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46 Abstract

47 Oral and fecal microbial biomarkers have previously been associated with cardiometabolic (CM) risk, 

48 however, no comprehensive attempt has been made to explore this association in minority populations 

49 or across different geographic regions. We characterized gut- and oral-associated microbiota and CM 

50 risk in 655 participants of African-origin, aged 25-45, from Ghana, South Africa, Jamaica, and the United 

51 States (US). CM risk was classified using the CM risk cut-points for elevated waist circumference, 

52 elevated blood pressure and elevated fasted blood glucose, low high-density lipoprotein (HDL), and 

53 elevated triglycerides. Gut-associated bacterial alpha diversity negatively correlated with elevated blood 

54 pressure and elevated fasted blood glucose. Similarly, gut bacterial beta diversity was also significantly 

55 differentiated by waist circumference, blood pressure, triglyceridemia and HDL-cholesterolemia. Notably, 

56 differences in inter- and intra-personal gut microbial diversity were geographic-region specific. 

57 Participants meeting the cut-points for 3 out of the 5 CM risk factors were significantly more enriched with 

58 Lachnospiraceae, and were significantly depleted of Clostridiaceae, Peptostreptococcaceae, and 

59 Prevotella. The predicted relative proportions of the genes involved in the pathways for 

60 lipopolysaccharides (LPS) and butyrate synthesis were also significantly differentiated by the CM risk 

61 phenotype, whereby genes involved in the butyrate synthesis via lysine, glutarate and 4-

62 aminobutyrate/succinate pathways and LPS synthesis pathway were enriched in participants with greater 

63 CM risk. Furthermore, inter-individual oral microbiota diversity was also significantly associated with the 

64 CM risk factors, and oral-associated Streptococcus, Prevotella, and Veillonella were enriched in 

65 participants with 3 out of the 5 CM risk factors. We demonstrate that in a diverse cohort of African-origin 

66 adults, CM risk is significantly associated with reduced microbial diversity, and the enrichment of specific 

67 bacterial taxa and predicted functional traits in both gut and oral environments. As well as providing new 

68 insights into the associations between the gut and oral microbiota and CM risk, this study also highlights 

69 the potential for novel therapeutic discoveries which target the oral and gut microbiota in CM risk.
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70 Introduction
71

72 Metabolic syndrome and cardiometabolic (CM) risk are associated with increased morbidity and 

73 mortality(1-3), and includes five risk factors: visceral obesity, elevated fasted blood glucose and elevated 

74 blood pressure, decreased high density lipoprotein (HDL) cholesterol, hypertriglyceridemia(4). In the US, 

75 as many as 35% of all US adults present with CM risk(5), when defined using the “Adult Treatment Panel 

76 criteria”(6). Between 1988 and 2012, the greatest increase in the prevalence of CM disease was seen 

77 among black men, estimated to be currently around 55%, and rose by 41% among black women(5). 

78 There is increasing evidence that the composition and metabolic function of the gut microbiota correlate 

79 with the progression and pathogenesis of CM disease, although the causality remains unclear(7).

80

81 One of the hallmarks of CM-related disease is the concomitant presence of low-grade systemic 

82 inflammation(8). Likewise, reduced intestinal bacterial diversity has also been reported in conditions with 

83 chronic inflammation and CM risk, with effects on the immune system(9, 10). The relative abundance of 

84 specific bacterial taxa has been shown to differ between individuals with CM risk to healthy participants. 

85 For instance, individuals with obesity, diabetes and cardiovascular disease, often have a significant 

86 reduction in fecal-associated short-chain fatty acid (SCFA)-synthesizing bacteria such as Bifidobacteria, 

87 Roseburia, Faecalibacterium prausnitzii and Akkermansia muciniphilia(11-13). All of these 

88 microorganisms have been shown to exhibit anti-inflammatory effects(13-16). Potential opportunistic 

89 pathogens, such as Staphylococcus aureus and those from the family Enterobacteriaceae, are often 

90 enriched in the stools of individuals with CM risk(17, 18). It has been suggested that these pro-

91 inflammatory taxa contributes to the evolution of CM risk(17, 18). 

92

93 There are several metabolic mechanisms through which the gut microbiota may contribute to the CM 

94 risk. Lipopolysaccharide (LPS) is a known precursor for the development of obesity and insulin 

95 resistance(19, 20) and an increase in the relative proportion of the bacteria that produce LPS in the gut 

96 has been associated with elevated systemic LPS concentration, likely resulting in high inflammation. 

97 Trimethylamine N-oxide (TMAO), which derived from microbial trimethylamine metabolism, is also 

98 increased in the stool of individuals with elevated CM risk(21, 22), although some find the inverse to be 

99 true(23) and one study found an inverse association with cardiac death in African Americans(24). 

100 Similarly, SCFAs such as propionate, acetate and butyrate produced by bacterial fermentation of 

101 indigestible fibers, are known to regulate host energy intake, expenditure and storage, decreases their 

102 concentrations have been associated with elevated CM risk(25, 26). Finally, specific gut bacteria have 

103 also been associated with altered bile acid composition, which also seem to play an important role in 
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104 diabetes, obesity, non-alcoholic fatty liver disease and other metabolic diseases via the farnesoid X 

105 receptor (FXR) and G protein-coupled bile acid receptor (GPCR) signaling pathway(27-29). These 

106 metabolic pathways represent mechanisms through which the gut microbiota may influence CM risk, and 

107 by which they might also serve as potential therapeutic targets for treating elevated CM risk.

108

109 Emerging data suggests that the oral microbiota may also be linked to elevated CM risk(30-32). Oral 

110 bacteria, especially potential pro-inflammatory pathogens like Pseudomonas and Enterobacter, have 

111 been detected in human atherosclerotic plaques, associated with CM risk (31, 33). Hence, systemic 

112 inflammation triggered by oral pathogens may be an important component in the pathogenesis of 

113 systemic disease(30, 34). However, to date, it is unclear whether there is an association between the 

114 oral and gut microbiota and elevated CM risk, and whether the oral microbiota exhibits similar 

115 associations as gut microbiota does with CM risk. If this is the case, then, the oral microbiota, which is 

116 substantially more convenient to collect, may be a proxy to determine gut microbiota-derived associations 

117 that may have a more specific direct mechanistic association with elevated CM risk. However, a lack of 

118 large-scale cohort studies limits our interpretation of CM risk-microbiota associations, particularly across 

119 diverse human populations.

