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Abstract 

Higher health literacy is associated with higher cognitive function and better health. Despite its wide 

use in medical research, no study has investigated the genetic contributions to health literacy. Using 

5,783 English Longitudinal Study of Ageing (ELSA) participants (mean age=65.49, SD=9.55) who 

had genotyping data and had completed a health literacy test at wave 2 (2004-2005), we carried out a 

genome-wide association study (GWAS) of health literacy. We estimated the proportion of variance 

in health literacy explained by all common single nucleotide polymorphisms (SNPs). Polygenic 

profile scores were calculated using summary statistics from GWAS of 21 cognitive and health 

measures. Logistic regression was used to test whether polygenic scores for cognitive and health-

related traits were associated with having adequate, compared to limited, health literacy. No SNPs 

achieved genome-wide significance for association with health literacy. The proportion of variance in 

health literacy accounted for by common SNPs was 8.5% (SE=7.2%). Greater odds of having 

adequate health literacy were associated with a 1SD higher polygenic score for general cognitive 

ability (OR=1.34, 95% CI 1.26-1.42), verbal-numerical reasoning (OR=1.30, 1.23-1.39), and years of 

schooling (OR=1.29, 1.21-1.36). Reduced odds of having adequate health literacy were associated 

with higher polygenic profiles for poorer self-rated health (OR=0.92, 0.87-0.98) and schizophrenia 

(OR=0.91, 0.85-0.96). The well-documented associations between health literacy, cognitive function 

and health may partly be due to shared genetic aetiology. Larger studies are required to obtain 

accurate estimates of SNP-based heritability, and to discover specific health literacy-associated 

genetic variants. 
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Introduction 

Health literacy is “the degree to which individuals have the capacity to obtain, process, and 

understand basic health information and services needed to make appropriate health decisions”.1 This 

capacity is thought to be important for navigating all aspects of health care, including the ability seek 

out and act upon appropriate health information, and self-manage health conditions.1, 2 Tests of 

functional health literacy have been used to investigate the association between health literacy and 

health. Individuals with lower health literacy have been found to be less likely to take part in health 

promoting behaviours.3 Lower health literacy is associated with poorer overall health status,4 lower 

self-reported physical and mental health,3, 5 and greater self-reported depressive symptoms.6 One 

study5 found that individuals with inadequate health literacy were 48% more likely to report a 

diagnosis of diabetes and 69% more likely to report having heart failure, compared to those with 

adequate health literacy, after adjusting for sociodemographic variables and health behaviours. Using 

prospective studies, lower health literacy predicted incident dementia7, 8 and risk of dying.4, 9, 10  

Compared with those of health literacy, similar associations with health have been found for cognitive 

function. Individuals with higher cognitive function tend to participant more in health promoting 

behaviours.11-14 Vascular risk factors, including diabetes and hypertension, have been associated with 

poorer cognitive function and greater cognitive decline.15-18 Cognitive function, measured early in life, 

has been found to predict later life physical functioning and health status,19 psychological distress,20 

psychiatric illness,21-25 dementia,26 and death.27-30 

Performance on tests of health literacy and cognitive function are moderately to highly correlated.31-34 

Murray et al.32 found that the correlations between general cognitive ability and three tests of health 

literacy, tested in older adulthood, ranged from 0.35 to 0.53 (p < .001). Given these correlations, 

researchers have sought to determine whether the relationship between health literacy and health 

remained when also accounting for cognitive function. Cognitive function has been consistently found 

to attenuate the size of the association between health literacy and health; however, whereas some 

studies have found that health literacy no longer predicted better health when controlling for cognitive 
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function,33, 35-37 others have found that a small but significant association remained between higher 

health literacy scores and better health when also controlling for cognitive function.7, 10, 33, 38, 39 

Whereas there is a wealth of evidence reporting a relationship between health literacy, cognitive 

function and health, it is less well understood why these associations are found. One possibility is that 

they share genetic influences. Cognitive function is substantially heritable.40-42 With increasing 

samples sizes, the specific genetic variants associated with cognitive function are being identified.43, 44 

One study45 sought to explore the shared genetic architecture between cognitive function and health, 

using two complementary genetic techniques: linkage disequilibrium (LD) score regression46 and 

polygenic profile scoring.47 The first technique involves calculating the genetic correlations between 

two traits of interest using summary results from previous GWAS. The second technique uses 

summary GWAS data for a specific trait (e.g., type 2 diabetes) and tests whether the genetic variants 

found to be associated with this trait are also associated with the same (e.g., type 2 diabetes) or a 

different (e.g., cognitive function) phenotype in an independent sample. Using these techniques, 

Hagenaars et al.45 found substantial shared genetic influences between cognitive function and physical 

and mental health. Negative genetic correlations were found between a test of verbal-numerical 

reasoning and Alzheimer’s disease (rg = -0.39, p = 0.002), and schizophrenia (rg = -0.30, p = 3.5x10-

11), among others. Polygenic profiles for various mental and physical health-related variables were 

associated with performance on tests of cognitive function, including coronary artery disease, 

Alzheimer’s disease, and schizophrenia. The shared genetic architecture between cognitive function 

and health has been subsequently replicated using larger samples.44 

Summaries are available regarding the advances made in understanding the genetic architecture of 

cognitive function and its overlap with physical and mental health.42, 48 However, to the best of our 

knowledge, no one has investigated the genetic contributions to people’s differences in health literacy. 

