
T1-weighted CNN 3.996 0.810 4.006 0.829 1815
Jacobian CNN 4.801 0.710 4.804 0.758 1815
Gray Matter CNN 4.766 0.721 4.641 0.776 1815
White Matter CNN 4.676 0.735 4.189 0.812 1815

(B)
Type Method Val MAE Val R2 Test MAE Test R2 No. I
MV (T1 and JM) CNN 4.102 0.803 3.919 0.841 1815
MV (GM and WM) CNN 4.172 0.790 3.674 0.849 1815
MV (T1, JM, and GM) CNN 3.964 0.813 3.838 0.847 1815
MV (T1, JM, GM, and WM ) CNN 3.845 0.849 3.584 0.849 1815
LRB (T1, JM, GM, and WM) CNN 3.581 0.847 3.388 0.872 1815

(C)
Type Method CV MAE CV R2 Test MAE Test R2 No. I
SBM SVR 5.234 0.694 5.149 0.699 1320
VBM SVR 4.210 0.784 4.368 0.764 1794
SM SVR 5.079 0.697 4.931 0.726 1815

2 Appendix B includes more information and results about of the regression methods trained on
extracted features.
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2.2. Testing the CNN on other datasets
Next, we examine how the method performs if we predict brain age of images from

other datasets. To do so, we evaluate it on the IXI3 and UK Biobank [74] datasets
and combine predictions using majority voting. We use this combination method rather
than data blending, because it has similar accuracy to linear regression blender with the
added benefit that it is unnecessary to train an extra linear model on the predictions.
We observe that the initial prediction error of the method is high (Table 2). The problem
is that there can be subtle differences between data from different scanning sites which
will cause a model trained on one site to fail when predicting on the other site. There
are multiple reasons for this. The MRI scanner type and parameters between sites can
be different, which can cause differences between resolution, contrast and noise levels.
Also, the distribution of age can be different between sites, for example, it is problematic
if the new site has a wider age range than the training set.

We hypothesize that a CNN that is already proficient at predicting brain age at one
site only needs a small adjustment to adapt to data from a new site. A transfer learning
strategy achieves this: First, we freeze the model weights of the convolutional layers so
that only the fully connected layers are trainable. Second, the CNN is re-trained on a
portion of the data from the new site. An advantage of this strategy is that there are
now fewer parameters to train, which means we can use less data and training will be
faster. We carry out the transfer learning strategy by re-training the majority voting
CNN on 440 images from the IXI dataset.

The re-trained CNN is validated on 104 images from the IXI dataset left out during
training (validation set) and tested on 12395 images from the UK Biobank dataset (test
set). Table 2 shows that the prediction accuracy is increased significantly by doing so.4
Surprisingly the accuracy of predictions for the UK Biobank site improve even though
the CNN was not explicitly trained on it. This is intriguing and is perhaps explained by
the fact that the IXI set includes a wider age range than the Icelandic set and includes
3T MRI images unlike the Icelandic set.

Table 2: UK Biobank and IXI prediction performance with and without transfer learning. The best
results are shown in bold. Abbreviations: subjects (S), transfer learning (TL), validation (val).

IXI UK Biobank
TL Used Val MAE Val R2 Val Set Size Test MAE Test R2 Test Set Size
No 6.420 0.778 104 8.494 -0.630 12395
Yes 4.149 0.907 104 3.631 0.614 12395

2.3. Effect of random CNN weight initialization on PAD
We know that because CNNs start out in random initial states, and because they

have highly non-convex loss functions [48], it is possible that two randomly initialized
instances of our brain age prediction method will converge to two distinct local minima.
These states could in theory both predict age equally well but have uncorrelated PAD

3http://brain-development.org/ixi-dataset/
4In Appendix D the test set predictions before and after transfer learning are shown on a scatter plot

against chronological age (Figure 11).
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values. Here we face a potential problem, because in the absence of a ground truth for
the PAD there is no way to tell if either one of these PAD predictions is accurate. This
sort of unreliable CNN behaviour would be problematic for any downstream analysis that
utilizes the brain age prediction, because any conclusions made about the PAD would
depend on the initialization of the CNN. In light of this, it would be reassuring if we
could demonstrate that our method generally converges to similar PAD predictions after
training.

To test this, four additional randomly initialized instances of our brain age prediction
method are trained and the agreement between their PADs is examined. This procedure
entails repeating these three main steps four times: 1) Train four CNNs on the Icelandic
dataset on the four previously mentioned image types. 2) Freeze convolutions layers
and train the CNNs on the IXI dataset (transfer learning step). 3) Predict brain age in
the UK Biobank dataset using CNNs, combine the predictions with majority voting and
calculate PAD values.

After repeating these steps, we get four instances of the brain age prediction method
that predict brain age of the 12395 subjects in the UK Biobank with mean absolute error
(MAE) equal to 4.6, 5.5, 5.4, and 4.9 respectively. The reason why the error is higher
here compared to the original results is that we did not spend as much time optimizing
these CNNs. Nevertheless, if we look at the agreement of the original and the four new
PADs we find that the intraclass correlation (ICC) is estimated to be equal to 0.86 (95%
confidence interval [CI] = [0.855, 0.863]). This indicates that the UK Biobank PAD
calculated using our method stays rather consistent between the five different training
runs and is relatively robust to random weight initialization.

2.4. Associations between PAD and performance on neuropsychological tests
As mentioned above, previous studies have linked high PAD to cognitive impairment

[21, 24, 10, 49]. In light of this, we are interested in looking at if PAD associates with
performance on neuropsychological tests. Specifically, performance on tests administered
by the UK Biobank that are designed to measure: fluid intelligence, numeric memory,
visual memory, prospective memory, simple processing speed, complex processing speed,
visual attention, and verbal fluency. To estimate PAD in the UK Biobank, we train
four CNNs on the Icelandic set, then the IXI set using transfer learning, and combine
their predictions using majority voting. We see from Table 3 that PAD is associated with
worse performance on the digit substitution test (DSST), trail making tests (TMTs), and
the reaction time test.5 As expected, these results indicate that PAD is in fact associated
with cognitive impairment.