120

121 In this study, we leveraged African-origin participants enrolled in the “Modeling the Epidemiologic 

122 Transition Study” (METS)(35) cohort to determine the association between the gut (stool-derived) and 

123 oral (saliva-derived) microbiota and elevated CM risk. We characterized the gut- and oral-associated 

124 microbiota and indices of CM risk in 655 participants of African-origin, aged 25-45, from Ghana, South 

125 Africa, Jamaica, and the United States (US). The central hypothesis is that the oral microbial composition 

126 is associated with the gut microbial composition, and that both are associated with elevated CM risk in 

127 blacks.

128

129 Results

130 Participant characteristics

131 Previously 2,506 adults from Ghana, South Africa, Jamaica, The Seychelles, and US were recruited in 

132 2009, and prospectively followed on an annual basis in METS(35). The current study included a 

133 subsample of 655 participants, of which 196 were Ghanaian, 176 were South African, 92 were Jamaican, 

134 and 191 were from the US (Table 1). Approximately 60% of the participants were women. The average 

135 age among all the participants was 34.9 ± 6.4 years, and participants from South Africa and Jamaica 

136 were significantly younger than US participants (p <0.001 and p=0.016, respectively). Men and women 
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137 from Ghana, South Africa and Jamaica weighed significantly less (p <0.001) than their US counterparts 

138 (63.2 ± 12.0, 76.2 ± 20.5, and 80.0 ± 21.1 kg, respectively), and there were significantly more US men 

139 and women that were overweight and obese (81.3%, p <0.001 for all) compared with the other cohorts 

140 (i.e., Ghana, 33.2%; South Africa, 55.7%; Jamaica 65.2%) (Table 1). Americans also slept the least 

141 number of nightly hours (6.7 ± 1.4 hrs) compared to Ghanaians (7.9 ± 1.4 hrs, p<0.001), Jamaicans (7.3 

142 ± 2.1 hrs, p<0.033), and South Africans (10.5 ± 1.7 hrs, p<0.001), and reported significantly higher 

143 prevalences of cigarette smoking (37.7%, p<0.001), and alcohol consumption (84.3%, p<0.001) 

144 compared to the other 3 sites, after adjusting for age, sex and BMI (Table 1).

145

146 Cardiometabolic risk 

147 We used the National Cholesterol Education Program’s Adult Treatment Panel III (NCEP/ ATP III) criteria 

148 for metabolic syndrome(6) to indicate CM risk, and as follows; waist circumference >102 cm in men 

149 and >88 cm in females; elevated blood pressure (≥130/85 mm Hg), or receiving treatment for 

150 hypertension; hypertriglyceridemia (≥150 mg/dL) or receiving treatment; low high-density lipoprotein 

151 (HDL) cholesterol (<40 mg/dL in males and <50 mg/dL in females), or receiving treatment; and elevated 

152 fasting plasma glucose (≥110 mg/dL) or receiving treatment for type 2 diabetes. Individuals with a BMI 

153 ≥25 kg/m2 were classified as overweight, and ≥30 kg/m2 were categorized as obese(36). For the purpose 

154 of our analysis, we dichotomized CM risk creating a CM risk phenotype, whereby those with elevated CM 

155 risk had at least 3 of the five CM risk factors, compared to those with 2 or less. Because the Jamaican 

156 participants were missing HDL and triglyceride concentration measures in blood, they were excluded 

157 from the overall CM risk analysis. This resulted in a total of 563 participants with complete CM risk data. 

158 Overall, 46 of these 563 participants (8.2%) presented with elevated CM risk. Compared to the US 

159 participants (14.7%), the prevalence of elevated CM risk was significantly lower among the Ghanaians 

160 (1.5%, p<0.001), and trended lower among the South Africans (8.5%, p=0.09) (Table 2).

161

162 Gut-derived bacterial diversity associates with country of origin and CM risk factors
163 The associations between the gut-derived microbial diversity measured by 16S rRNA amplicon 

164 sequences using exact sequence variants (ESVs) and indices of elevated CM risk were calculated across 

165 the four cohorts. All analyses were adjusted for age, sex and BMI. Gut bacterial alpha diversity 

166 (intrapersonal gut diversity, measured by Shannon and Chao1 indexes)(37) was significantly greater 

167 among the Ghanaians and South Africans, compared to the US participants (p <0.001; Figure 1, 
168 Supplementary Figure 1). The Shannon index, which incorporates both the richness and evenness of 

169 the community, was lower among participants with elevated blood pressure from South Africa (p <0.05) 

170 and Ghana (p <0.01), but showed no significant relationship among the US participants or the Jamaicans 
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171 (Figure 1, Supplementary Figure 2). Elevated fasted blood glucose was significantly associated with 

172 lower alpha diversity, but only among the Jamaicans (p <0.05; Figure 1, Supplementary Figure 2). 

173 Individuals with elevated waist circumference, triglyceride concentration and HDL levels showed no 

174 significant associations for gut microbial alpha diversity (adjusted for age, sex and BMI, p >0.05, 

175 Supplementary Figure 2). These results suggest that decreased gut microbial alpha diversity is 

176 associated some of the CM risk factors (i.e., elevated blood pressure and elevated fasting blood glucose), 

177 however, these associations are country specific. 

178

179 Gut bacterial beta diversity was significantly different between countries [false discovery rate (fdr)-

180 corrected p <0.01; Supplementary Figure 3]. Therefore, as with alpha diversity, we derived associations 

181 of beta diversity against CM risk within each country independently (Supplementary Figure 4 and 5). 