The aim of the present study was to explore the genetic contributions to health literacy and its overlap 

with cognitive function and health. Using data from ELSA, a sample of English adults aged 50 years 

and older, the present study: conducted a GWAS of health literacy; estimated its SNP-based 
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heritability; and used polygenic profile scoring to examine the genetic overlap between health literacy 

and cognitive function, and health literacy and various health-related traits. 

Materials and methods 

Participants 

This study used data from ELSA (https://www.elsa-project.ac.uk/), a cohort study designed to be 

representative of English adults aged 50 years and older.49 The original sample (wave 1) was recruited 

in 2002-2003 and consisted of 11,391 participants. Participants have been followed-up every two 

years and the sample has been refreshed at subsequent waves to ensure the sample’s 

representativeness. Interviews took place, via computer assisted personal interviews and self-

completion questionnaires, in the participants’ own homes. The topics assessed included health, 

financial and social circumstances. A nurse visit was carried out every second wave to measure 

biomarkers. Blood samples collected during the nurse visit have been used to genotype ELSA 

participants. More information on the ELSA sampling procedures are reported elsewhere.49 For the 

present study, a subsample of participants were used who completed the health literacy test at wave 2 

(2004-2005) and who had genome-wide genotyping data (n = 5,783).  

Procedure 

Health literacy. Health literacy was measured using a four-item reading and comprehension test. This 

test was designed to mimic written materials, such as drug labels, that would be encountered in a 

health-care setting. A piece of paper containing instructions for an over-the-counter packet of 

medicine was given to participants. Participants were asked four questions about the information on 

the medicine packet (e.g., “what is the maximum number of days you may take this medication?”). 

One point was awarded for each correct answer. As has been done in other studies,50, 51 participants 

were categorised as having adequate (4/4 questions correct) or limited health literacy (<4 correct).  

Genotyping and quality control. A total of 7,597 ELSA participants who had provided blood samples 

were genotyped, in two batches (batch one n = 5,652; batch two n = 1,945) by UCL Genomics using 

the Illumina Omni 2.5-8 chip. Quality control procedures were performed by UCL Genomics and by 
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the present authors. This included removal of SNPs based on call rate, minor allele frequency and 

deviation from Hardy-Weinberg equilibrium. Individuals were removed based on call rate, 

relatedness, gender mismatch, and non-Caucasian ancestry. A sample of 7,358 participants remained 

following quality control procedures.  

Imputation. Pre-phasing and imputation to the 1000 Genome Phase 3 reference panel52 was performed 

using the Sanger Imputation Service,53 EAGLE2 (v2.0.5),54 and PBWT55 pipeline.  

Curation of summary results from GWAS of cognitive and health-related traits. Summary results from 

21 GWAS of cognitive function, general health status variables, chronic diseases, health behaviours, 

neuro-psychiatric disorders, years of schooling, social deprivation and the personality traits of 

conscientiousness and neuroticism were collected. For each trait, we checked the samples used in the 

GWAS to ensure ELSA was not included. Sources of summary statistics, and key references are given 

in the Supplementary materials and Supplementary Table 1.  

Statistical analyses 

Genome-wide association analyses. SNP-based association analyses were performed using the 

BGENIE v1.2 analysis package (https://jmarchini.org/bgenie/). A linear SNP association model was 

tested which accounted for genotype uncertainty. Prior to these analyses the health literacy phenotype 

was adjusted for the following covariates: age, sex, and 15 principal components. 

Genomic risk loci characterisation using FUMA. Genomic risk loci were defined from the SNP-based 

association results, using FUnctional Mapping and Annotation of genetic associations (FUMA).56 

Firstly, independent significant SNPs were identified using the SNP2GENE function and defined as 

SNPs with a p-value of < 1×10-5 and independent of other genome-wide suggestive SNPs at r2 < 0.6. 

Using these independent significant SNPs, tagged SNPs to be used in subsequent annotations were 

identified as all SNPs that had a MAF ≥ 0.0005 and were in LD of r2 ≥ 0.6 with at least one of the 

independent significant SNPs. These tagged SNPs included those from the 1000 Genomes Phase 3 

reference panel and need not have been included in the GWAS performed in the current study. 

Genomic risk loci that were 250�kb or closer were merged into a single locus. Lead SNPs were also 
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identified using the independent significant SNPs and were defined as those that were independent 

from each other at r2 < 0.1. 

