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Abstract 19 

Every-day decisions frequently require choosing among multiple alternatives. Yet, the optimal policy for such 20 

decisions is unknown. Here we derive the normative policy for general multi-alternative decisions. This 21 

strategy requires evidence accumulation to nonlinear, time-dependent bounds, that trigger choices. A 22 

geometric symmetry in those boundaries allows the optimal strategy to be implemented by a simple neural 23 

circuit involving a normalization with fixed decision bounds and an urgency signal. The model captures 24 

several key features of the response of decision-making neurons as well as the increase in reaction time as a 25 

function of the number of alternatives, known as Hick’s law. In addition, we show that, in the presence of 26 

divisive normalization and internal variability, our model can account for several so called ‘irrational’ 27 

behaviors such as the similarity effect as well as the violation of both the independent irrelevant alternative 28 

principle and the regularity principle.  29 

30 
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Introduction 31 

In a natural environment, choosing the best of multiple options is frequently critical for an organism’s survival. 32 

Such decisions are often value-based, in which case the reward is determined by the chosen item (such as 33 

when subjects chose between food items; Figure 1a), or perceptual, in which case subjects receive a fixed 34 

reward if they pick the correct option (Figure 1b). Compared to binary choice paradigms1–3, much less is 35 

known about the computational principles underlying decisions with more than two options4. Some studies 36 

have suggested that decisions among 3 or 4 options could be solved with coupled drift diffusion models4–6, 37 

which are optimal for binary choices7, but, as we’ll show, become sub-optimal once the number of choices 38 

grows beyond two. Another option for modelling such choices is to use “race models” (RMs). In RMs, the 39 

momentary choice preference is encoded by competing evidence accumulators, one per options, which trigger 40 

a choice as soon as one of them reaches a decision threshold (Figure 1c). Such standard RMs imply that both 41 

the races and the static decision criteria are independent across individual options. However, in contrast to 42 

race models, the nervous system features dynamic neural interactions across races, such as activity 43 

normalization8,9 and a global urgency signal10. Whether such coupled races are compatible with optimal 44 

decision policies for 3 or more choices is unknown. 45 

At the behavioral level, subjects choosing between 3 or more options exhibit several seemingly suboptimal 46 

behaviors, such as the similarity effect or violations of both the regularity principle and the independence of 47 

irrelevant alternatives (IIA) principle. The last effect, the violation of the IIA, refers to the observation that 48 

when choosing between two similar options, the subject’s ability to choose is affected by the presence of a 49 

third option even if this third option is never picked11.  However, before concluding that such behaviors are 50 

suboptimal, it is critical to first derive the optimal policy and check whether it is compatible with this policy. 51 

Here, we adopt such a normative approach. By contrast to previous models motivated by biological 52 

implementations12–15, we start by deriving the optimal, reward-maximizing strategy for multi-alternative 53 

decision-making, and then ask how this strategy can be implemented by biologically plausible mechanisms. 54 

To do so, we first extend a recently developed theory of value-based decision-making with binary options7 to 55 

general 𝑁 -alternative cases, revealing nonlinear and time-dependent decision-boundaries in a 56 

high-dimensional belief space. Next, we show that geometric symmetries allow reducing the optimal strategy 57 

to a simple neural mechanism. This yields a novel extension of race models with time-dependent 58 

activity-normalization controlled by an urgency signal10.  59 

The model provides a new perspective on how normalization and an urgency signal cooperate to implement 60 

close-to-optimal decisions for multi-alternative choices. We also demonstrate that the optimal policy is 61 

compatible with divisive normalization, a form of normalization that has been widely reported throughout the 62 

nervous system8,9. With this addition, and in the presence of internal variability, we report that the network 63 

replicates the similarity effect as well as violates both the independent irrelevant alternative principle and the 64 

regularity principle. Thus, our model isolates the functional components required for optimal decision-making 65 
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and replicates a range of essential physiological and behavioral phenomena observed for multi-alternative 66 

decisions. 67 

Results 68 

The optimal policy for multi-alternative decisions 69 

Suppose we have N alternatives to choose from in perceptual or value-based decisions. The decision maker’s 70 

aim is to make choices whose outcome depends on a-priori unknown variables (e.g., the true rewards, Figure 71 

1a, or stimulus contrasts, Figure 1b) associated with the individual options and whose values vary across 72 

choice trials. We will assume that during the course of a decision on a given trial, each short time duration 𝛿𝑡 73 

yields a piece of noisy momentary evidence about the true values of the hidden variables. For instance, in the 74 

case of perceptual decision making, this would correspond to observing new sensory information, while for 75 

value-based decision making this might be the results of recalling past experiences from memory16. Our 76 

derivation shows that the optimal way of accumulating such evidence is to simply sum it up over time (see 77 

Methods). This reduces the process of forming a belief about these variables to a diffusion (or random walk) 78 

process, 𝒙(𝑡), in an 𝑁-dimensional space, as implemented by RMs (the black trace in Figure 1d).  79 

Next, we derive the optimal stopping strategy: when should the decision maker stop accumulating evidence 80 

and trigger a choice? To do so, and in contrast to experiments in which subjects have to wait until the end of 81 

the trial to respond, we only consider the more natural scenario in which the decision maker is in control of 82 

their decision time. In a standard RM, evidence accumulation stops whenever one of the races reaches a 83 

threshold that is constant over time and identical across races. In other words, the evidence accumulation stops 84 

once the diffusing particle hits any sides of an 𝑁-dimensional (half-)cube (Figure 1d). While simple, this 85 

stopping policy is not necessarily optimal. To find the optimal policy, we utilize tools from dynamic 86 

programming7,17,18. One such tool is the “value function” 𝑉(𝑡, 𝒙), which corresponds to the expected reward 87 

for being in state 𝒙 at time 𝑡, assuming that the optimal policy is followed from there on. This value function 88 

can be computed recursively through Bellman’s equation17. For the simple case of a single, isolated choice, 89 

the decision maker aims to maximize the expected reward (or reward rate per unit time) for this choice minus 90 

some cost 𝑐 for accumulating evidence per unit time. One can imagine several different types of costs, such 91 

as, for example, the metabolic cost of accumulating more evidence. Once we embed this single choice within 92 

a long sequence of similar choices, an additional cost 𝜌 emerges that reflects missing out on rewards that 93 

future choices yield (Methods). Overall, the optimal decision policy results in  94 

𝑉(𝑡, 𝒙; 𝜌) =  max { max
𝑖
 𝑟̂𝑖(𝑡, 𝑥𝑖) − 𝜌𝑡𝑤⏟            

, 〈𝑉(𝑡 + 𝛿𝑡, 𝒙)〉 − (𝑐 + 𝜌)𝛿𝑡⏟                }.    (1) 95 

      deciding immediately               deciding later     96 

This value function compares the value for deciding immediately, yielding the highest of the 𝑁 expected 97 

rewards 𝑟̂1, … , 𝑟̂𝑁, with that for accumulating more evidence and deciding later. 𝜌 is the reward rate (the 98 
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99 

average reward obtained per unit time; see Methods for the formal definition); 𝑡𝑤 is the inter-trial interval 100 

including the non-decision time required for motor movement. The expected reward for each option, 𝑟̂𝑖(𝑡, 𝑥𝑖) is 101 

computed by combining the accumulated evidence with the prior knowledge about the reward mean and 102 

variance through Bayes rule (Methods). As shown by dynamic programming theory 19, the larger of these two 103 

terms yields the optimal value function, and their intersection determines the decision boundaries for stopping 104 

the evidence accumulation, and thus the optimal policy. In realistic setups, decision makers make a sequence 105 

of choices, in which case the aim of maximizing the total reward becomes equivalent (assuming a very long 106 

sequence of choice) to maximizing their reward rate, which is the expected reward for either choice divided 107 

by the expected time between consecutive choices. The value function for this case is the same as that for the 108 

single-trial choice, except for that the both values for deciding immediately and for accumulating more 109 

evidence include the opportunity cost of missing out on future rewards (Methods).  110 

 

Figure 1 

Multi-alternative decision tasks and the standard race model. (a) An example value-based task in 

laboratory settings. In a typical experiment, participants are rewarded with one of the objects they chose (in 

a randomly selected trial from the whole trial sequence). (b) An example perceptual task, in which the 

participants are required to choose the highest contrast Gabor patch – in this example the bottom-left one. 