2.5. Genome-wide association study
PAD has previously been shown to be heritable [11, 35], however, to our knowledge

no sequence variants conferring risk of or protecting against PAD have been identified.
In order to look for such variants, we ran a genome wide association scan (GWAS) in
the UK Biobank sample on PAD (same PAD as Section 2.4). This scan yields two
sequence variants, rs2435204-G and rs1452628-T (Figure 2 and Table 4A). Additionally,
given that sequence variants known to associate with brain structure are likely to be

5Appendix C gives a more detailed description of the tests.
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Table 3: Pearson’s r correlation between PAD and performance on neuropsychological tests. Negative
DSST, positive TMT, and positive Reaction Time indicate worse performance. Abbreviations: confi-
dence interval (CI), digit substitution test (DSST), trail making test (TMT).

Neuropsychological Test PAD Correlation (%) 95% CI (%) P Value No. Subjects
DSST -8.0 (-10.4, -5.7) 3.0e-11 6852
TMT B 7.9 (5.4, 10.4) 8.0e-10 6080
TMT A 5.4 (2.9, 7.9) 2.3e-05 6080
TMT B - A 5.1 (2.6, 7.6) 8.6e-05 5920
Reaction Time 3.3 (1.6, 5.1) 2.2e-04 12387

enriched for variants that associate with PAD. We decided to test a smaller set of 331
brain structure variants for association with PAD6. This yielded associations with three
additional variants (Table 4B).

Figure 2: Manhattan plot of the GWAS results for the UK Biobank data. The horizontal line denotes
the P value threshold for genome-wide significant effect.

The high number of tests conducted in GWAS combined with the general small effect
size of common markers greatly increases the risk of a false postives [67]. To protect
against potential confound effects we adjusted for variables, such as age, gender, total
intracranial volume, and removed individuals of non-white British ancestry7. And then
to thoroughly vet each hit we took three steps. 1) We performed a replication test on
held out data. 2) Looked at whether the association results are affect by randomly

6Section 4.5 contains information about how the brain structure variants were identified.
7Section 4.5 provides more information about the exact procedure.
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Table 4: Association between sequence variants and PAD for 12395 subjects. (A) Genome wide signif-
icant sequence variants. (B) Sequence variants associated with structural MRI brain phenotypes that
also associate with PAD. Abbreviations: confidence interval (CI), minor allele frequency (MAF).

(A)
rs Number Position Allele MAF (%) Effect 95% CI P Value

(GRCh38) (min/maj)
rs2435204 chr17:45910839 G/A 26.6 0.10 (0.07, 0.13) 9.7e-12
rs1452628 chr1:214966544 T/A 36.2 -0.08 (-0.11, -0.05) 1.2e-09

(B)
rs Number Position Allele MAF (%) Effect 95% CI P Value

(GRCh38) (min/maj)
rs2790099 chr6:45475612 C/T 36.0 -0.06 (-0.09, -0.03) 5.8e-06
rs6437412 chr3:194776533 C/T 28.2 -0.06 (-0.09, -0.03) 1.6e-05
rs2184968 chr6:126439848 C/T 46.0 0.05 (0.03, 0.08) 4.3e-05

initializing and retraining the CNN. 3) Checked if the reported variants associate with
other phenotypes related to brain ageing.

1) The five reported sequence variants also associated with PAD in a replication
set of 4453 subjects (Table 12 [Appendix G]). Four other variants which came up in the
discovery stage were omitted because they did not replicate. 2) The five sequence variants
still associate with PAD even after we randomize the CNN weights and retrain the method
(Table 13 [Appendix H]). This fits with the PAD ICC results from Section 2.3, which
indicate that retraining the method should not have a large effect on any downstream
analysis. The reason why the original PAD generally has a stronger association than
the other four PAD estimates could be due to the Winner’s curse [80], or the fact that
the new PAD estimates are less optimized. 3) The identified sequence variants also
associate with brain structure likely to be affected by brain ageing.8 Table 7 (Appendix
F) shows that both PAD and rs1452628-T associate with lower cerebrospinal fluid (CSF)
throughout the cerebral cortex which is consistent with reduced cortical sulcal openings.
On the other hand, rs2435204-G associates with lower total white matter surface area,
and reduced area in a number of cortical brain regions (Table 8). We also see that the
other three sequence variants and PAD are associated with numerous structural brain
phenotypes (Tables 9-11). In addition, we scanned for the phenotype effects of all five
single-nucleotide polymorphisms (SNPs) in the UK Biobank data analyzed by the Roslin
Institute [7] (Supplementary Tables 1-5).

3. Discussion

Here, we have presented a novel deep learning approach, using residual convolutional
neural networks to predict brain age from a T1-weighted MRI, a Jacobian map, and
gray and white matter segmented images, to study the discrepancy between age-related

8Appendix F lists associations between the sequence variants and SBM/VBM brain structure pheno-
types and correlation between PAD and the brain structure phenotypes (Tables 7-11).
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structural brain changes and chronological age. The MRI based deep learning system
was shown to predict brain age from T1-weighted MRI data with a MAE = 3.39 and
R2 = 0.87 on test data. Comparing our approach to other machine learning methods
trained on surface-based morphometry, voxel-based morphometry, and similarity matrix
features, we showed that our approach predicts brain age more accurately. We showed
that transfer learning can be used to efficiently increase prediction accuracy for new sites.
The PAD calculated using this method was shown to be relatively robust to random
weight initialization and retraining, a result that indicates that the PAD estimated using
our method can be used as a reliable phenotype in the study of brain ageing, as well
as in the study of specific disorders of the brain. We also proposed that PAD could
be an informative phenotype for genetic association studies, and indeed, our association
analysis of PAD in a discovery set of 12395 subjects and replication set of 4453 subjects
yielded five sequence variants.