182 Weighted and unweighted UniFrac distances, which compute differences between microbial communities 

183 based on phylogenetic information(38), were significantly different between high and low waist 

184 circumference, but only among the South Africans (fdr-corrected p<0.05) and Ghanaians (fdr-corrected 

185 p<0.01). The same was true for elevated blood pressure, whereby weighted UniFrac was significantly 

186 different among the South Africans (fdr-corrected p <0.05) and Ghanaians (fdr-corrected p <0.05), but 

187 interestingly, unweighted UniFrac was only significantly different in the South Africa cohort (fdr-corrected 

188 p <0.05). This might suggest that the differences seen in the South Africans may be in part due to 

189 differences in the abundance of rare bacterial taxa, while in Ghana the differences may be due to more 

190 abundant bacterial taxa in the fecal samples. Similarly, for triglyceride concentrations, only weighted 

191 UniFrac was significantly different and only among the South Africans (fdr-corrected p <0.05), while for 

192 HDL concentrations only weighted UniFrac was significantly different among US participants (fdr-

193 corrected p <0.05). Hyperglycemia was not significantly correlated with beta diversity in any of the cohorts. 

194 These results suggest that gut microbial structure is significantly associated with individual CM risk 

195 factors, and that these associations are geographically dependent, given that the contribution of the 

196 abundant versus rare bacterial taxa varied with country of origin. Taken together, contributions of CM risk 

197 as well as environmental factors, including country of origin, result in inter-individual dissimilarities in the 

198 gut microbial composition (Supplementary Table 1).
199

200 Gut microbial structure and function correlate with CM risk phenotype
201 We next investigated whether the gut microbiota correlated with an elevated CM risk phenotype in the 

202 participants from USA, Ghana and South Africa. Jamaican’s were excluded from this analysis due to 

203 missing lipid data, and analyses were adjusted for age, sex and BMI. Participants with elevated CM risk 

204 phenotype (at least 3 risk factors) had significantly lower fecal alpha diversity (measured by Shannon 
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205 index), compared to those without elevated CM risk (p <0.001; Figure 2a). Furthermore, weighted and 

206 unweighted UniFrac distances were significantly different between the two CM risk phenotypes (fdr-

207 corrected p < 0.05; Figure 2b, 2c). We were able to identify the fecal bacterial ESVs which had 

208 significantly different abundance as a function of elevated CM risk. For these ESVs with a relative 

209 abundance ≥1% in at least one group (adjusted for country, sex, age and BMI), participants with elevated 

210 CM risk were significantly enriched with 2 bacterial ESVs annotated to family Lachnospiraceae and genus 

211 Bacteroides, while participants without elevated CM risk had were enriched in 3 bacterial ESVs annotated 

212 to family Clostridiaceae, Peptostreptococcaceae, and genus Prevotella (fdr-corrected p <0.05; Figure 
213 2d). 

214

215 Specific gut bacterial taxa were also associated with individual CM risk across the entire cohort (adjusted 

216 for country, age, sex and BMI, supplementary Figure 6 and supplementary Table 2) or when stratified 

217 by sex (adjusted for country, age and BMI, supplementary Figure 6 and supplementary Table 2). We 

218 found that the gut microbial taxa level was profoundly altered in participants for each of the CM risk 

219 factors. For example, among participants with an elevated waist circumference, hyperglyceridemia, 

220 elevated blood pressure or low HDL concentration, there were a significant enrichment of bacterial ESVs 

221 annotated to genera belonging to family Lachnospiraceae, Enterobacteriaceae and Clostridiaceae; 

222 genera Streptococcus, Coprococcus and Blautia (fdr-corrected p <0.05). Conversely, bacterial ESVs 

223 annotated to genus Prevotella (family Prevotellaceae), and family Enterobacteriaceae, Clostridiaceae, 

224 and Peptostreptococcaceae were also significantly enriched among participants without CM risk (fdr-

225 corrected p <0.05; supplementary results). As expected, there were also several gut bacterial taxa that 

226 were differentially abundant between each country and each CM risk factor (supplementary Figure 7 
227 and Supplementary Table 2). 

228

229 The 16S rRNA amplicon data was used to predict gene abundance using Piphillin(39) to establish 

230 differences in the gut microbial metabolic potential in several well-known pathways associated with 

231 elevated CM risk, such as LPS biosynthesis, SCFA metabolism, TMA N-oxide (TMAO) biosynthesis, and 

232 genes associated with secondary bile acid biosynthesis. No statistically significant differences in the 

233 proportion of genes encoding components of TMA N-oxide (TMAO) biosynthesis, LPS biosynthesis, and 

234 secondary bile acid biosynthesis were observed among participants who had an elevated CM risk 

235 phenotype (at least 3 risk factors), compared to those without CM risk (adjusted for country, sex, BMI 

236 and age, p >0.05). However, the relative abundance of the genes involved in the four different pathways 

237 for butyrate synthesis showed that several genes that encode for enoyl-CoA hydratase enzymes 

238 (K01692, K01782, K01825) in the acetyl-CoA pathway were enriched in participants without elevated CM 
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239 risk; while, crotonase (K01715) and β-hydroxybutyryl-CoA dehydrogenase (K00074) in the acetyl-CoA 

240 pathway were enriched in participants with elevated CM risk. Notably, the abundance of predictive genes 

241 that encode for glutaconyl-CoA decarboxylase (α, β subunits) (K01615) in the glutarate pathway and the 

242 4-hydroxybutyryl-CoA dehydratase (K14534) in the 4-aminobytyrate/succinate pathway were enriched in 

243 participants with elevated CM risk (adjusted for country, sex, age and BMI, fdr-corrected p < 0.05; Figure 
244 2d). 

245

246 We also explored whether gut bacterial functions were associated with each of the 5 individual CM risk 

247 factor within each of the countries. Gut microbial predicted genes involved in LPS and SCFA biosynthesis 

248 pathways showed that genes involved in the butyrate synthesis via lysine, glutarate and 4-

249 aminobutyrate/succinate pathways and LPS synthesis pathway were differentially enriched among the 

250 cohort with an elevated individual CM risk factor (supplementary Figure 8-11). Specifically, predicted 

251 genes involved in LPS biosynthesis pathways were enriched among participants with an elevated waist 

252 circumference in Ghana and US; participants with an elevated blood pressure in Ghana and Jamaica; 

253 participants with an elevated fasted blood glucose in Jamaica and the US, and those with low HDL in 

254 South Africa and the US. As the butyrate synthesis via lysine, glutarate and 4-aminobutyrate/succinate 

255 pathways, predicted genes involved in the glutarate pathway were significantly enriched in participants 

256 with a high waist circumference in South Africa and Ghana, and also participants with low HDL 

257 concentrations in the US and South Africa; predicted genes involved in the lysine pathway were enriched 

258 in participants with elevated blood pressure in Ghana; and predicted genes involved in the 4-

259 aminobytyrate/ succinate pathway in South Africans were significantly associated with low HDL 

260 concentrations (see detail in supplementary results; supplementary Figure 8-11) . 