(c) The race model (RM). The colored traces represent the accumulated evidence for individual options (𝑥1, 

𝑥2 and 𝑥3). In the RM, the accumulation process is terminated when either race reaches a constant 

decision boundary. (d) An alternative representation for the same RM, in which the races of accumulated 

evidence are shown as an 𝑁-dimensional diffusion. With this representation, the decision boundary for 

each option corresponds to a side of an 𝑁-dimensional cube, reflecting the independence of decision 

boundaries across options in the RM. 

 

(158 words) 
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We found the optimal policy for this general problem by computing the value function numerically20 from 111 

which we derived the decision boundaries (see Figure 2a). The resulting optimal decision boundaries are 112 

complex and nonlinear (Figure 2a visualizes the optimal decision boundaries, represented as 2-dimensional 113 

surfaces, for the value-based decision with 𝑁 = 3). Clearly, the structure of the optimal decision boundaries 114 

differs substantially from that of standard RMs (Figure 1d). Importantly, we found that they have an 115 

important symmetry: they are parallel to the diagonal—the line connecting (0,0,0)  and (1,1,1) 116 

(Supplementary Note 1 shows this more formally). This symmetry implies that any diffusion parallel to the 117 

diagonal line is irrelevant to the final decision, such that we only need to consider the projection of the 118 

diffusion process onto the hyperplane orthogonal to this line (Figure 2b). The decision boundaries remain 119 

nonlinear even in this projection, as depicted by the curvatures of the solid lines in Figure 2b. Note that the 120 

nonlinearity of the decision boundaries is specific to multi-alternative choice situations (i.e., 𝑁 ≥ 3). Indeed, 121 

for binary choices, our derivation indicates that the projection of the diffusion process onto an 𝑁 − 1 122 

dimensional subspace becomes a projection onto a line since 𝑁 = 2. On this line, the stopping boundaries are 123 

just two points and therefore cannot exhibit any nonlinearities. In fact, for 𝑁 = 2, the optimal policy 124 

corresponds to the well-known drift diffusion model of decision making7,17. 125 

Numerical solutions also revealed that the optimal decision boundaries evolve over time: they approach each 126 

other as time elapses, and finally collapse (Figure 2b, solid curves). These nonlinear collapsing boundaries 127 

differ from the linear and static ones of previous approximate models, such as multi-hypothesis sequential 128 

probability ratio tests (MSPRTs)21–23, which are known to be only asymptotically optimal under specific 129 

assumptions (Methods).  130 

We show in the Supplementary Note 4 that these results generalize to models in which the streams of noisy 131 

momentary evidence are correlated in time, either with short range temporal correlations, as is often observed 132 

in spikes trains, or with long range temporal correlations as postulated for instance in the linear ballistic 133 

accumulator model24,25. Our results also apply to experiments such as the ones performed by Thura and 134 

Cisek26,27 in which the momentary evidence are accumulated directly on the screen, in which case there is no 135 

need for latent integration but the stopping bounds on the observed accumulated evidence remain the same as 136 

in Figure 2a. 137 

Circuit implementation of the optimal policy 138 

In the optimal policy we have derived, the evidence accumulation is simple: it involves 𝑁 accumulators, each 139 

of which sum up their associated momentary evidence independent of the other accumulators. By contrast, the 140 

stopping rule is complex: at every time step, the policy requires computing 𝑁 time-dependent nonlinear 141 

functions that form the individual stopping boundaries. This rule is nonlocal because whether an accumulator 142 

stops depends not only on its own state but also on that of all the other accumulators. A simpler stopping rule 143 

would be one in which a decision is made whenever one of the accumulators reaches a particular threshold 144 

value, as in independent RMs. This, however, would require a nonlinear and nonlocal accumulation process in 145 

order to implement the same policy through a proper variable transformation. Nonetheless, such a solution 146 
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would be appealing from a neural point of view as it could be implemented in a nonlinear recurrent network 147 

endowed with a simple winner-take-all mechanism that selects a choice once the threshold is reached by one 148 

of the accumulators. 149 

Armed with this insight, we found that a recurrent network with independent thresholds, as depicted in Figure 150 

2c, can indeed approximate the optimal solution very closely. It consists of 𝑁 neurons (or 𝑁 groups of 151 

identical neurons), one per option, which receive evidence for their associated option. The network operates at 152 

two time-scales. On the slower time-scale, neurons accumulate momentary evidence independently across 153 

options according to:  154 

𝒙̃𝑡  =   δ𝒙𝑡  +  
𝒙𝑡−1
𝐶𝑡−1

                                                                             (2) 155 

𝒙𝑡  =  𝐶𝑡𝒙̃𝒕                                                                                            (3) 156 

where 𝒙𝒕 is the vector of accumulated evidence at time 𝑡, δ𝒙𝑡 is the vector of momentary evidence at time 157 

𝑡 and 𝐶𝑡 is the commonly used divisive normalization, 𝐶𝑡 = 𝐾 (𝜎ℎ  +  ∑ 𝑥̃𝑡,𝑛
𝑁
𝑛=1⁄ ), (𝑥̃𝑡,𝑛 denotes the 𝑛th 158 

component of the vector 𝒙̃𝑡 at time t) which is found all over cortex and in particular in LIP8.  159 

On the faster time scale, activity is projected onto a manifold defined by 
1

𝑁
∑ 𝑓(𝑥𝑖) =𝑖 𝑢(𝑡), (shown as a gray 160 

surface in Figure 2d) where u(t) is the urgency signal. This operation is implemented by iterating: 161 

𝑥𝑡,𝑛 ← 𝑥𝑡,𝑛 + 𝛾 (𝑢(𝑡) −
1

𝑁
∑ 𝑓(𝑥𝑡,𝑖)

𝑖
)                                                        (4) 162 

until convergence, 𝛾 is the update rate, and  𝑓 is a rectified polynomial non-linearity (see Methods and 163 

Supplementary Note 2 for further details). This process is stopped whenever one of the integrators reaches a 164 

preset threshold. The choice of this projection was motivated by two key factors. First, this particular form 165 

ensures that the projection is parallel to the diagonal, the line connecting (0,0,0) and (1,1,1). As we have 166 

seen, diffusion along this axis is indeed irrelevant. Second, the use of a nonlinear function f implies that we do 167 

not merely project on the hyperplane orthogonal to the diagonal. Instead, we project onto a nonlinear manifold. 168 

This step is what allow us to approximate the original complex stopping surfaces with simpler independent 169 

bounds on each of the integrators as illustrated in Figure 2d (see Supplementary Note 2 for a formal 170 

explanation). The time dependent urgency signal, u(t), implements a collapsing bound, which is also part of 171 

the optimal policy (Figure 2b). Indeed, this urgency signals brings all the neurons closer to their threshold and, 172 

as such, is equivalent to the collapse of the stopping bounds over time (Figure 2d).  173 

Equations 2, 3, and 4 can be turned into a single differential equation (see Eq. 40 in Supplementary Note). 174 