The sequence variant with the strongest association, rs2435204-G, tags the H2 (in-
verted) form of the 17q21.31 inversion polymorphism [71]. This inversion spans approxi-
mately 1 Mb and includes 10 genes, includingMAPT, a gene that encodes the tau protein
which has been implicated in various dementias [58]. In addition, micro-deletions within
the inversion are known to cause intellectual disability [40]. The H1 inversion haplotype
has been associated with increased risk of Parkinson’s disease, male pattern baldness, and
several other phenotypes, whereas H2 has been associated with a number of phenotypes
including neuroticism [54], fibromyalgia [43], lower educational attainment, increased fe-
cundity [39], and smaller intracranial volume9 (ICV) [33]. Due to the extensive linkage
disequilibrium (LD) the 17q21.31 inversion region, reported markers for various associ-
ations in the region often differ between studies. For example, the most recent GWAS
meta-analysis of Parkinson’s disease reports an association with rs17649553-T, that is
fixated on and highly correlated with the H2-tagging rs2435204-G (r2 = 0.82, D′ = 1),
with OR = 0.78 (95% CI = [0.76, 0.80]), P = 1.26 · 10−68 [15].

rs2435204-G also associates with brain structure phenotypes. Table 8 (Appendix F),
shows that both PAD and rs2435204-G associate with increased thickness and decreased
area in cortical brain regions. Interestingly, this pattern of increased thickness and
decreased area has previously been associated with neuroticism [61]. Thus, lifestyle
or phenotypes associated with a high neuroticism score, including anxiety, worry, fear,
anger, frustration, depressed mood and loneliness may associate with PAD.

The other genome-wide significant sequence variant, rs1452628-T, is located close
to KCNK2 (also known as TREK1 ), which belongs to the two-pore domain potassium
channel family and is mainly expressed in the brain [28]. In mice, KCNK2 has been
implicated in neuroinflammation [4], cerebral ischemia [6], and blood-brain barrier dys-
function [78]. rs1452628-T correlates with SNPs that have previously been associated
with cortical sulcal opening and GM thickness, rs6667184 (r2 = 0.68), and rs864736
(r2 = 0.49) [44].

In addition, we identified three sequence variants associated with PAD by restrict-
ing the analysis to SNPs known a priori to associate with structural phenotypes. 1)
rs2790099-C is located in an intron of RUNX2, a gene that encodes the RUNX2 pro-
tein which is essential for osteoblastic differentiation and skeletal morphogenesis and has

9PAD is adjusted for ICV, thus the observed effect on PAD is not caused by ICV.
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been shown to play several roles in cell cycle regulation [73]. Supplementary Figure 12
shows that rs2790099-C is a possible cis-eQTL of RUNX2 and it is most expressed in
the basal ganglia (caudate and putamen). This lines up with the a priori brain structure
GWAS that shows that rs2790099-C has genome-wide significant associations with white
matter volume of regions in the basal ganglia (putamen and pallidum) (Table 9). 2)
rs6437412-C is an intron variant of LINC01968 that associates with increased cortical
CSF (Table 10) and hematological traits (Supplementary Table 4). 3) rs2184968-C is
located in an intron of CENPW, a gene that has previously been associated with traits,
such as, height [55], cognitive performance [47], and male-pattern baldness [57]. Our
analysis shows that rs2184968-C is associated with increased CSF in subcortical regions
and increased size of the fourth ventricle (Table 11).

Confound effects are a problem for big imaging studies due to the huge number of
imaging artifacts that can potentially influence both imaging and non-imaging variables
of interest [67]. Some of the confound effects we have tried to control for are effects due
to age, sex, head size, population structure, and scanner type. Head motion is another
potentially problematic confound effect, because it causes reduction of estimated gray
matter volume and thickness in MRI images similar to what we expect to see due to
ageing [60]. While head motion is not important in the evaluation of our method (see
Cole et al. [11]), it is potentially a problematic confound for GWAS analysis because
certain clinical groups associate more with scanner motion. Elliott et al. [17] suggest
to use fMRI-derived head motion estimates to correct for confound effects due to head
motion when running GWAS analysis on brain structure phenotypes. We did try to
correct PAD for head motion as they suggest, however, this correction only had a small
effect on our results. Other potential confounds that we looked at were sample relatedness
(the first 40 principal from components genetic ancestry analysis), genotyping array, and
the assessment center were neuropsychological testing was performed. As with head
motion, adjusting for these variables did not affect our results.

From our analysis we see that PAD associated with worse performance on neuropsy-
chological tests, specifically poor performance on DSST, TMT, and the reaction time
tests (Table 3). Interestingly, both the DSST and the reaction time test are designed to
measure cognitive processing speed. The TMT is designed to asses visual attention. How-
ever, psychomotor speed is a factor in successful TMT performance [63]. Furthermore, a
decline in processing speed along with impairment of reasoning, memory, and executive
function are well documented to occur in age-associated cognitive decline [16]. As such,
these results are in line with other studies that link high PAD to cognitive impairment
[21, 24, 10, 49]. We note, that the association between PAD and TMT is consistent with
the previous finding of Cole et al. [10]. However, the large dataset used here gives more
conclusive results. Supporting this, we additionally find that schizophrenia, a brain dis-
order characterized by complex patterns of cognitive impairment, correlates with positive
PAD (greater brain ageing than chronological age) and (Table 6 [Appendix E]).

In conclusion, we have presented a new method for predicting brain age using cutting-
edge machine learning techniques. Our deep learning method produces a single measure
(PAD) from raw MRI data that captures complex underlying correlated changes in MRI
and can be used to study various traits and diseases, and in particular for genetic discov-
ery. Using such a method represents one potential way for overcoming challenges with
high dimensional data and multiple testing that plagues MRI research. By applying our
method to large genomic datasets such as the UK Biobank has enabled us to identify
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novel genetic components that influence brain ageing. Further research into these com-
ponents has potential to shed more light on the biological underpinnings of the ageing
brain and its connection to various diseases and disorders.