261

262 Generalized linear models (GLM) were applied to explore the associations between alpha diversity, 

263 bacterial taxa and predicted functional genes and total CM risk (captured as the sum of CM risk factors 

264 in each participant). For instance, there was a significant positive correlation between the proportion of 

265 KEGG ID K01615 in the glutarate pathway and K14534 in the 4-aminobytyrate/succinate pathway and 

266 total CM risk score (i.e. a z-score transformation to generate continuous discrete measurements, 

267 controlling for country, age, sex, and BMI, p <0.05, see methods for more details). However, there were 

268 no significant associations between diversity or differential bacterial taxa and total CM risk (p >0.05). To 

269 explore whether the gut microbiota predicted elevated CM risk (three out of the five risk factors), random 

270 forest regression was used to determine the gut bacterial ESVs against the total CM risk (z-score 

271 transformed) pooling the 3 sites with CM risk data. Elevated CM risk could be predicted by gut-associated 

272 ESVs and explained almost 15% of the elevated CM risk variance among those with CM risk data.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595934doi: bioRxiv preprint 

https://doi.org/10.1101/595934
http://creativecommons.org/licenses/by/4.0/


9

273

274 Oral-associated bacterial diversity associates with country of origin and CM risk factors
275 On the other hand, oral microbiota diversity was associated with the country of origin, but not with the 

276 individual CM risk factors. Shannon diversity was significantly greater among the Ghanaians compared 

277 to the US participants (adjusted for age, sex and BMI, p <0.05; Supplementary Figure 12). As oral 

278 microbial alpha diversity was significantly different between countries, we correlated CM risk against 

279 alpha diversity for each country independently, and found that none of the CM risk factors were 

280 significantly associated with oral microbial alpha diversity (p >0.05, Supplementary Figure 13). 

281 However, oral microbial beta diversity was significantly different between participants from different 

282 countries (fdr-corrected p <0.01, Supplementary Figure 14), and therefore, tests of association were 

283 performed separately for each country. In the US sample, weighted UniFrac distance was significantly 

284 different between individuals with either high and normal waist circumference (fdr-corrected p <0.01) and 

285 similarly, between participants with either elevated and normal glucose concentrations (fdr-corrected p 

286 <0.05, Supplementary Figure 15). Unweighted UniFrac distances were significantly different between 

287 individuals with either elevated and normal waist circumference in the US (fdr-corrected p ≤ 0.01), Ghana 

288 (fdr-corrected p <0.05), and South Africa (fdr-corrected p <0.05) (Supplementary Figure 16). In the US 

289 alone, unweighted UniFrac was significantly different by HDL risk (fdr-corrected p <0.05) 

290 (Supplementary Figure 16). Therefore, oral beta diversity, and hence microbial structure, was 

291 significantly associated with several CM risk factors, but similarly differed by country, suggesting that 

292 environmental factors are critical for inter-individual dissimilarities in oral microbial composition 

293 (Supplementary Table 3).

294

295 Oral-associated bacterial community structure correlates with the elevated CM risk phenotype
296 We next investigated whether the oral microbiota correlated with the elevated CM risk phenotype (3 out 

297 of five risk factors) and CM risk score in the US, Ghanaian and South African participants. Alpha diversity 

298 was not significantly different between low and elevated CM risk (adjusted for age, sex and BMI, p(fdr-

299 corrected) <0.05, Supplementary Figure 17). However, both weighted and unweighted UniFrac distance 

300 were significantly differentiated by CM risk (fdr-corrected p <0.01, Figure 3a, 3b). The differential taxa 

301 analysis (with relative abundance ≥1% in at least one group) showed that participants with elevated CM 

302 risk had a significant enrichment of 4 oral-bacterial ESVs annotated to the genera Prevotella, Veillonella, 

303 and Streptococcus; while participants without elevated CM risk had a significant enrichment of 5 bacterial 

304 ESVs annotated to genus Haemophilus, Neisseria, Fusobacterium (adjusted for country, sex, BMI and 

305 age, p(fdr-corrected) <0.05; Figure 3c). Several oral-bacterial ESVs annotated to the genus Rothia 
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306 presented opposite behaviors (i.e., some were enriched, and some were depleted in participants with 

307 elevated CM risk compared with low CM risk)

308

309 At a more granular level, specific oral bacterial taxa were also associated with each CM risk factor across 

310 the entire cohort (adjusted for country, age, sex and BMI; supplementary Figure 18 and 
311 supplementary Table 4) or when stratified by sex (adjusted for country, BMI and age; supplementary 
312 Figure 18 and supplementary Table 4), separately. The results indicate that the oral microbiota of 

313 participants who have greater CM risk, e.g. a higher waist circumference, elevated blood pressure or low 

314 HDL concentration, are significantly enriched for potentially pro-inflammatory taxa, including 

315 Streptococcus, Prevotella, and Veillonella (fdr-corrected p <0.05; supplementary results). There were 

316 also specific oral bacteria that were differentially abundant between each country by each CM risk factor 

317 (fdr-corrected p <0.05; supplementary results; supplementary Figure 19 and Supplementary Table 2). 

318

319 To determine whether the taxa could identify participants with elevated CM risk, we once again used 

320 GLM to determine the association between the differential proportional oral bacterial taxa and total CM 

321 risk (sum of the number of CM risk factors for each participant). There was a significantly positive 

322 association between the proportion of a Streptococcus ESV and total CM risk (z-score transformation), 

323 controlling for country, age, and sex p <0.05). To test whether the oral microbiota can identify participants 

324 with the elevated CM risk phenotype, random forest regression was used to examine the association of 

325 oral bacterial ESVs against CM risk (z-score transformed). Among participants with elevated CM risk, 

326 oral bacterial ESVs, accounted for almost 8% of the variance. 