The iterative difference equations we show here are a particular form of the implementation, making it easier 175 

to interpret the diffusion process. Importantly, Equations 2 and 3 provide a generalization of divisive 176 

normalization which ensures that evidence is still integrated optimally over time.  177 
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178 

 

Figure 2 

The optimal decision policy for 3-alternative choices. (a) The derived optimal decision boundaries in the 

diffusion space. In contrast to the standard race model’s decision boundaries (Figure 1d), they are 

nonlinear, but symmetric with respect to the diagonal (i.e., the vector (1,1,1)). (b) Lower-dimensional 

projections of decision boundaries at different time points. The solid curves are the optimal decision 

boundaries projected onto the plane orthogonal to the diagonal (the black triangle in panel a). The dashed 

curves indicate the effective decision boundaries implemented by the circuit in panel c. (c) The circuit 

approximating the optimal policy. Like RMs, it features constant decision thresholds that are independently 

applied to individual options. However, the evidence accumulation process is now modulated by recurrent 

global inhibition after a nonlinear activation function (the “normalization” term) and a time-dependent global 

bias input (“urgency signal”), and rescaled (“divisive normalization”). (d) Schematic illustrations of why the 

circuit in panel c can implement the optimal decision policy. The nonlinear recurrent normalization and 

urgency signal constrain the neural population states to a time-dependent manifold (the gray surfaces). 

Evidence accumulation corresponds to a diffusion process on this nonlinear (𝑁 − 1 dimensional) manifold. 

The stopping bounds are implemented as the intersections (the colored thick curves) of the manifold and 

the cube (colored thin lines), in which the cube represents the independent, constant decision thresholds 

for the individual choice options. Divisive normalization rescales the space of evidence accumulation, 

leaving the relative distances between the accumulators and stopping bounds intact (not shown). Due to 

the urgency signal, the manifold moves toward the corner of the cube as the time elapses, causing the 

intersections (i.e., the stopping bounds) to collapse onto each other over time. 

(279 words) 
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The model contains three parameters: the power of the nonlinearity, and the starting point and slope of the 179 

urgency signal (Methods). When these parameters are optimized to maximize reward rate, the network 180 

approximates very closely the optimal stopping bounds (Figure 2b). As a result, the reward rate achieved by 181 

the network is within 98% and 95% of the optimal reward rate for 3 and 4 options, respectively (across a wide 182 

range of prior distributions over rewards, Methods). 183 

A simple extension of this network can be used to model other types of task such as the one used by Thura and 184 

Cisek 26,27 in which the momentary evidence available on the screen is in fact the accumulated evidence since 185 

the beginning of the trial. All that is needed is to remove the temporal integration step in the input neuron, 186 

since this step is now superfluous. 187 

Normalization and urgency improve the task performances 188 

Our circuit model comprises independent decision thresholds for individual options, as in standard RMs 189 

(consistent with recordings in the parietal cortex 10), but features time-dependent normalization in addition to 190 

an urgency signal. To quantify the contribution of each circuit component, we compared the performance of 191 

four different circuit models: (i) the standard RM with independent evidence accumulation within each 192 

accumulator, (ii) an RM with the urgency signal alone, (iii) an RM with normalization alone, and (iv) the full 193 

model with both the urgency signal and normalization. 194 

 195 

  

Figure 3 

Normalization and urgency improve the task performance. Relative reward rates in value-based (left) and 

perceptual tasks (right). To quantify the contribution of each circuit component, we compared the 

performance of four different circuit models: (i) the standard race model (RM) with independent evidence 

accumulation within each accumulator, (ii) an RM with only an urgency signal, (iii) an RM with only 

normalization, and (iv) the full model with both urgency signal and normalization. We quantified the reward 

rates of models 1–3 ("reduced models") relative to that of the full model by 𝜌𝑘
Rel ≡ (𝜌𝑘 − 𝜌

Rand)/(𝜌Full −

𝜌Rand), where 𝜌𝑘  (𝑘 = 1,2,3) denotes the reward rates of reduced models 1–3; 𝜌Rand =  ̅/𝑡𝑤  is the 

baseline reward rate of a decision-maker who makes immediate random choices after trial onset. 𝜌Full is 

the reward rate of the full model with both normalization and urgency. 

(136 words) 

 alue based tas  erceptual tas 
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This comparison revealed that adding the urgency signal and/or normalization to the standard RM indeed 196 

improved the reward rate. Intriguingly, normalization had a much larger impact than the urgency signal 197 

(Figure 3, left), demonstrating the relative importance of normalization in improving the reward rate. The 198 

performance differences across models shrink with an increasing number of options because performance 199 

shown here is relative to a model making random, immediate choices. Indeed, as the number of options to 200 

choose from increases, the absolute reward rate of the full and reduced models increases at similar rates, while 201 

the performance of the random model remains the same because, for value-based decisions, this policy simply 202 

effectively draws a random sample from the prior over rewards on each trial regardless of how many choices 203 

are available. As a result, the performance of the different models relative to the random model (as shown in 204 

Figure 3) become more similar.  205 

The overall results were similar for perceptual decisions, in which the decision-maker is rewarded based on 206 

whether the response is correct or incorrect (Figure 3, right). Thus, normalization and urgency signal 207 

contribute to improving task performance in both value-based and perceptual decision-making tasks. 208 

Relation to physiological and behavioral findings 209 

Urgency signal 210 

We examined how neural dynamics and behavior predicted by the proposed circuit relates to previous 211 

physiological and behavioral findings. First, we found that the average activity in model neurons rises over 212 

time, independently of the sensory evidence, consistent with the urgency signals demonstrated in 213 

physiological recordings of neurons in the lateral intraparietal cortex (LIP)10 (Figure 4a). Interestingly, our 214 

model also replicates a gradual decrease in the slope of the average neural activity over time which arises in 215 

the model as a consequence of the nonlinear recurrent process. In typical physiological experiments, urgency 216 

signals are extracted by averaging over neural activities across the entire recorded population, including 217 

different stimulus conditions. The rationale behind this procedure is that the urgency signal has been 218 

postulated as a uniform additional input to all parietal neurons involved in the evidence accumulation process. 219 

A signal extracted this way differs from the function 𝑢(𝑡) in our model, which is followed by constraining 220 

the activity nonlinearly through recurrent neural dynamics, and thus does not trivially relate to the empirically 221 

observed urgency signals. Nonetheless, the average activity in model neurons was, through simulations, found 222 

to replicate the temporal increase, consistent with the physiological recording in LIP neurons 10 (Figure 4b).  223 

Decrease in offset activities in multi-alternative tasks 224 

Second, it has been reported that the initial “offset” (i.e., the average neural activity) of evidence 225 

accumulation10,28 decreases as the number of options increases (Figure 4b), although to our knowledge no 226 

normative explanation has been offered for this observation. Interestingly, our circuit model replicates this 227 
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228 

 

Figure 4 

The model replicates the neuronal urgency signal and Hic ’ law in choice reaction times (RTs). (a) Urgency 

signals in lateral intraparietal (LIP) cortex neurons (top) and in the model (bottom). In typical physiological 

experiments, urgency signals are extracted by averaging over neural activities across the entire recorded 

population, including different stimulus conditions. The rationale behind this procedure is that the urgency 

signal has been considered as a uniform additional input to all parietal neurons involved in the evidence 

accumulation process. A signal extracted this way is not exactly the same as the global input signal 

(function 𝑢(𝑡) in Figure 2c) to the circuit, which includes nonlinear activity normalization through recurrent 

neural dynamics, and thus does not trivially relate to the empirically observed urgency signals. 