4. Materials and methods

4.1. Datasets
The proposed method was evaluated on T1-weighted MR images from three inde-

pendent datasets: an Icelandic dataset, the UK Biobank dataset, and the IXI dataset.
DeCODE genetics provided the Icelandic MR data, consisting of scans from 1264 healthy
subjects aged between 18 and 75 years. This dataset includes 1815 scans in total, since
some subjects have several scans. The Icelandic data were acquired using two different
scanners, a 1.5T Phillips Achieva scanner, and a 1.5T Siemens Magnetom Aera scanner.
Scans were imaged using a T1-weighted gradient echo sequence (Philips Achieva: repe-
tition time (TR) = 8.6 ms, echo time (TE) = 4.0 ms, flip angle (FA) = 8°, 170 slices,
slice thickness = 1.2 mm, acquisition matrix = 192 × 192, field of view (FOV) = 240
× 240 mm; Siemens Aera: repetition time (TR) = 2400 ms, echo time (TE) = 3.54 ms,
flip angle (FA) = 8°, 160 slices, slice thickness = 1.2 mm, acquisition matrix = 192 ×
192, field of view (FOV) = 240 × 240 mm). Any serious neurological disorders were
prescreened and removed. Additionally, we removed from the training and holdout sets
subjects diagnosed with neurodevelopmental and mental disorders such as autism, bipo-
lar disorder, intellectual disability, or schizophrenia, and subjects with any copy number
variations previously associated with neurodevelopmental or psychiatric disorders.

The UK Biobank dataset10 consists of T1-weighted MR images of 15040 healthy
subjects aged between 46 and 79 years old. The data were all collected using a 3T
Siemens Skyra scanner. It is well-known that the presence of undetected population
structure can lead to both false positive results and failure to detect genuine associations
in genetic association studies [51], in an effort to combat this our analysis was constrained
to 12395 individuals of white British ancestry. An additional release of MRI images by
UK Biobank was added to a replication set. This set contains 6888 subjects (thereof
4458 subjects of white British ancestry) aged between 47 and 80 years old. The images
in this set were collected using the same protocol as the previous UK Biobank set.

The IXI dataset consists of T1-weighted MR images of 544 healthy subjects and is
freely available online. The subjects age at imaging was between 20 and 86 years old.
The IXI data was collected from three different sites. The Hammersmith Hospital using
a Philips 3T system, Guy’s Hospital using a Philips 1.5T system and the Institute of
Psychiatry using a GE 1.5T system.11

4.2. Preprocessing
Preprocessing was carried out using the computational anatomy toolbox (CAT12)

[23]. First, the input data were inhomogeneity corrected. Then the skull and other non-
brain elements were removed. Finally, the images were registered into the standard MNI

10www.ukbiobank.ac.uk/imaging-scanning-study/
11Histograms of the age distribution of the three datasets mentioned are shown in Appendix A.
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space using the deformable registration algorithm DARTEL [2]. For further information,
refer to the CAT12 manual [8].

There are three types of images that the preprocessing step generates. The first is an
MNI-registered image. Second, a Jacobian map which is a by-product of the deformable
registration. Lastly, a gray matter and white matter soft segmented images. All of the
image types mentioned above have voxel size 1.5 mm3 and size 121x145x121.

4.3. CNN architecture
The CNN uses a residual architecture [26] as depicted in Figure 3. It consists of

five residual blocks, each followed by a max pooling layer of stride 2x2x2 and kernel
size 3x3x3, and one fully connected block. The convolutional part of the CNN reduces
the input image from size 121x145x121 to 128 feature maps of size 4x5x4. The fully
connected part reduces these feature maps down to an age prediction.

Figure 3: A flowchart showing the components of the proposed CNN architecture. Abbreviations:
residual (Res), fully connected (FC).

The residual block, displayed in Figure 4, consists of a combination of layers which
are repeated twice inside the residual blocks. This combination is composed of a 3D
convolutional layer with stride 1x1x1 and kernel size 3x3x3, a batch re-normalization
layer [34], and an ELU activation function [9]. The defining element of the residual block
is the skip connection which adds the signal feeding into the residual block to the output
of a layer close to the end of the block. The number of feature maps in block number n
was chosen by the rule 2n+2.

Figure 4: A flowchart showing the components of the proposed residual block. Abbreviations: batch
re-normalization (BRN), convolutional layer (Conv).
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The fully connected block, depicted in Figure 5, is a multilayer perceptron (MLP) [81]
with one hidden layer. The input layer has 128 × 4 × 5 × 4 = 10240 neurons, the hidden
layer (FC 1) has 256 neurons that use an ELU activation function, and the output layer
has a single neuron. Following the hidden layer, a dropout [69] layer with keep rate equal
to 0.8 is employed. The output layer (FC 2) has no activation function which means
that it performs a linear regression on the hidden layer features. To account for factors
such as scanner type and sex that can affect the estimated brain age of an individual we
include them as inputs in the linear regression by concatenating them with the hidden
features of the MLP.

Figure 5: A flowchart showing the components of the proposed fully connected block. Abbreviations:
fully connected layer one (FC1), concatenation layer (Concat), fully connected layer two (FC2).

The mean absolute error was used as the loss function and the CNN was optimized
using Adam [37] with parameters: learning rate = 0.001, decay= 10−6, β1 = 0.9,
β2 = 0.999, and batch size = 4. The He initialization strategy [27] was used to initialize
the weights, and each trainable node in the CNN was regularized with l2 weight decay
[42], with λ = 5 × 10−5. Early stopping [53] was used, i.e., if the validation error did
not improve in 100 epochs the training was stopped. Furthermore, to reduce the risk
of overfitting, data augmentation [25] was used to generate new training instances by
applying a coordinate transformation to a random subset of the training data, consisting
of a combined 3D rotation and a 3D translation. The rotation angles were between -40
and 40 degrees with equal probability, and the translation distance, for each direction,
was selected between -10 and 10 voxels with equal probability.

4.4. SBM, VBM, and similarity matrix brain age prediction
The SBM features were generated using FreeSurfer’s recon-all algorithm12 [18] and

the VBM features were generated using the CAT12 toolbox13. The similarity matrix
was constructed by taking the inner product between the combined gray and white
matter segmented images of each subject. The SBM and VBM features were adjusted
for intracranial volume, sex and scanner type. The features were then zero centered
and normalized to unit variance. The regression methods that were tested were, linear
regression [65], lasso [75], ridge regression [30], elastic net [82], random forest regression
[29], and SVR [68]. A grid search was used to find the tuning parameters corresponding
to the lowest cross-validation error for the methods mentioned.