327

328 Correlation of beta diversity between gut and oral microbiota
329 Finally, to explore whether the beta diversity trends seen in the oral microbiota correlated with those in 

330 the gut microbiota, we applied a Mantel test using both unweighted and weighted UniFrac distance 

331 matrices. Pooling all countries, there was a significant correlation with both unweighted (r = 0.094, p 

332 =0.001) and weighted (r =0.082, p =0.001) UniFrac distance between the gut and oral microbiota 

333 (Supplementary Figure 20 and 21). However, within each country, only the weighted UniFrac metric 

334 had a significant correlation between oral and gut microbial beta diversity, and only among the US and 

335 South African participants (p = 0.034, r = 0.073 and p = 0.021, r = 0.09 respectively) (Supplementary 
336 Figure 20 and 21). 

337

338 Discussion
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339 In our study of African-origin adults from Ghana, South Africa, Jamaica and the US, we performed a 

340 comprehensive analysis exploring the relationship between the gut and oral microbiota and elevated CM 

341 risk, representing 4 geographically diverse countries spanning an epidemiologic transition. Overall, our 

342 results provide evidence that the gut and oral microbiota may potentially be both predictive as well as a 

343 therapeutic target for elevated CM risk, and is in line with previous evidence that the human microbiota 

344 are associated with CM risk(40).

345

346 Consistent with previous studies(9, 41), we found that the gut microbial alpha diversity was significantly 

347 lower in participants with elevated CM risk. However, these associations are mostly geographical and 

348 dependent on the type of CM risk factor, e.g. for elevated blood pressure, the association was only found 

349 among South Africans and Ghanaians, while only Jamaicans had differences for elevated fasted blood 

350 glucose. Similarly, gut bacterial beta diversity was also significantly different between participants with 

351 an elevated waist circumference, elevated blood pressure, hypertriglyceridemia or low HDL concentration, 

352 compared with their healthy counterparts. Although again, the associations differed by country, e.g. for 

353 an elevated waist circumference, the associations were only found among the South African and 

354 Ghanaian participants, and for low HDL concentration, only among the US participants. 

355

356 Previous studies have reported conflicting results as to which specific bacterial taxa associate with CM 

357 risk factors(11-13, 17, 18). In our study, gut bacterial ESVs annotated to family Lachnospiraceae were 

358 significantly enriched in participants with the elevated CM risk phenotype, along with individual risk factors, 

359 including elevated waist circumference and hypertriglyceridemia. Previously, a number of studies have 

360 found that an enrichment of Lachnospiraceae was associated with the development of obesity, insulin 

361 resistance and other metabolic disorders(42-46). Notably, participants with an elevated waist 

362 circumference also showed an enrichment for the genus Streptococcus, which has previously been found 

363 to be enriched in some CM diseases(17). In our study, participants with healthy waist circumferences, 

364 and blood pressure and a normal fasting blood glucose exhibited a significant enrichment of the 

365 Ruminococcaceae family (supplementary results), which includes several kinds of beneficial bacteria 

366 known to be negatively correlated to metabolic disease and associated with lower CM risk, e.g. genus 

367 Faecalibacterium(47, 48) and genus Oscillospira(49). Similarly, gut bacterial ESVs annotated to the 

368 Clostridiaceae and Peptostreptococcaceae families and Prevotella genus were enriched in participants 

369 with a lower total CM risk as well as individual CM risk factors, e.g. healthy waist circumferences and 

370 normal fasting blood glucose levels, consistent with previous research, reporting a negative association 

371 with obesity or other CM risk factors(18, 50, 51). Although it should also be noted that there are a handful 
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372 of studies that suggest that Clostridiaceae and Prevotella are significantly enriched in patients with 

373 metabolic diseases(51-53). 

374

375 Our predicted metagenomic functional analysis showed that participants with elevated CM risk harbored 

376 a more pronounced inflammatory phenotype. Indeed, predicted genes involved in LPS biosynthesis 

377 pathways were significantly enriched in participants presenting with individual CM risk factors across 

378 diverse geographic settings. Similar findings have been reported previously and suggest increased LPS 

379 synthesis potential in the gut microbiota in people with obesity, diabetes and other related metabolic 

380 diseases(19, 20).  Of note, the predicted relative proportion of genes that encode for enzymes involved 

381 in butyrate synthesis pathway suggested that the lysine pathway, glutarate pathway, and 4-

382 aminobytyrate/succinate pathway were significantly enriched in individuals with elevated CM risk and 

383 also individual risk factor. Butyrate can be synthesized via different substrates, driven by enzymes that 

384 are produced and secreted by different bacteria(54). While the most common pathway for butyrate 

385 synthesis is via pyruvate and acetyl-coenzyme A, other less-dominant pathways include amino-acids 

386 (lysine, glutarate and 4-aminobytyrate/succinate) as substrates via the 4-aminobutyrate pathway, which 

387 can produce pro-inflammatory byproducts(54) and are related with obesity. Together, these results 

388 suggest that the gut microbial metabolic functional potential of participants with elevated CM risk had a 

389 marked inflammation-driving capacity, which may influence host systemic inflammatory levels and may 

390 ultimately lead to the CM disease consequence. 

391

392 While the impact of ethnicity on the core of gut microbiota has been demonstrated by several studies(55, 

393 56), exploring the impact of ethnicity and the associations between gut microbiota and CM risk has not 

394 been performed to date. Some studies find that there is a decrease in the gut microbial alpha-diversity 

395 that is associated with CM risk from different ethnicities, e.g. Danish obese individuals when compared 

396 to non-obese individuals9 and obese compared with lean in a mid-western US female adolescent twin 

397 cohort study (41). Similarly, previous studies find that there is a shared alteration in the gut microbial 

398 composition of the individuals with elevated CM risk and adiposity derived from different ethnicities. For 

399 example there was an adiposity-related enrichment of Lachnospiraceae in the gut microbiota of 

400 participants enrolled in the Twins UK cohort study(46), as well as among British obese individuals(45), 

401 and obese, Colombian subjects (57) with increased cardiometabolic risk, and finally among individuals 

402 in the midst of Westernization(58) when compared to the lean individuals, respectively. Interestingly, the 

403 association between TMAO and cardiovascular disease has been found to be significantly greater in 

404 whites compared to blacks(24). In our study of African-origin adults, there was no significant association 

405 between predicted genes involved in TMAO biosynthetic pathway and total CM risk or individual CM risk 
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406 factors, consistent with previous research, finding a negative association between TMAO concentration 

407 and cardiac death in black participants(24).