Nonetheless, the average activity in model neurons was found to replicate the temporal increase, including 

the saturating temporal dynamics. (b) The initial offset activities decrease with an increasing number of 

options, in both LIP neurons (top) and the model (bottom). The data figure was modified from Ref. 10. (c) 

The choice RTs following Hick's law. The RTs increase with the number of options (𝑁) in both perceptual 

(left) and value-based (right) tasks. Note the logarithmic scaling of the horizontal axis. 

(204 words) 
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property when optimized to maximize the reward rate (Figure 4b). For a fixed number of options, and for the 229 

particular type of sequential decisions we are considering here, lowering the initial offset increases both 230 

accuracy and reaction time (RT), but has a proportionally stronger effect on accuracy such that the reward rate 231 

increases. On the other hand, increasing the number of options while leaving the initial offset unchanged 232 

causes a decrease in both accuracy and reaction time, and an associated drop in reward rate. Thus, to 233 

counter-act this drop, we need to lower the initial offset, resulting in a lower optimal offset for a larger number 234 

of options. The change in the optimal offset size also explains the behavioral effects in RTs as described 235 

below. 236 

Hick’s law in choice RTs 237 

Third, the change in the optimal offset also explains the behavioral effects in choice RTs known as “Hick’s 238 

law”29,30. Hick’s law is one of the most robust properties of choice RTs in perceptual decision tasks29,30. In its 239 

classic form, it suggests the linear relationship 𝑅𝑇 = 𝑎 + 𝑏log(𝑁 + 1) between mean RT and the logarithm 240 

of the number of options (𝑁). Our model replicates this near-logarithmic relationship (Figure 4c). The 241 

increased RT for a larger number of options is concordant with the decrease in offset activities as described in 242 

the previous section. Interestingly, the RT dependency on the number of options tends to be much weaker for 243 

value-based than perceptual decisions. 244 

Value normalization  245 

Fourth, our model replicates suppressive effects of neurally encoded values among individual options. In 246 

particular, the activity of the LIP neurons encodes values of targets inside the neuronal receptive fields, but is 247 

also affected by values associated with targets displayed outside the receptive fields8,9,31. The larger the total 248 

target values outside these receptive fields, the lower the neural activity, which is usually described as 249 

normalization. The model replicates these suppressive effects (Figure 5a). 250 

Violation of IIA 251 

So far, our neural model only has one source of variability, namely, the noise corrupting the momentary 252 

evidence. There are, however, other sources of variability that are quite likely to exist in brain. For instance, 253 

the decision maker must learn how to properly adjust the decision bounds in order to optimize reward rate, 254 

which would result in variability in the value of the bound from trial to trial. There is experimental evidence 255 

suggesting that learning can indeed induce extra variability in decision making tasks32. The variability in these 256 

bounds could also be purposely induced by neural circuits to ensure that the decision maker does not always 257 

choose the option with the highest value but also explore alternatives. Such an exploration behavior is critical 258 

in environments in which the value of the options varies over time, which is common in real world situations. 259 

In our neural model, we added such extra variability directly to the accumulator, which is mathematically 260 

equivalent to adding it to the bound. Despite this extra variability, our neural model continues to outperform 261 

the race model (Figure 5c). Stripping the normalization from the full model results in a large drop in reward 262 

rate with a further drop, though less pronounced, when the urgency signal is also removed.  263 
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Importantly, this version of the model also replicates apparently “irrational” behavior in humans and animals 264 

which violates the principle of “independence of irrelevant alternatives (IIA)”33, an axiomatic property 265 

assumed in traditional rational theories of choice34,35. Behavioral studies have shown that the choice between 266 

two high-valued options depends on the value of a third alternative option36–41, even if the value of this third 267 

option is so low that it is never chosen. One example of such an interaction is shown in Figure 5b. In this 268 

experiment, subjects found it increasingly harder to pick among their two top choices as the value of the third 269 

option is increased. Our noisy neural model exhibits a similar violation of the IIA (Figure 5b), which is 270 

 

Figure 5 

Activity normalization and violation of the axiom of independence of irrelevant alternatives (IIA). (a) 

Neuronal response to a saccadic target associated with a fixed reward as a function of the total amount of 

reward for all other targets on the screen in the lateral intraparietal area (left) and in the model (right). The 

data figure was modified from Ref 8. In both LIP and the model, the response of a neuron to a target 

associated with a fixed amount of reward decreases as the reward to the other targets increases. In the 

model, this effect is induced by the normalization. (b) Left plot: as the value of a third option is increased, 

the psychometric curve (for a fixed decision time, set by the experimenter) corresponding to the choice 

between options 1 and 2 becomes shallower – a result that violates the axiom of IIA. Data figure was 

modified from Ref. 11.  Right plot: the model with added neural noise after activity normalization exhibits 

the same behavior. (c) In the presence of internal variability, the race model variants without constrained 

evidence accumulation approximating the optimal policy (second term in Equation 2) perform much worse 

than our model variants with that constraint (when compared to Figure 2d). 
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primarily caused by the divisive normalization. The divisive normalization decreases the mean value 271 

difference between the two top options as the value of the third option is increased, making these two options 272 

harder to distinguish due the presence of internal variability.  273 

Violation of the regularity principle 274 

In multi-alternative decision making, subjects not only violate the IIA but also the regularity principle. The 275 

regularity principle asserts that adding extra options cannot increase the probability of selecting an existing 276 

option. We have found that the same model that violates the IIA also violates this regularity principle. At first, 277 

this may seem counterintuitive. Introducing a third option into a choice set must decrease the probability of 278 

picking either of the first two options, which is consistent with the regularity principle. However, consider the 279 

probability of picking option 1 when option 2 is more valuable. In the absence of a third option, this 280 

probability will tend to be very small. When the third option is introduced, and its value is increased, the 281 

violation of the IIA implies that the probability of picking option 1, relative to option 2, will increase, as 282 

illustrated by the shallower psychometric curves in Figure 5b. Therefore, two factors are at play here, with 283 

opposite effects: the presence of a third option implies that choices 1 and 2 are picked less often, but the 284 

probability of picking option 1 increases as a result of the IIA violation. Our simulations reveal that the second 285 

factor dominates when the value of option 1 is smaller than that of option 2, as illustrated in Figure 6a. 286 

The similarity effect 287 

Our model also replicates the similarity effect that has been reported in the literature40, 42, 43. This effect refers 288 

to the fact that when subjects are given a third option which is similar to, say, option 1, the probability of 289 

choosing option 1 decreases. To model this effect, we postulated that each object is defined by a set of features 290 

 

Figure 6 

Regularity and similarity principles. (a) Violation of the regularity principle. When a third choice is 

introduced, the probability of choosing option 1 increases as the value of option 3 increases. This effect is 

only observed option 1 is much less valuable than option 2. (b) The similarity effect: Adding a third option, 

similar to option 1, reduces the probability of choosing option 1 relative to option 2 as the value of option 3 

increases. The inset shows that the probability of picking option 1 also decreases as the value of option 3 

increases. (c) The strength of the similarity effect increases with time within the course of a single trial, as 

shown by the decrease in the probability of choosing option 1 as time elapses.   
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and that its overall value is a linear combination of the values of its features. As before, we also assume that 291 

the values of the features are not known exactly. Instead, the brain generates noisy samples of these values 292 

over time. In this scenario, the similarity between two objects is proportional to the overlap between their 293 

features. This overlap implies that the stream of value samples for the two similar options are correlated, while 294 

being independent for the third, dissimilar option. Accordingly, we simulated a 3-way race in which the 295 

momentary evidence for options 1 and 3 are positively correlated. As illustrated in Figure 6b, we found that 296 

the probability of choosing option 1 decreases relative to option 2 as the value of option 3 increases, thus 297 

replicating the similarity effect. As has been observed experimentally 44,45, we found that the similarity effect 298 

grows over time during the course of a single trial Figure 6c.  299 

Predictions 300 

Our model makes a number of experimental predictions at both the behavioral and neural levels (see 301 