12https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
13www.neuro.uni-jena.de/cat/
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4.5. Statistical methods
To assessing the accuracy of the machine learning methods we performed simple

training and validation splits, and selected a suitable model by evaluating the validation
MAE. The subjects from the Icelandic sample were split between these three sets, and if
a subject had multiple images, the images were all put in the same set. The data were
divided into 64% training set (Ns = 809, Ni = 1171), 16% validation set (Ns = 202,
Ni = 298), and 20% test set (Ns = 253, Ni = 346), were Ns is the number of subjects
and Ni is the number of images. When evaluation the machine learning models the MAE
and R2 score for the images in the validation and test set is calculated.

To assess the transfer learning performance, the IXI dataset was split into 80% train-
ing set (N = 440), 20% validation set (N = 104) and the whole UK Biobank dataset
was used as a test set (N = 12395). As before, we evaluate accuracy by calculating the
MAE and R2 score on the validation and test set.

In order to test the reliability of PAD, the intraclass correlation was calculated with
ICCbare from the ICC R package14. The 95% confidence interval was estimated using
bootstrapping with 2000 sampling iterations.

The Pearson correlation coefficient was calculated in order to test for association be-
tween PAD and performance on neuropsychological tests. Before performing the analysis
we first adjusted the PAD for age, age2, total intracranial volume, sex, the interaction be-
tween sex and age. The correction was performed using linear regression. Ten correlation
tests were performed, so a Bonferroni adjusted significance level αB2 = 0.05/10 = 0.005.

We performed a GWAS on PAD to find associated sequence variants. For the genetic
analysis we used version 3 of the imputed genetic dataset released by UK Biobank in July
2017 [5]. The UK Biobank genetic data was assayed using two very similar genotyping
arrays (95% of marker content is shared). Roughly 10% of the subjects were genotyped
using applied Biosystems UK BiLEVE Axiom Array by Affymetrix and the rest using
the closely related Applied Biosystems UK Biobank Axiom Array [5]. Variants with im-
putation quality score below 0.3, and minor allele frequency below 0.1% were filtered out,
which left ~20 million variants to be considered for GWAS. Before performing GWAS,
the PAD was adjusted for age, age2, total intracranial volume, sex, the interaction be-
tween sex and age using linear regression. The adjusted PAD was then normalized with
an inverse normal transformation. Sequence variants associated with PAD are only re-
ported if they reach genome-wide significance. If two genome-wide significant variants
are in LD (r2 > 0.1) we report the variant with the lower p-value.

In addition, we tested for association between PAD and sequence variants known
to associate with structural brain phenotypes. These variants were found by perform-
ing GWAS separately on 305 SBM phenotypes generated with recon-all by using the
Freesurfer 6.0 software [18] and 540 VBM phenotypes generated by using CAT12 [23].
All genome-wide significant markers were then aggregated into a single list. In cases
where variants were in LD (r2 > 0.5), only the variant with the lower p-value was se-
lected. The final list included 331 variants, to account for testing test variants for the
second time a Bonferroni adjusted significance level αB3 = 0.05

2·331 ≈ 7.5 · 10−5 was used
for the PAD association test.

14https://cran.r-project.org/web/packages/ICC/index.html
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To reduce the risk of false positive sequence variant associations we additionally
checked for association in a replication set of 4453 subjects. To pass this test the as-
sociation between the variants under consideration and PAD need to show evidence of
statistical significance (αR < 0.05).

4.6. eQTL analysis
To investigate if any of the variants are expression quantitative trait loci (eQTLs)

we used the GTEx database15 [13]. Our eQTL analysis was carried out by logging onto
https://gtexportal.org, typing in the corresponding rs number of identified variants,
and checking if they have any associated eQTLs. However, identifying whether a variant
is truly causal in both GWAS and eQTL is challenging because of the uncertainty caused
by LD [31]. Therefore, we only report variants as eQTLs of genes if they are close to
being the most significant eQTL of that specific gene.

Code availability

Any custom code or software used to implement the brain age prediction method
detailed in this paper will be made available upon request.

Data availability

The genetic and phenotype datasets generated by UK Biobank used in this study
are available via the UK Biobank data access process (see http://www.ukbiobank.
ac.uk/register-apply/). Detailed information about the genetic data and MRI data
available in UK Biobank is listed here: http://www.ukbiobank.ac.uk/scientists-3/
genetic-data/, https://www.fmrib.ox.ac.uk/ukbiobank/.

The Icelandic data used in this publication are not publicly available due to informa-
tion, contained within them, that could compromise research participant privacy. The
authors declare that the data supporting the findings of this study are available within
the article, its supplementary information, and upon request.
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Additional results

Appendix A: Chronological age distribution of the datasets
Figures 6, 7, 8 show histograms of the distribution of age in the Icelandic dataset,

UK Biobank dataset, and IXI dataset.

Figure 6: A histogram showing the distribution of chronological age in the Icelandic dataset.

Figure 7: A histogram showing the distribution of chronological age in the UK Biobank dataset.

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/595801doi: bioRxiv preprint 

https://doi.org/10.1101/595801


Figure 8: A histogram showing the distribution of chronological age in the IXI dataset.

Appendix B: SBM, VBM, and similarity matrix results
All of the SBM, VBM, and similarity matrix results are shown in Table 5. The method

that performed best on the SBM features was a radial basis function (RBF) kernel SVR
method with C = 10 and γ = 10−3. Similarly, the best performing method on VBM
features was an RBF kernel SVR method with parameters C = 100 and γ = 10−3. The
best performing method on similarity matrix features was a linear kernel SVR method
with penalty parameter C = 100.