408

409 Numerous reports have implicated a close linkage between oral infections, particularly periodontitis, and 

410 several systemic diseases, e.g. atherosclerosis, type 2 diabetes mellitus, atherosclerotic cardiovascular 

411 disease(30-32). In our study, we found that the oral microbial structure (measured by beta diversity) was 

412 associated with indices of elevated CM risk, e.g. high waist circumference, elevated fasted blood glucose, 

413 and low HDL concentration. However, as with gut microbiota, these associations varied according to the 

414 geographic region. There were also several ESVs significantly associated with total elevated CM risk as 

415 well as the individual CM risk factors. For example, participants with total elevated CM risk or individual 

416 CM risk factors, e.g. elevated waist circumference, low HDL concentration, elevated blood pressure or 

417 hypertriglyceridemia, exhibited enriched oral bacterial ESVs annotated to genus Streptococcus, 

418 Prevotella, or Veillonella, which were previously reported to be associated with obesity and other 

419 cardiometabolic disease(59-62). Systemic inflammation is an important component of the role of oral 

420 bacteria in the pathogenesis of systemic diseases(30, 34). Some strains in genera Streptococcus, 

421 Prevotella, or Veillonella are opportunistic pathogens and have been previously reported to be associated 

422 with inflammatory diseases(63-65), even though, we also found that ESVs in genus Neisseria were higher 

423 in participants without individual CM risk, e.g. elevated waist circumference, elevated blood pressure or 

424 hypertriglyceridemia, inconsistent with previous reports as described above. Importantly, we found a 

425 number of instances whereby different ESVs of the same genus were associated with differential CM 

426 risk. For example, different ESVs belonging to the genus Rothia were significantly enriched in the oral 

427 microbiota of participants both with and without elevated CM risk. While it is possible that these are 

428 spurious relationships, it is also possible that these two unclassified Rothia strains have different genetic 

429 makeup in non-genera conserved regions or different transcriptional and/or translational profiles in genus 

430 conserved regions associated with CM risk (e.g., distinct immunological and/or metabolic properties) that 

431 could result in different host-associated impact. Indeed, this may explain the conflicting results with 

432 certain studies(66). The oral microbiota may significantly impact the CM risk through triggering of 

433 inflammatory processes. Consequently, an analysis of the oral microbiota can be imagined to be used 

434 as a pre-screening test for CM risk, despite differences between the gut and oral bacterial diversity and 

435 taxa associated with elevated CM risk. Notably, in this study, we also found a weak but significant 

436 association between the oral and gut microbiota, within the structure and also the functional taxa. Thus, 

437 it is conceivable that the oral microbiota might be used as a proxy to determine gut-derived associations 

438 with CM risk.

439
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440 In conclusion, our findings extend our insights into the relationship between the human microbiota and 

441 elevated CM risk at the structural and functional level, pointing to possible future therapeutic modalities 

442 for CM risk targeting the gut and oral microbiota. Our findings identify previously unknown links between 

443 gut and oral microbiota alterations, and CM risk, suggesting that gut and oral microbial composition, 

444 structure and predicted functional potential may serve as predictive biomarkers for identifying CM risk, 

445 as well as therapeutic targets. The features of association between human microbiome and CM risk is 

446 diverse in different populations and indicates that different interventions and potential individualized 

447 treatment methods targeting the microbiome need to be developed to control the development of CM risk 

448 across the world. Indeed, we are continuing our exploration of these relationships in our large 

449 international cohort of African-origin adults spanning the epidemiologic transition(35). 

450

451 Methods

452 Study participants
453 Participant selection

454 Previously, 2,506 African-origin adults (25-45yrs), were enrolled in METS between January 2010 and 

455 December 2011 and followed on a yearly basis. A detailed description of the METS protocol has 

456 previously been published(35). For the current study, fecal samples from 655 men and women from 

457 Ghana (N=196), South Africa (N=176), Jamaica (N=92) and the US (N=191) were collected in 2014. In 

458 addition, 620 of them also supplied saliva samples. Participants were excluded from the original study if 

459 they self-reported an infectious disease, including HIV-positive individuals (South Africa), pregnant or 

460 lactating women, and unable to participate in normal physical activities(35). METS was approved by the 

461 Institutional Review Board of Loyola University Chicago, IL, US; the Committee on Human Research 

462 Publication and Ethics of Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; the 

463 Research Ethics Committee of the University of Cape Town, South Africa; the Board for Ethics and 

464 Clinical Research of the University of Lausanne, Switzerland; and the Ethics Committee of the University 

465 of the West Indies, Kingston, Jamaica. All study procedures were explained to participants in their native 

466 languages, and participants provided written informed consent after being given the opportunity to ask 

467 any questions.

468

469 Lifestyle and biochemical measurements

470 All measurements were made at research clinics located in the respective communities. Weight and 

471 height were measured. Participants were asked to provide an early morning fecal sample, using a 

472 standard collection kit (EasySampler stool collection kit, Alpco, NH) at their home. Fecal samples were 
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473 immediately brought to the site clinics and stored at -80 °C. Participants were requested to fast from 8 

474 pm in the evening prior to the clinic examination, during which fasting capillary glucose concentrations 

475 were determined using finger stick (Accu-check Aviva, Roche). 

476

477 Cardiometabolic risk
478 We defined CM risk using the National Cholesterol Education Program’s Adult Treatment Panel III NCEP/ 

479 ATP III criteria for cardiometabolic disease(6). These 5 risk factors include: 1) waist circumference >102 

480 cm in males and >88 cm in females; 2) elevated blood pressure (≥130/85 mm Hg), or receiving treatment; 

481 3) hypertriglyceridemia (≥ 150 mg/dL), or receiving lipid-lowering treatment; 4) low high-density 

482 lipoprotein (HDL) cholesterol (<40 mg/dL in males and <50 mg/dL in females), or receiving lipid-lowering 

483 treatment; and 5) elevated fasting plasma glucose (≥ 110 mg/dL) or receiving glucose-lowering treatment.