Supplementary Note 3 for further details). 302 

First, during evidence accumulation, the neural population activity should be near an 𝑁 − 1 dimensional 303 

continuous manifold (i.e., a nonlinear surface), where 𝑁 is the number of choices (Figure 2d). This is a 304 

direct consequence of evidence accumulation paired with nonlinear normalization. As the activity of 𝐷 305 

neurons is 𝐷-dimensional, and since 𝑁 ≪ 𝐷 in general, our prediction implies that neural activity should be 306 

constrained to a small subspace of the neural activity space. This prediction can be tested with standard 307 

dimensionality reduction techniques using multi-electrode recordings although this analysis should be done 308 

carefully since our model also predicts that the position of this manifold changes over time. Failure to take this 309 

time dependency into account could significantly bias the estimate of the dimensionality of the constraining 310 

manifold. Our theory makes 11 additional predictions related to existence and properties of the manifold 311 

which are listed in Supplementary Note 3. 312 

Second, our model correctly predicted the decrease in the initial activity offset value of LIP neurons with the 313 

number of choices (the offset is the baseline firing rate value right before evidence accumulation). Remarkably, 314 

this offset decrease results from an economic strategy that maximizes the reward rates by balancing the speed 315 

and accuracy in a long sequence of trials under the opportunity cost for future rewards. Thus, the offset should 316 

also be modulated by other reward rate manipulations. In particular, we predict that increasing the average 317 

reward rate by either increasing the reward associated with the choices or decreasing the inter-trial interval 318 

should raise the offset for a fixed number of choices. 319 

Third, previous studies have considered two types of strategies for multi-alternative decision making: the 320 

‘max-vs.-average’ and the ‘max-vs.-next’6,46,47. In the former, the winning race is the first one to reach a 321 

particular difference between its own state and the average of the other races (Figure 7b). In the 322 

‘max-vs.-next’, it is the difference between the top race and the second best one that matters (Figure 7c). Our 323 

theory predicts that subjects should smoothly transition between these two modes depending on the pattern of 324 

rewards across choices (Figure 7a), a prediction that can be tested with standard psychophysics experiments. 325 
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If all choices are equally rewarded, our model predicts that subjects should adopt a ‘max-vs.-average’ strategy. 326 

This is because the particle, which starts from the center of the triangle in Figure 7a, will tend to diffuse 327 

equally well in all directions and will therefore hit the optimal bounds close to where they overlap with the 328 

 

Figure 7 

The optimal policy predicts a smooth transition between the ‘max vs  next’ and the ‘max vs  average’ 

decision strategies depending on the relative values of the three options. (a) The stopping bounds for the 

optimal policy after projecting the diffusion onto the hyperplane orthogonal to the diagonal. (b) The stopping 

bounds corresponding to the ‘max vs  average” strategy (thic  colored lines). In this strategy, the 

decision-ma er computes the difference between each option’s value estimate and the average of the 

remaining options’ values and triggers a choice when this difference hits a threshold. The stopping bounds 

in this case overlap with the optimal bounds from panel a (shown here as thin colored lines) in the center 

but not on the side. (c) The stopping bounds for the ‘max vs  next’ strategy (thic  lines). In this strategy, the 

decision-maker compares the best and second-best value estimates, and makes a choice when this 

difference exceeds a threshold. In a three-alternative choice, this is implemented with three pairs of linear 

decision boundaries (colored thick lines) corresponding to the three possible combinations of two options. 

In contrast to the bounds for the max vs average strategy, the bounds for the max vs next strategy overlap 

with the optimal bounds (thin colored lines) on the edge of the triangle but not in the center. (d) When all 

three options are equally good, the diffusion of the particle is isotropic and is therefore more likely to hit the 

stopping bounds in their centers, where they overlap with the max vs average strategy. (e) When one option 

is much better than the other two, the diffusion is now biased toward the center of the bound corresponding 

to the good option, which is once again equivalent to the max vs average strategy. (f) When two options are 

equally good, while the third is much worse, the particle will tend to drift toward the part of the triangle 

corresponding to the two good options (black arrow), where the optimal bound overlaps with the bounds for 

the max vs next strategy. The grey curves in d-f illustrate accumulator trajectories that are typical for the 

considered scenarios. 
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bounds corresponding to the ‘max-vs.-next’ strategy (Figure 7b, d). If only two choices are highly rewarded, 329 

our model switches to a ‘max-vs.-next’ strategy because the particle will quickly drift toward the side of the 330 

triangle corresponding to the two high valued choices where the optimal bounds overlap most with the bounds 331 

corresponding to the ‘max-vs.-average’ strategy (Figure 7c,d). If only one option is highly rewarded, our 332 

model reverts to the ‘max-vs.-average’ model (Figure 7b,e). Therefore, our model predicts that if humans 333 

follow the optimal strategy, they should show similar transitions between the ‘max-vs.-average’ and the 334 

‘max-vs.-next’ strategies. 335 

Discussion 336 

In this study we discussed the optimal policy for decisions among more than two valuable options, as well as a 337 

possible biological implementation. The resulting policy has nonlinear boundaries and thus differs 338 

qualitatively from the simple diffusion models that implement the optimal policy for the two-alternative case7. 339 

More specifically, this work makes four major contributions. First, we prove analytically that the optimal 340 

policy involves a nonlinear projection onto an 𝑁 − 1  dimensional manifold, which can be closely 341 

approximated by neural circuits with a nonlinear normalization. Second, apparently “irrational” choice 342 

behaviors, such as the violation of the IIA, are reproduced by our optimal model in the presence of variability 343 

arising, for instance, from learning or exploration. Third, we found that the distance to threshold must increase 344 

with set size for optimal performance. This has already been observed experimentally10,28 (Figure 4a), but no 345 

computational explanation has ever been offered for this effect until now. Fourth, the model follows Hick’s 346 

law, that is, it predicts that reaction times in value-based decisions should be proportional to the log of the 347 

number of choices plus one, as is commonly observed in behavioral choice data. However, our model does not 348 

account for violation of Hick’s law for saccadic eye movements effects 48,49, or the well know pop-out effect 349 

reported in visual search, in which reaction times are independent of the number of items on the screen 50. 350 

Capturing these effects would require that we specialize our model to the specific context of these experiments 351 

which lie beyond the scope of the present manuscript.  352 

Our replication of the violation of the IIA is similar to what Louie et al have recently11 proposed though, in 353 

their case, they did not consider noise in the momentary evidence and they did not derive the optimal policy 354 

for multi-alternative decision making. Therefore, our work is the first one to demonstrate that an optimal 355 

policy for multi-alternative decision making using divisive normalization violates the IIA in the presence of 356 

internal noise. Preliminary work by Steverson et al.51 has also clarified the conditions under which networks 357 

with divisive normalization implement the optimal policy for decision making with respect to internal noise, 358 

thus suggesting that divisive normalization is indeed required for optimal decision making when all sources of 359 

noise are considered. Moreover, recent proof of equivalence between divisive normalization and an 360 

information-processing model offers another explanation for the role of divisive normalization: to optimally 361 

balance the expected value of the chosen option with the entropic cost of reducing uncertainty in the choice51. 362 