Table 5: All SBM, VBM, and similarity matrix results. The cross validation was performed using 10-fold
cross validation. Abbreviations: cross validation (CV), linear regression (LR), ridge regression (RR),
elastic net (EN), random forest (RF), similarity matrix (SM), subjects (S), images (I).

Method Type CV MAE CV R2 Test MAE Test R2 No. S No. I
LR SBM 6.218 -1.516 5.239 0.677 1263 1320
RR SBM 5.275 0.688 5.149 0.699 1263 1320
Lasso SBM 5.359 0.679 5.324 0.685 1263 1320
EN SBM 5.276 0.689 5.149 0.699 1263 1320
RF SBM 6.069 0.588 6.365 0.557 1263 1320
SVR SBM 5.234 0.694 5.149 0.699 1263 1320
LR VBM 4.769 0.729 5.034 0.699 1246 1794
RR VBM 4.579 0.753 4.907 0.717 1246 1794
Lasso VBM 4.596 0.756 4.805 0.724 1246 1794
EN VBM 4.545 0.759 4.859 0.719 1246 1794
RF VBM 5.374 0.664 5.272 0.645 1246 1794
SVR VBM 4.210 0.784 4.368 0.764 1246 1794
LR SM 8.363 0.144 8.478 0.146 1264 1815
RR SM 4.823 0.729 4.937 0.728 1264 1815
Lasso SM 5.160 0.695 5.306 0.688 1264 1815
EN SM 5.050 0.702 5.206 0.701 1264 1815
RF SM 7.910 0.277 7.520 0.342 1264 1815
SVR SM 5.079 0.697 4.931 0.726 1264 1815
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Appendix C: The neuropsychological tests
Fluid intelligence16: Participants are asked to solve problems that require logic and

reasoning ability, independent of acquired knowledge and have 2 minutes to complete as
many questions as possible.

Numeric memory17: Participants are shown a 2-digit number which then disappears
and after certain period are asked to recall the number. The test starts with a 2-digit
number and becomes 1-digit longer each time they remember correctly up to a maximum
of 12 digits.

Visual memory18: Participants are asked to memorize the position of as many matching
pairs of cards as possible. The cards are then turned face down and the participant is
asked to find as many pairs as possible.

Prospective memory19: Participants are shown four colored shapes and asked to touch a
square. They should remember that earlier they were asked to touch the orange circle
instead.

Simple processing speed20: Participants play 12 rounds of the card-game ’Snap’ to assess
reaction time. They are shown two cards at a time; if both cards are the same, they
press a button as quickly as possible.

Complex processing speed21: Participants are asked to solve a digit symbol substitu-
tion test (DSST). They are presented with a series of grids in which symbols are to be
matched to numbers according to a key presented on the screen.

Visual attention 22: Participants are asked to solve a trail making test (TMT) of type A
and B. They are presented with a series of labeled circles and instructed to touch them
according to a particular ordering rule.

Verbal fluency23: Participants are interviewed by trained staff to assess cognitive func-
tion, based on how many words beginning with the letter ’S’ they can state within one
minute. This test is only available for a small subset of the total participants.

16http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20016)
17http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20016)
18http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100030
19http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20018
20http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20023
21http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=122
22https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=121
23https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100077
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Appendix D: Brain age prediction scatter plots

Figure 9: Scatter plots showing test set predictions made by CNNs. These plots show the chronological
age against the brain age predicted by the CNNs trained on T1-weighted images, Jacobian maps, gray
matter segmented images, and white matter segmented images. The top left plot shows the predictions
made by the CNN trained on T1-weighted images. The top right plot shows the predictions made by the
CNN trained on Jacobian maps. The bottom left plot shows the predictions made by the CNN trained
on segmented gray matter images. The bottom right plot shows the predictions of the CNN trained on
segmented white matter images.
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Figure 10: Scatter plots showing test set predictions made by combined CNN predictions. These plots
show the chronological age against the brain age predicted by a combination of CNNs trained on regis-
tered T1-weighted images, Jacobian maps, gray matter segmented images, and white matter segmented
images. The top left plot shows majority voting predictions made by the CNN trained on T1-weighted
images and Jacobian maps. The top right plot shows the majority voting predictions made by CNNs
trained on gray and white matter segmented images. The bottom left plot shows the majority voting
predictions made by CNNs trained on T1-weighted images, Jacobian maps, segmented gray and white
matter images. The bottom right plot shows the predictions made by the linear regression blender,
trained on four predictions from CNNs trained on T1-weighted images, Jacobian maps, and segmented
gray and white matter images.
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Figure 11: Four scatter plots that show the effect of using transfer learning, when predicting brain age
of the IXI (validation set) and UK Biobank (test set) datasets, using a CNN trained on images from
the Icelandic dataset. These plots show the chronological age against brain age predicted by the CNNs
trained on T1-weighted images. The top left plot shows the UK Biobank brain age predictions without
transfer learning. The top right plot shows the UK Biobank brain age predictions with transfer learning.
The bottom left plot shows the IXI brain age predictions without transfer learning. The bottom right
plot shows the IXI brain age predictions with transfer learning.
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4.7. Appendix E: Predicting brain age of neurodevelopmental and mental disorder cases
Subjects from the Icelandic sample diagnosed with neurodevelopmental or mental

disorders were left out while training the brain age prediction method. This includes
subjects with autism, bipolar disorder, schizophrenia, and intellectual disability. We
now look for deviation in PAD in these subjects compared to the PAD of the healthy
Icelanders.

A two sample t-test was used to test for the difference between the mean PAD of the
neurodevelopmental and mental disorder cases and healthy controls. Before performing
the analysis we first compute the PAD. In cases where subjects had multiple images
the average PAD was used instead. In this particular instance the PAD was adjusted
for age, gender, and total intracranial volume using a generalized additive model. Five
correlation tests were performed, so we used a Bonferroni adjusted significance level
αB1 = 0.05/5 ≈ 0.01. The controls are taken from the Icelandic test set (N=291) and
their average PAD is 0.1. Most of the subjects in the schizophrenia group are young
males. Therefore, in an effort to compare similar groups we performed an additional test
where only the PAD of males under 35 years is compared. After applying this constraint
there are 22 control subjects left and their average PAD is −0.6.