484

485 DNA isolation and 16S ribosomal RNA (rRNA) gene sequencing
486 Microbial genomic DNA was extracted from the human stool samples using the DNeasy PowerSoil DNA 

487 Isolation Kit (Qiagen). The V4 region of 16S rRNA gene was amplified and sequenced using the Illumina 

488 MiSeq platform(67). The primers used for amplification (515F-806R) contain adapters for MiSeq 

489 sequencing and single-end barcodes allowing pooling and direct sequencing of PCR products(68).

490

491 16S rRNA gene pyrosequencing data preprocessing and analysis
492 Raw sequences were pre-processed, quality filtered and analyzed using the next-generation microbiome 

493 bioinformatics platform (QIIME2 version 2018.6 pipeline) according to the developer’s suggestion(69, 

494 70). We used the DADA2 algorithm(71), a software package wrapped in QIIME2, to identify exact 

495 sequence variants (ESVs). Quality control, filtering low quality regions of the sequences, identification 

496 and removal of chimera sequences, merging paired-end reads, which yielded the ESV feature table (ESV 

497 table). Alpha and beta-diversity analyses were performed in R using the phyloseq package(72). Alpha 

498 diversity was calculated by Shannon’s diversity index, observed OTUs, and Chao1 diversity(37). Results 

499 were adjusted for BMI, age, sex and country. Principal coordinate analysis (PCoA) was performed based 

500 on weighted and unweighted UniFrac distances, a method for computing differences between microbial 

501 communities based on phylogenetic information(38). Weighted UniFranc considered both ESVs 

502 presence and absence and abundance distances, and unweighted UniFrac only considered ESVs 

503 presence. Permutational multivariate analysis of variance (PERMANOVA, R function adonis (vegan, 999 

504 permutations)) was used to analyze statistical differences in beta diversity(73). Benjamini–Hochberg false 

505 discovery rate (fdr) correction was used to correct for multiple hypothesis testing(74). 

506
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507 The contribution of CM risk factors and environmental factors (sex, age, BMI, sleep, smoke and alcohol 

508 consumption) to the overall weighted and unweighted UniFrac dissimilarities in gut and oral microbiota 

509 composition was also assessed using PERMANOVA (R function adonis (vegan), 999 permutations), 

510 which decomposes the dissimilarity matrix into ‘variance’ explained by each covariate. The obtained R2 

511 gives the proportion of variability observed in the entire dissimilarity matrix that can be independently 

512 attributed to the studied variables.

513

514 For taxonomic comparisons, relative abundances based on all obtained reads were used. We used the 

515 QIIME2 plugin “q2-feature-classifier” and the Naïve Bayes classifier(75) that was trained on the 

516 metagenome annotation package Greengenes13.8(76) 99% operational taxonomic units (OTUs) full-

517 length sequences to obtain the taxonomy for each ESV. Significantly differential ESVs were determined 

518 using the statistical framework called analysis of composition of microbiomes (ANCOM)(71) for two 

519 group comparisons. FDR correction was used to correct for multiple hypothesis testing. Results were 

520 adjusted for BMI, age, sex and country.

521

522 A two-side Mantel test using Spearman correlation coefficients (999 permutations) was applied to identify 

523 the correlation between the beta diversity of the oral and the gut microbiota, with both unweighted and 

524 weighted UniFrac distance matrices in software R with the function “mantel.test”(77). 

525

526 To test for correlations between oral microbiota and the Shannon index or ESVs, which their relative 

527 abundances was greater than 1% and are also significantly correlated with CM risk in gut microbiota, 

528 random forest regression and generalized linear models (GLM) were performed. Random forest 

529 regression was done with 1,000 regression trees based on 10-fold cross-validation and performed with 

530 QIIME2 plugin “qiime sample-classifier regress-samples” and the Random Forest regressor in the R 

531 programming environment. A randomly drawn 80% of samples were used for model training and the 

532 remaining 20% were used for validation. 

533

534 Metagenome functional predictions of the microbial pathways
535 We used Piphillin an algorithm to predict the functional profiles of the microbiome (39). Briefly, this 

536 algorithm uses direct nearest-neighbor matching between 16S rRNA gene sequencing datasets and 

537 microbial genomic databases to infer the metagenomic content of the samples. Gene prediction was 

538 performed on ESVs table using online Piphillin (http://secondgenome.com/Piphillin.), with KEGG 

539 database version 2017 and 97% identity cut-off. Predicted gene content and gene copy numbers within 

540 each genome were retrieved and classified in terms of the ezymes code by each gene as KEGG orthology 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595934doi: bioRxiv preprint 

https://doi.org/10.1101/595934
http://creativecommons.org/licenses/by/4.0/


17

541 (KOs)(78). Results were adjusted for BMI, age, sex and country. Statistical analyses were performed in 

542 R. Student's t-test (normally distributed) or Mann-Whitney U test (not normally distributed) was used for 

543 to detect differentially abundant KOs between two groups. FDR correction was used to correct for multiple 

544 hypothesis testing. 
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Table 1. Participant characteristics by site. The US is the reference site.

Ghana South Africa Jamaica US Overall

N N=196 N=176 N=92 N=191 N=655

Age (y) 35.8 ± 6.6 33.3 ± 5.9* 33.9 ± 6.2* 36.0 ± 6.3 34.9 ± 6.4

Weight (kg) 63.2 ± 12.0** 76.2 ± 20.5** 80.0 ± 21.1** 94.2 ± 25.0 78.1 ± 23.3

Height (cm) 161.7± 7.6** 163.7 ± 7.7** 166.8 ± 

10.9**

169.6 ± 8.4 165.2 ±9.0

BMI (kg/m2) 24.3 ± 5.0** 28.7 ± 8.2** 29.1 ± 8.9** 32.8 ± 8.8 28.6 ±8.4

Normal weight 
(BMI<25 
kg/m2), N, %

131, 66.8%** 78, 44.3%** 32, 34.8%** 36, 18.9% 277, 42.3%

Overweight 
(BMI≥25 
kg/m2-<30 
kg/m2)

41, 20.9% 28, 15.9%** 28, 30.4% 52, 27.2% 149, 22.8%

Obese 
(BMI≥30 
kg/m2)

24, 12.2%** 70, 39.8%** 32, 34.8%** 103, 53.9% 229, 35.0%

Fat-free mass 
(kg)

44.3 ± 7.4** 44.6 ± 7.2** - 55.1 ± 11.2 48.1 ± 10.2

Fat mass (kg) 19.0 ± 9.2** 31.7 ± 16.2** - 39.3 ± 18.4 29.9 ± 17.3

% Body fat 29.2 ± 9.84** 39.3 ± 11.0 - 39.9 ± 10.8 36.0 ± 11.6

Sleep hours 
(hrs/night) ¥

7.9 ± 1.4** 10.5 ± 1.7** 7.3± 2.1* 6.7 ± 1.4 8.2 ± 2.2

Smokers¥ 4, 2.0%** 48, 27.3 %** 10, 10.9%** 72, 37.7% 134, 20.5%

Drinkers¥ 59, 30.6%** 75, 42.9%** - 161, 84.3% 295, 52.8%

*p<0.05, **p<0.01 compared to US.
¥Adjusted for age, sex and BMI
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Table 2. Cardiometabolic risk by site, and overall. The US is the reference site, and 
comparisons are adjusted for age, sex and BMI.