A well-known strategy to decide among multiple options is the MSPRT21,22, and previous studies have shown 363 
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that the MSPRT could be implemented/approximated by neural circuits23,47,52. However, the MSPRT has not 364 

been designed for the problems we consider here. First, it assumes that the decision-maker receives a fixed 365 

magnitude of reward based on the accuracy of choices (i.e., whether they are correct or incorrect) in each trial, 366 

as in conventional perceptual decision tasks. Value-based decisions, in which the reward magnitude can vary 367 

across trials, clearly violate this assumption. Second, it furthermore assumes a constant task difficulty whereas 368 

the present study assumes the difficulty of both value-based and perceptual choices to vary across these 369 

choices. Third, since the MSPRT is only asymptotically optimal in the limit of infinitely small error rates (i.e. 370 

when the model’s performance is near 100% correct), it deviates from the optimal policy when this error rate 371 

is not negligible21,22. Our present analysis clarifies the properties of the optimal decision policy under multiple 372 

options, which differs from the MSPRT by characteristic nonlinear and collapsing decision boundaries. 373 

Despite the apparent complexity of those decision boundaries, we found that a symmetry in these boundaries 374 

allows the optimal strategies to be approximated by a circuit that features well-known neural mechanisms: 375 

RMs whose evidence accumulation process is modulated by normalization, an urgency signal, and nonlinear 376 

activation functions. The model provides a consistent explanation for the functional significance of 377 

normalization and urgency signal: they are necessary to implement optimal decision policies for 378 

multi-alternative choices in which subjects control the decision time.  379 

Although we modeled the uncertainty about the true hidden states or values with a single Gaussian process 380 

that represents the noisy momentary evidence, in realistic situations the uncertainty could have multiple 381 

origins, including both external and internal sources. Potential sources of the external noises include the 382 

stochastic nature of stimuli, sensory noise, and incomplete knowledge about the options (e.g., having not yet 383 

read the dessert of a particular menu option when choosing among different lunch menus). On the other hand, 384 

internal noises could result from learning, exploration, uncertain memory or ongoing value inference (e.g., 385 

sequentially contemplating features of a particular menu course over time). We assumed simplified generative 386 

models with an unbiased and uncorrelated Gaussian prior; future extensions should cover more complex 387 

setups including asymmetric mean rewards among options. 388 

Note that the present study considers the simplified case in which the value of each option is represented with 389 

a scalar variable. We have shown that this model is sufficiently complex to replicate basic behavioral 390 

properties such as Hick’s law, the violation of IIA, the similarity effect, and the violation of the regularity 391 

principle in multi-alternative choices. Future studies should cover more complex situations including value 392 

comparisons based on multiple features (e.g., speeds and designs of cars), which can lead to other forms of 393 

context-dependent choice behavior39,40,53. Decision-making with such a multidimensional features space 394 

requires to compute each option’s value by appropriately weighting each feature. Some studies suggest that 395 

apparently irrational human behavior could be accounted for by heuristic weighting rules for features, which 396 

integrate feature valences through feedforward42,43,46 or recurrent12,44,45 neural interactions. Interestingly, a 397 

recent study reports that a context-dependent feature weighting can increase the robustness of value encoding 398 

to neural noise in later processing stages43,54. However, to our knowledge, the optimal policy for these more 399 

complex models in which the value function is computed by combining multiple features, presented 400 
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sequentially, remains unknown. Once this policy is derived, it will be interesting to determine whether all, or 401 

part, of the seemingly irrational behaviors that have been reported in the literature are a consequence of using 402 

the optimal policies for such decisions or genuine limitations of the human decision-making process.  403 

Finally, the current model provides several interesting predictions on neural population dynamics: because of 404 

the normalization, the collective neural activity could be constrained to a low-dimensional manifold during 405 

decision making. The dimensionality of this manifold depends on the number of options (𝑁 − 1 dimensions 406 

for 𝑁-alternative choices) whereas the position of the manifold should depend on time, reflecting the effect of 407 

the urgency signal. These predictions could be tested with neurophysiological population recordings combined 408 

with advanced dimensionality reduction techniques. 409 

 410 
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Methods 522 

Task structure and generative models 523 

We consider 𝑁-alternative value-based or perceptual decisions in which the decision-maker responds as soon 524 

as she commits to a choice. Value-based and perceptual decisions differ in how choices are associated with 525 

reward: in the value-based case the decision-maker reaps the reward associated with the chosen item (e.g., a 526 

food item), whereas in perceptual paradigms the amount of reward depends only on whether the choice is 527 

"correct" in the current task contexts. In contrast to previous models motivated by biological 528 

implementations12–15, we start by deriving the optimal, reward-maximizing strategy for multi-alternative 529 

decision-making tasks without assuming specific biological implementations, and then ask how this strategy 530 

can be implemented by biologically plausible mechanisms. The following formulation applies to both 531 

perceptual and value-based tasks. 532 

Let 𝒛 ≡ ( 1, . . . ,  𝑁) denote hidden variables (e.g., reward magnitudes for value-based tasks, or stimulus 533 

contrasts for perceptual tasks) associated with 𝑁 choice options. These true hidden variables vary across 534 

trials, and are never observed directly and as such unknown to the decision-maker. Instead, the decision maker 535 

observes some noisy momentary evidence with mean 𝒛𝛿𝑡, 536 

𝛿𝒙𝑛|𝒛 ~ 𝒩(𝒛𝛿𝑡, 𝜮 𝛿𝑡)     (5) 537 

for each option 𝑖 ∈ {1, . . , 𝑁}, in every small time-step 𝑛 of duration 𝛿𝑡. 𝜮  here denotes the covariance 538 

matrix of the momentary evidence. Before observing any evidence, the decision-maker is assumed to hold a 539 

normally distributed prior belief, 540 

𝒛 ∼  𝒩(𝒛̅, 𝜮𝑧),       (6) 541 

with mean 𝒛̅ and covariance 𝜮𝑧 reflecting the statistics of the true prior distribution, 𝑝(𝒛). For simplicity, 542 

we define the correct option in a perceptual task as the option associated with the largest hidden variable, 543 

𝑖correct = argmax𝑖  𝑖 , which, for example, can be interpreted as the highest contrast in a contrast 544 

discrimination task. 545 

In both value-based and perceptual tasks, we assume that the decision-maker tries to maximize the 546 

expected reward under time constraints. Specifically, we focus on reaction time tasks in which the 547 

decision-maker is free to choose at any time within each trial, and proceeds through a long sequence of trials 548 

within a fixed time period. The total number of trials, and thus the total reward throughout the entire trial 549 

sequence, depends on how rapidly the decision-maker chooses in each trial: faster decisions allow for more of 550 

them in the same amount of time. However, due to noisy evidence, collecting more such evidence in each trial 551 

yields better choices, which results in a tradeoff between speed and accuracy. 552 
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Optimal decision policy 553 

We assume that the decision-maker's aim is to maximize the total expected reward obtained in this task. The 554 

optimal decision policy comprises two key components: optimal online inference of the hidden variables by 555 

accumulating the evidence about them, and optimal rules for stopping the evidence accumulation to make a 556 

choice. 557 

Optimal evidence accumulation 558 

Here we provide a general formulation that includes correlations among options in the generative models. 559 

After some time 𝑡 = 𝑛𝛿𝑡 , the decision-maker's posterior belief about the true hidden-variables 560 

𝑝(𝒛|𝛿𝒙1, . . . , 𝛿𝒙𝑛) is found by Bayes’ rule, 𝑝(𝒛|𝛿𝒙1, . . . , 𝛿𝒙𝑛) ∝  𝑝(𝒛)∏ 𝑝(𝛿𝒙𝒏|𝒛)
𝑛
𝑛′=1 , using the fact that 561 

𝛿𝒙𝑛′ (𝑛
′ = 1, . . . , 𝑛) is independent and identically distributed (i.i.d.) across time. This results in 562 