Table 6: The average PAD difference between neurodevelopmental/mental disorder cases and controls
from the test set. Abbreviations: confidence interval (CI).

Cases PAD Difference 95% CI P Value No. Cases No. Controls
Schizophrenia 2.2 (1.2, 3.2) 3.5e-05 68 291
Schizophrenia (Male Under 35) 3.2 (1.4, 5.1) 1.1e-03 48 22
Intellectual Disability 1.5 (-0.5, 3.6) 1.2e-01 6 291
Autism 2.3 (-0.9, 5.6) 1.4e-01 10 291
Bipolar Disorder 0.4 (-0.6, 1.5) 4.0e-01 31 291

Table 6 shows that PAD is higher in individuals with schizophrenia than in controls.
This is consistent with findings from other studies [56, 64, 41, 35] that have looked at brain
ageing of schizophrenia patients. Brain structure irregularities in schizophrenia, such as
cortical thinning [76] and cerebral ventricular enlargement [79] also seen in healthy ageing
[62, 36] may be driving the prediction. Why there are structural differences in brains
from schizophrenia patients is not fully understood. Psychotic episodes and longtime use
of antipsychotic drugs [52] probably contribute. Sequence variants conferring high-risk
of the disease have also been shown to affect brain structure in controls [70].
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Appendix F: SBM and VBM phenotypes associated with variants from brain age GWAS

Table 7: SBM and VBM phenotypes associated rs1452628. Only structural brain phenotypes that reach
genome-wide significance in the discovery set (UK Biobank) are listed. In addition, the correlations
between PAD and the SBM/VBM phenotypes are shown. Abbreviations: cerebrospinal fluid (CSF),
gray matter (GM), gyrus (Gy), inferior (Inf), left hemisphere (LH), lobe (Lo), right hemisphere (RH),
superior (Sup), thickness (Thk), volume (Vol).

rs1452628 Association PAD Association
Phenotype P Value β P Value Pearson’s r (%)
RH Sup parietal Gy CSF Vol 2.5e-33 -0.16 0.0 43.9
LH Sup parietal Gy CSF Vol 3.5e-31 -0.15 0.0 41.9
RH postcentral Gy CSF Vol 1.3e-28 -0.15 0.0 44.0
LH postcentral Gy CSF Vol 9.0e-26 -0.14 0.0 47.8
LH posterior cingulate Gy CSF Vol 2.5e-24 -0.13 0.0 44.4
RH posterior cingulate Gy CSF Vol 3.9e-24 -0.13 0.0 45.0
RH precentral Gy CSF Vol 4.5e-24 -0.13 0.0 41.8
LH precentral Gy CSF Vol 2.1e-21 -0.12 0.0 43.8
RH Inf lateral parietal Lo CSF Vol 5.0e-20 -0.12 0.0 45.0
LH middle frontal Gy CSF Vol 2.3e-19 -0.12 0.0 40.3
RH middle frontal Gy CSF Vol 2.6e-19 -0.12 0.0 37.5
LH Inf lateral parietal Lo CSF Vol 8.9e-18 -0.11 0.0 47.1
RH Sup frontal Gy CSF Vol 1.0e-16 -0.11 0.0 36.7
LH lateral occipital Lo CSF Vol 6.2e-16 -0.11 0.0 42.4
LH cuneus CSF Vol 3.3e-15 -0.10 0.0 42.8
LH Sup frontal Gy CSF Vol 4.1e-15 -0.10 0.0 39.6
LH precuneus Thk 2.3e-13 0.10 2.48e-109 -19.8
LH Sup parietal Thk 3.2e-13 0.10 1.43e-68 -15.7
RH Inf frontal Gy CSF Vol 3.6e-13 -0.10 0.0 42.3
RH cuneus CSF Vol 4.1e-13 -0.10 0.0 41.4
RH lateral occipital Lo CSF Vol 4.7e-13 -0.10 0.0 39.4
RH Sup parietal Thk 6.4e-12 0.09 2.2e-110 -19.9
LH anterior cingulate Gy CSF Vol 1.1e-11 -0.09 0.0 44.5
RH anterior cingulate Gy CSF Vol 8.1e-11 -0.09 0.0 43.3
RH Sup temporal Gy CSF Vol 1.6e-10 -0.08 0.0 48.9
RH precuneus Thk 6.4e-10 0.08 2.5e-109 -21.2
RH Sup occipital Gy GM Vol 2.2e-09 0.08 2.0e-142 -22.5

Table 8: SBM and VBM phenotypes associated with rs2435204. Only structural brain phenotypes that
reach genome-wide significance in the discovery set (UK Biobank) are listed. In addition, the correlations
between PAD and the SBM/VBM phenotypes are shown. Abbreviations: left hemisphere (LH), right
hemisphere (RH), thickness (Thk), volume (Vol), white matter (WM).

rs2435204 Association PAD Association
Phenotype P Value β P Value Pearson’s r (%)
Total RH WM surface area 5.1e-17 -0.13 6.4e-27 -9.67
Total LH WM surface area 4.5e-16 -0.12 2.3e-30 -10.3
RH fusiform area 1.8e-15 -0.12 1.5e-22 -8.80
LH fusiform area 3.1e-14 -0.11 1.4e-20 -8.38
RH lateral occipital area 8.9e-12 -0.10 2.1e-7 -4.68
LH postcentral area 2.2e-10 -0.10 5.0e-2 -1.77
RH rostral middle frontal Thk 2.5e-10 0.10 3.3e-52 -13.7
LH lateral occipital area 9.8e-10 -0.09 5.6e-8 -4.90
RH lingual area 1.5e-09 -0.09 8.7e-5 -3.54
Total LH cerebral WM Vol 1.8e-09 -0.09 5.0e-98 -18.8
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Appendix F: SBM and VBM phenotype associations for structural brain prior variants