Ghana South 
Africa

Jamaica United 
States

Overall

N=196 N=176 N=92 N=191 N=655

Fasted plasma glucose 
(mg/dL)

100.7 ± 

12.2

83.3 ± 

18.1**

99.6 ± 

15.5

106.2 ± 

40.4

97.5 ± 

26.8

Elevated fasted plasma 
glucose, N, %

2, 1.0%** 8, 4.6%** 18, 19.6% 45, 23.9% 73, 11.2%

Systolic blood pressure 
(mmHg)

112.9 ± 

13.5**

124.4 ± 

20.5*

112.7 ± 

12.5**

123.3 ± 

17.6

119.0 ± 

17.5

Diastolic blood pressure 
(mmHg)

66.6 ± 

11.0**

79.4 ± 

12.8

72.0 ± 

34.0**

80.5 ± 13.1 74.9 ± 

18.1

Elevated blood pressure, 
N, %

6, 3.1%** 26, 14.8% 1, 1.1%* 25, 13.1% 58, 8.9

Triglycerides (mg/dL) 82.1 ± 36.5 88.2 ± 

55.1

- 98.5 ± 62.1 89.5 ± 

52.5

Hypertriglyceridemia, N, % 
(N=563) 

12, 6.2% 16, 9.1% - 29, 15.7% 57, 10.3%

HDL-cholesterol (mg/dL) 46.1 ± 

13.6**

49.9 ± 

15.0*

- 52.1 ± 15.1 49.3 ± 

14.7

Low HDL-cholesterol, N, % 
N=563

104, 

53.6%**

79, 45.4%* - 64, 34.8% 247, 

44.8%

LDL-cholesterol (mg/dL) 100.7 ± 
29.1

92.9 ± 
32.6**

- 110.1 ± 
35.5

101.4 ± 
33.1

Total cholesterol (mg/dL) 163.3 ± 
34.3**

160.1 ± 
36.1**

- 183.0 ± 
38.6

168.9 ± 
37.7

High waist circumference 
N, % N=563

37, 
18.9%**

78, 
44.3%**

37, 
40.2%**

116, 60.7 268, 
40.9%

Cadiometabolic disease 
N, % N=563

3, 1.5%* 15, 8.5% - 28, 14.7 46, 8.2%

Cardiometabolic risk is defined by three out of five risk factors: waist circumference >102 cm in males 
and >88 cm in females; elevated blood pressure (≥ 130/85 mm Hg), or receiving treatment; 
hypertriglyceridemia (≥ 150 mg/dL), or receiving treatment; low HDL (<40 mg/dL in males and <50 
mg/dL in females), or receiving treatment; and elevated fasting plasma glucose (≥ 110 mg/dL) or 
receiving treatment. *p<0.05, **p<0.01 compared to US.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595934doi: bioRxiv preprint 

https://doi.org/10.1101/595934
http://creativecommons.org/licenses/by/4.0/


26

26

Figure 1 | Gut bacterial alpha diversity associations with cardiometabolic risk factors 
(adjusted for age, sex and BMI, only significant associated were shown here). a) Alpha diversity 

(Shannon index) in the four study sites (USA, RSA, Ghana and Jamaica); b) association with 

hypertension in RSA; c); association with elevated fasting blood glucose in Jamaica; d); association 

with hypertension in Ghana. * p <0.05; ** p <0.01.

Figure 2 | Gut bacterial structure and function correlates with cardiometabolic (CM) risk 
phenotype. (a), Alpha diversity analysis (Shannon Index) from 16S rRNA gene sequence data of 

gut microbiota against CM risk; (b-c), Principal coordinate analyses (PCoA) of weighted (a) and 

unweighted (b) UniFrac distance of gut microbiota composition against CM risk (fdr-corrected p 

<0.01); (d), Specific gut bacterial taxa are differentially abundant (in relative terms) between study 

sites with and without elevated CM risk (only significantly differential exact sequence variants 

(ESVs) with relative abundance ≥ 1% in at least one group shown. Data shown are means ± S.E.M.; 

p(fdr-corrected) <0.05); (e), Relative abundance of the genes involved in the four different pathways 

for butyrate synthesis against CM risk of gut microbiota across all study sites. (Data shown are 

means of percentages ± S.E.M. p(fdr-corrected) < 0.05). CMD means CM risk defined as at least 3 

CM risk factors from five: waist circumference, elevated blood pressure, elevated blood fasting 

glucose, elevated triglyceride and low HDL concentration in USA, RSA, and Ghana   *** p < 0.001. 

false discovery rate

Figure 3 | Oral-associated bacterial structure correlates with CM risk phenotype. (a-b), Principal 

coordinate analyses (PCoA) of weighted (a) and unweighted (b) UniFrac distance of oral microbiota 

composition against CM risk (fdr-corrected p <0.01). (c), Specific oral bacterial taxa are differentially 

abundant (in relative terms) between study sites with and without CM risk (only significantly differential 

exact sequence variants (ESVs) with relative abundance ≥ 1% in at least one group shown. Data 

shown are mean± S.E.M. p(fdr-corrected) < 0.05). CMD means CM risk, including at least 3 CM risk 

factors of waist circumference, elevated blood pressure, elevated blood fasting glucose, high 

triglyceridemia and low HDL-cholesterolemia in USA, RSA, and Ghana. fdr, false discovery rate.
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