𝒛|𝛿𝒙1, . . . , 𝛿𝒙𝑛 ∼ 𝒩(𝜮(𝑡)(𝜮𝑧
−1 𝒛̅  + 𝜮 

−1 𝒙(𝑡)), 𝜮(𝑡)),    (7) 563 

where we have defined 𝒙(𝑡) ≡  ∑ 𝛿𝒙𝑛′
𝑛
𝑛′=1  as the sum of all momentary evidence up to time 𝑡, and 𝜮(𝑡) =564 

(𝜮𝑧
−1 + 𝑡 𝜮 

−1)−1 as the posterior covariance. The temporally accumulated evidence 𝒙(𝑡) and the time 𝑡 565 

provide the sufficient statistics for 𝒛, and thus for the rewards 𝒓 ≡ (𝑟1, . . . , 𝑟𝑁)
⊤ associated with individual 566 

options. For the value-based case, the reward 𝒓 equals the true hidden variable 𝒛, that is 𝒓 = 𝒛, such that the 567 

expected option reward, 𝑟̂𝑖(𝑡, 𝑥𝑖(𝑡)) = 〈 𝑖|𝑡, 𝑥𝑖(𝑡)〉, is the mean of the above posterior. For the perceptual case, 568 

the rewards associated with individual options are expressed as a vector 𝒓 such that 𝑟𝑖 = 𝑟correct when 𝑖 is 569 

the correct option and 𝑟𝑖 = 𝑟incorrect otherwise. Thus the expected reward for option 𝑖 is 𝑟𝑖(𝑡, 𝒙(𝑡)) =570 

𝑟correct 𝑝(𝑖 = 𝑖correct | 𝑡, 𝒙(𝑡)) + 𝑟incorrect 𝑝(𝑖 ≠ 𝑖correct | 𝑡, 𝒙(𝑡)). Because 𝛿𝒙𝑛′ is i.i.d. in time, 𝒙(𝑡) is a 571 

random walk in an 𝑁-dimensional space (the thick black trace in Figure 2a). The next question is when to 572 

stop accumulating evidence and which option to choose at that point. 573 

Optimal stopping rules 574 

To find the optimal policy, we utilize tools from dynamic programming17,18. One such tool is the “value 575 

function” 𝑉( ), which can be defined recursively through Bellman’s equation. This value function returns for 576 

each state of the accumulation process (identified by the sufficient statistics) the total reward (including 577 

accumulation cost) the decision maker expects to receive from this state onward when following the optimal 578 

policy. 579 

Let us first consider this value function for the case of a single choice, in which her aim is to maximize 580 

the expected reward for this choice minus some cost 𝑐 per unit time for accumulating evidence (if there were 581 

no such cost, no decisions would ever be made). At any point in time 𝑡, the decision maker can either decide 582 

to make a choice, yielding the highest of the 𝑁 expected rewards, or to accumulate more evidence for some 583 

small time 𝛿𝑡, resulting in cost – 𝑐𝛿𝑡, and expected future reward given by the value function at time 𝑡 + 𝛿𝑡. 584 

By Bellman’s principle of optimality, the best action corresponds to the one yielding the highest expected 585 
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reward, resulting in Bellman’s equation17,18 586 

𝑉(𝑡, 𝒙) = 𝑚𝑎𝑥 {𝑚𝑎𝑥
𝑖
𝑟𝑖(𝑡, 𝒙) , 〈𝑉(𝑡 + 𝛿𝑡, 𝒙(𝑡 + 𝛿𝑡))〉 − 𝑐𝛿𝑡} ,   (8) 587 

where the expected rewards 𝑟𝑖(𝑡, 𝒙) differ between perceptual and value-based choices (see previous section; 588 

in both cases, they are functions of 𝒙 and 𝑡), and the expectation in the second term is across expected 589 

changes of the accumulated evidence, 𝑝(𝒙(𝑡 + 𝛿𝑡)|𝒙(𝑡), 𝑡). The intersection between the two terms within 590 

{ , } determines the decision boundaries for stopping the evidence accumulation, and thus the optimal policy. 591 

In more realistic setups, decision makers make a sequence of choices within a limited time period, in 592 

which case the aim of maximizing the total reward becomes equivalent (assuming long time periods) to 593 

maximizing their reward rate 𝜌, which is the expected reward for either choice divided by the expected time 594 

between consecutive choices. This reward rate is thus given by 𝜌 = (〈𝑟𝑗|𝒛̃𝑗(0: 𝑇)〉 − 𝑐〈𝑇〉)/(𝑡𝑤 + 〈𝑇〉), where 595 

𝑇 is the evidence accumulation time, 𝑡𝑤 is the waiting time after choices (including the possible delays in 596 

motor responses) before onset of evidence for the next choice, and the expectation 〈 〉 here is across choices 597 

𝑗. The value function associated with the reward-rate maximizing policy differs from the above by introducing 598 

an additional opportunity cost 𝜌 per unit time. For immediate choices, this introduces the cost – 𝜌𝑡𝑤 that the 599 

decision maker has to wait until the next trial (assuming 𝑉(0, 𝒛̅; 𝜌) = 0, see below). For accumulating more 600 

evidence, the associated cost increases from – 𝑐𝛿𝑡 to – (𝑐 + 𝜌)𝛿𝑡. Overall, this leads to Bellman’s equation 601 

Eq. (1) as given in the main text. If we set 𝜌 = 0, we recover Bellman’s equation for single, isolated choices.    602 

To find the optimal policy for the above cases numerically, we computed the value function by backward 603 

induction20, using Bellman’s equation. Bellman’s equation expresses the value function at time 𝑡 as a 604 

function of the value function at time 𝑡 + 𝛿𝑡. Therefore, if we know the value function at some time 𝑇, we 605 

can compute it at time 𝑇 − 𝛿𝑡, then 𝑇 − 2𝛿𝑡, and so on, until time 𝑡 = 0. To find the reward rate, which is 606 

required to compute the value function, we initially set it to 𝜌 = 0, computed the full value function, and then 607 

updated it iteratively by root finding until 𝑉(0, 𝒛̅; 𝜌) = 0, re-computing the full value function in each root 608 

finding step (see Drugowitsch et al., 201155 for the rationale behind this procedure). 609 

Unless otherwise mentioned, we used 𝑇 = 10𝑠 and 𝛿𝑡 = 0.005𝑠 for all simulations. That is, we 610 

assumed 𝑉(𝑇 = 10, 𝒙; 𝜌) to be given by the value for immediate choices, and then moved backwards in time 611 

in steps of 0.005s to find the value function by backward induction until 𝑡 = 0. Furthermore, we set the prior 612 

parameters of the true, latent variables 𝒛 to 𝒛̅ = 𝟏 and 𝜮𝑧 = 𝑰. The waiting time was fixed to 𝑡𝑤 = 0.5 s, 613 

and the accumulation cost to 𝑐 = 0 (i.e., the opportunity cost 𝜌 was the only cost). The results did not 614 

change qualitatively when changing the values of these parameters. 615 

Boundary structure analysis 616 

Interestingly, we found that the decision boundaries in value-based tasks generally have a remarkable 617 

symmetry that reduces the optimal policy to a simple neural computation. All the decision boundaries are 618 
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parallel to the diagonal — the line connecting (0,0, . . . ,0) and (1,1, . . . ,1).  619 

In value-based tasks, this symmetry emerges from the fact that the state transition probability, 𝑝(𝒙(𝑡)|𝒙(𝑡 +620 

𝛿𝑡)), is invariant to translational shifts in 𝒙. We can prove that the value function increases linearly along the 621 

diagonal, V(𝑡, 𝒙 + 𝟏𝐶) = 𝑉(𝑡, 𝒙) + 𝐶  and 𝛁  𝑉(𝑡, 𝒙) ≥ 0 , where 𝐶  is an arbitrary scalar. From these 622 

properties of the value function, we can prove that the decision boundaries are "parallel" to the diagonal: 623 