Table 9: SBM and VBM phenotypes associated with rs2790099. Only structural brain phenotypes that
reach genome-wide significance in the discovery set (UK Biobank) are listed. In addition, the correlations
between PAD and the SBM/VBM phenotypes are shown. Abbreviations: left hemisphere (LH), right
hemisphere (RH), volume (Vol), white matter (WM).

rs2790099 Association PAD Association
Phenotype P Value β P Value Pearson’s r (%)
RH putamen WM Vol 4.0e-14 0.10 3.9e-61 -14.74
RH pallidum WM Vol 4.0e-12 0.09 1.6e-103 -19.23
LH putamen WM Vol 6.4e-12 0.09 4.3e-51 -13.45
RH thalamus WM Vol 1.2e-10 0.09 1.6e-44 -12.53
LH pallidum WM Vol 2.2e-10 0.09 1.5e-118 -20.57
LH thalamus WM Vol 5.0e-10 0.08 1.6e-36 -11.30
RH insula WM Vol 6.7e-09 0.08 4.2e-132 -21.71

Table 10: SBM and VBM phenotypes associated with rs6437412. Only structural brain phenotypes that
reach genome-wide significance in the discovery set (UK Biobank) are listed. In addition, the correlations
between PAD and the SBM/VBM phenotypes are shown. Abbreviations: cerebrospinal fluid (CSF), left
hemisphere (LH), right hemisphere (RH), volume (Vol).

rs6437412 Association PAD Association
Phenotype P Value β P Value Pearson’s r (%)
LH middle frontal Gy CSF Vol 4.1e-14 -0.11 0.0 40.3
LH inferior lateral parietal lobe CSF Vol 1.1e-10 -0.09 0.0 47.8
RH middle frontal Gy CSF Vol 3.0e-10 -0.09 0.0 37.5
RH inferior lateral parietal lobe CSF Vol 4.5e-10 -0.09 0.0 45.0
RH precentral Gy CSF Vol 2.7e-09 -0.08 0.0 41.8
LH postcentral Gy CSF Vol 4.2e-09 -0.08 0.0 47.8

Table 11: SBM and VBM phenotypes associated with rs2184968. Only structural brain phenotypes
that reach genome-wide significance in the discovery set (UK Biobank) are listed. In addition, the
correlations between PAD and the SBM/VBM phenotypes are shown. Abbreviations: amygdaloid body
(AmB), cerebrospinal fluid (CSF), gyrus (Gy), left hemisphere (LH), parahippocampal (ParHip), right
hemisphere (RH), volume (Vol).

rs2184968 Association PAD Association
Phenotype P Value β P Value Pearson’s r (%)
RH cerebellum CSF Vol 4.3e-20 0.12 0.0 39.7
LH cerebellum CSF Vol 1.4e-19 0.12 0.0 39.2
RH brain stem CSF Vol 3.1e-16 0.10 0.0 37.0
LH brain stem CSF Vol 3.9e-13 0.10 0.0 37.0
LH AmB and ParHip Gy CSF Vol 1.1e-09 0.08 3.6e-316 33.2
4th Ventricle Vol. 4.6e-09 0.08 1.4e-69 15.8
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4.8. Appendix G: GWAS replication results

Table 12: Association between sequence variants and PAD for 4458 subjects from the replication set.
(A) Genome wide significant sequence variants. (B) Sequence variants associated with structural MRI
brain phenotypes that also associate with PAD. Abbreviations: confidence interval (CI), minor allele
frequency (MAF).

(A)
rs Number Position Allele MAF (%) Effect 95% CI P Value

(GRCh38) (min/maj)
rs2435204 chr17:45910839 G/A 26.6 0.08 (0.03, 0.13) 2.1e-03
rs1452628 chr1:214966544 T/A 36.2 -0.07 (-0.11, -0.02) 1.1e-03

(B)
rs Number Position Allele MAF (%) Effect 95% CI P Value

(GRCh38) (min/maj)
rs2790099 chr6:45475612 C/T 36.0 -0.07 (-0.11, -0.02) 2.4e-03
rs6437412 chr3:194776533 C/T 28.2 -0.05 (-0.09, 0.00) 4.6e-02
rs2184968 chr6:126439848 C/T 46.0 0.06 (0.02, 0.10) 2.9e-03
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4.9. Appendix H: Effect of random CNN weight initialization on association between
variants and association

Table 13: Correlation between UKB PAD (N = 12395) and the five reported sequence variants. Each
subtable shows Pearson’s r correlation test results for five PADs (calculated by retraining our method
five times) and a specific variant.

(A) Marker: rs2435204
Correlation (%) P-Value

Original PAD 6.0 2.1e-11
PAD 1 5.0 2.1e-08
PAD 2 4.9 4.6e-08
PAD 3 5.2 6.6e-08
PAD 4 5.4 1.5e-09

(B) Marker: rs1452628
Correlation (%) P-Value

Original PAD -5.5 7.1e-10
PAD 1 -4.6 3.3e-07
PAD 2 -4.3 1.9e-06
PAD 3 -4.3 1.7e-06
PAD 4 -3.8 1.6e-05

(C) Marker: rs2790099
Correlation (%) P-Value

Original PAD -4.2 3.8e-6
PAD 1 -2.5 5.6e-3
PAD 2 -2.8 2.0e-3
PAD 3 -3.0 9.7e-4
PAD 4 -2.4 7.1e-3

(D) Marke: rs6437412
Correlation (%) P-Value

Original PAD -3.8 2.6e-05
PAD 1 -3.5 9.0e-05
PAD 2 -2.7 2.4e-03
PAD 3 -3.5 9.8e-05
PAD 4 -3.2 3.7e-04

(E) Marker: rs2184968
Correlation (%) P-Value

Original PAD 3.7 3.6e-05
PAD 1 2.6 3.6e-03
PAD 2 2.9 1.0e-03
PAD 3 2.2 1.2e-02
PAD 4 2.6 3.4e-03
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4.10. Appendix I: GTEx eQTL Analysis
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Figure 12: Multi-tissue eQTLs comparison for the RUNX2 gene and rs2790099. Data Source: GTEx
Analysis Release V7 (dbGaP Accession phs000424.v7.p2)
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