∀𝑖, 𝐵(𝑡, 𝑥𝑖 + 𝐶) = 𝐵(𝑡, 𝑥𝑖) + 𝟏𝐶, where 𝐵(𝑡, 𝑥𝑖) is a set of points that define for a fixed 𝑥𝑖 the boundary in 624 

𝑥𝑗≠𝑖 at which a decision ought to be made. The formal proofs are provided in Supplementary Note 1. 625 

We can demonstrate the same symmetry in the perceptual tasks, even though it arises from a different 626 

mechanism: in perceptual tasks, by construction, the value function is determined by the probability of each 627 

option being the correct answer. Because this probability is already normalized such that the sum of all the 628 

probabilities across options is 1, the resulting value function is constant along the diagonal (in contrast to the 629 

value-based case in which the value function increases linearly along the diagonal). This yields the symmetry 630 

of decision boundaries along the diagonal. 631 

Circuit implementation of the optimal policy 632 

It may seem difficult for biological systems to implement the optimal decision boundaries as these boundaries 633 

are, in general, represented by 𝑁 time-dependent nonlinear functions 𝐹𝑖(𝑡, 𝒙(𝑡)) = 0 corresponding to the 634 

individual options, 𝑖 = 1,… ,𝑁, that depends on 𝑁 and other task contingencies. Fortunately, however, 635 

because of the symmetry of these boundaries (see main text), the decision policy effectively reduces to a lower 636 

dimensional representation (𝑁 − 1  dimensions for an 𝑁-alternative choice), which supports a simpler 637 

implementation of these boundaries. The key idea is as follows. The original decision policy representation 638 

assumes evidence accumulation by a simple random walk (diffusion) process in a linear space, which is 639 

terminated by a set of complex decision boundaries as a stopping rule. However, if we nonlinearly constrain 640 

the evidence accumulation space, we can vastly simplify these boundaries and instead can use constant 641 

decision thresholds that are independent across options. 642 

More specifically, there exists a variable transformation, 𝜙𝑡: 𝒙(𝑡) ↦  𝒙
∗(𝑡) ≡ 𝒙 + Δ 𝟏 with a scalar Δ , 643 

under which the optimal policy becomes equivalent to comparing each element 𝑥𝑖
∗(𝑡) to a constant threshold 644 

𝜃  satisfying 𝑟̂𝑖(𝑡, 𝜃 ) = 𝜃. This variable transformation projects the states 𝒙 onto an 𝑁 − 1 dimensional 645 

manifold 𝑀𝜃  that is differentiable everywhere and asymptotically approaches the plane {𝒙 | 𝑥𝑖 = 𝜃 +646 

(𝜎2/𝜎𝑧
2 + 𝑡) 𝑐𝛿𝑡} in the limit of ∀𝑗 ≠ 𝑖: 𝑥𝑗 → −∞ for each 𝑖, where 𝜎2 and 𝜎𝑧

2 are the variances of 647 

likelihood and prior, respectively. The intersection of 𝑀𝜃  and the constant thresholds 𝑥𝑖 = 𝜃  (∀𝑖) 648 

implements effectively the same decision policy as the original one (see Supplementary Note 2). 649 

Moreover, for some fixed time 𝑡, this manifold 𝑀𝜃 is well-approximated by the parameterized surface 650 

𝑀̃𝜃 = {𝒙|
1

𝑁
∑ 𝑓(𝑥𝑖)𝑖 = 𝑢(𝑡)} , where 𝑓(𝑥)  is an arbitrary increasing, differentiable function that 651 

asymptotically approaches zero in the limit of 𝑥𝑖 → −∞ ; 𝑢(𝑡)  is a scalar parameter. The variable 652 
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transformation 𝜙̃𝑡: 𝒙(𝑡) ↦  𝒙̃
∗(𝑡) ∈ 𝑀̃𝜃 is achieved by a recurrent neural process shown in Figure 2c, which 653 

implements the following update rule,  654 

𝒙 ⟵ 𝒙 + 𝟏Δ ̃                                                                                                   (9) 655 

Δ ̃ ⟵ Δ ̃ + 𝛾 (𝑢(𝑡) −
1

𝑁
∑𝑓(𝑥𝑖 + Δ ̃)

𝑖

 )                                                    (10) 656 

where 𝛾 is the update rate. Here, the second equation finds the appropriate 𝛥 ̃, whereas the first equation 657 

performs the projection. This circuit comprises a nonlinear normalization of neural activities, 𝑥𝑖
∗(𝑡) , 658 

controlled by an “urgency signal”, 𝑢(𝑡). Further, the circuit performs divisive normalization at a slower 659 

time-scale (see Equation 3, main text). 660 

For subsequent simulations, we use the following sequence of discretized steps for each time-step of 661 

incoming momentary evidence: accumulate evidence according to Equation 2, project the newly accumulated 662 

evidence onto a nonlinear manifold by iterating Equation 4 (or 9-10) five times, perform divisive 663 

normalization as in Equation 3, add independent noise 𝜉𝑖 on the individual output units or, equivalently, to the 664 

decision bounds (only for simulations corresponding to Figures 5-6). We follow this sequence because we 665 

assume that the projection happens at a much faster time-scale than divisive normalization (see main text). 666 

However, as we show in Supplementary Note 5 and Supplementary Figure S3, this particular order of the 667 

time-discretized steps is inconsequential. 668 

We found that a linear urgency signal, 𝑢(𝑡) = 𝛽 𝑡 + 𝑢0, approximates well the collapse of the optimal 669 

decision boundaries. Here, 𝛽 and 𝑢0 are the slope and offset of the function, respectively, which we 670 

optimized in the subsequent simulations to maximize the reward rates. For the nonlinear function 𝑓, we used 671 

a rectified power function 𝑓(𝑥𝑖) = ⌊𝑥𝑖⌋
𝛼 , with the exponent fixed to 𝛼 = 1.5. The update rate of the 672 

projection in Equations 4, 10 was fixed to 𝛾 = 0.4. We also fixed the gain the divisive normalization term, 𝐾, 673 

to the mean reward across all trials and options, whereas 𝜎ℎ was optimized. We ran the simulation for 𝑇 =674 

10𝑠  with time-steps of 𝛿𝑡 = 0.005𝑠 . We identified the optimal parameters (i.e., the parameters that 675 

maximize the reward rate) with an exhaustive search for followed by a simplex optimization56. For 𝑁 = 3 676 

and 𝑁 = 4, the circuit was confirmed to yield near-optimal reward rates for a reasonably wide range of the 677 

mean reward (from 𝒛̅ = 0 to 5).  678 

Violation of the IIA, similarity effect, and violation of the regularity principle 679 

To simulate the third option effect violating IIA and regularity principles, and reproducing the similarity effect, 680 

we perform simulations to reoptimize our optimal neural circuit for 𝑁 choice options with independent 681 

variability added to each accumulator at every time-step. We simulate the model for a fixed duration of 𝑇 =682 

200𝑚𝑠 as in Louie, et. al. (2013) 15 with time-steps of 𝛿𝑡 = 1𝑚𝑠 and pick the option with the highest 683 

accumulator value at the end of the trial. The rewards for the three options were chosen uniformly from z1 ∊ 684 

[25,35], z2 = 30, z3 ∊ [0,30]. The momentary evidence was uncorrelated for IIA and regularity principles with 685 
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𝚺 = 𝜎 𝟙, whereas for the similarity effect, the momentary evidence for two of the choice options was 686 

positively correlated with correlation coefficient 0.1. 687 
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