Comparison to previous findings. A look-up of the independent significant and tagged SNPs for 

health literacy in the current study was performed in previous GWAS of general cognitive ability44 

and years of schooling.57 We identified whether significant SNPs and tagged SNPs reported here 

reached either genome-wide (p < 5×10-8) or suggestive (p < 1×10-5) significance in these previous 

GWAS.  

Gene-based analysis implemented in FUMA. Gene-based association analyses were conducted using 

MAGMA.58 The test carried out using MAGMA, as implemented in FUMA, was the default SNP-

wise test using the mean χ2 statistic derived on a per gene basis. SNPs were mapped to genes based 

on genomic location. All SNPs that were located within the gene-body were used to derive a p-value 

describing the association found with health literacy. The SNP-wise model from MAGMA was used 

and the NCBI build 37 was used to determine the location and boundaries of 18,199 autosomal genes. 

LD within and between each gene was gauged using the 1000 genomes phase 3 release. A Bonferroni 

correction was applied to control for multiple testing across 18,199 genes; the genome-wide 

significance threshold was p�<�2.75×10−6. 

Functional annotation implemented in FUMA. The independent significant SNPs and those in LD 

with the independent significant SNPs were annotated for functional consequences on gene functions 

using ANNOVAR59 and the Ensembl genes build 85. Functionally-annotated SNPs were then mapped 

to genes based on physical position on the genome, and chromatin interaction mapping (all tissues). 

Intergenic SNPs were mapped to the two closest up- and down-stream genes which can result in their 

being assigned to multiple genes. 

Gene-set analysis implemented in FUMA. In order to test whether the polygenic signal measured in 

the GWAS clustered in specific biological pathways, a competitive gene-set analysis was performed. 

Gene-set analysis was conducted in MAGMA58 using competitive testing, which examines if genes 

within the gene set are more strongly associated with health literacy than other genes. A total of 
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10,675 gene-sets (sourced from Gene Ontology,60 Reactome,61 and, SigDB62) were examined for 

enrichment of health literacy. A Bonferroni correction (p < 0.05/10,675 = 4.68×10-6) was applied to 

control for the multiple tests performed. 

Gene-property analysis implemented in FUMA. A gene-property analysis was conducted using 

MAGMA in order to indicate the role of particular tissue types that influence differences in health 

literacy. The goal of this analysis was to test if, in 30 broad tissue types and 53 specific tissues, tissue-

specific differential expression levels were predictive of the association of a gene with health literacy. 

Tissue types were taken from the GTEx v6 RNA-seq database63 with expression values being log2 

transformed with a pseudocount of 1 after winsorising at 50, with the average expression value being 

taken from each tissue. Multiple testing was controlled for using a Bonferroni correction (p < 0.05/53 

= 9.43×10-4). 

Estimation of SNP-based heritability. The proportion of variance explained by all common SNPs was 

estimated using univariate genome-wide complex trait analysis (GCTA-GREML).64 The sample size 

for the GCTA-GREML is slightly smaller than that used in the association analysis (n = 5,661), 

because one individual was excluded from any pair of individuals who had an estimated coefficient of 

relatedness of > 0.025 to ensure that effects due to shared environment were not included. The same 

covariates were included in the GCTA-GREML as for the SNP-based association analysis. 

Polygenic profile analyses. Polygenic profile scores were created using PRSice version 265 

(https://github.com/choishingwan/PRSice). First, we used the GWAS results for health literacy to 

create health literacy polygenic profile scores in an independent sample, and used these scores to 

predict health literacy, cognitive function and educational attainment phenotypes. Polygenic profile 

scores for health literacy were created in 1,005 genotyped participants from the Lothian Birth Cohort 

1936 (LBC1936) study66 by calculating the sum of alleles associated with health literacy across many 

genetic loci, weighted by the effect size for each loci. Before the polygenic scores were created, SNPs 

with a minor allele frequency of < 0.01 were removed and clumping was used to obtain SNPs in LD 

(r2 < 0.25 within a 250 kb window). Five scores were then created that included SNPs according to the 

significance of the association with health literacy, based on the following p-value thresholds: p < 
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0.01, p < 0.05, p < 0.1, p < 0.5, and all SNPs. Linear regression was used to investigate whether 

polygenic profiles for health literacy were associated with performance on the Newest Vital Sign,67 a 

test of health literacy similar in content to the ELSA health literacy test, a measure of general 

cognitive ability, and years of schooling (see Supplementary Methods for more detail on these 

phenotypes). Models were adjusted for age, sex, and 4 genetic principal components and standardised 

betas were calculated.  

Next, we used summary GWAS results from 21 GWAS of cognitive and health-related phenotypes to 

create polygenic profile scores for cognitive and health-related traits in ELSA participants. As the 

creation of polygenic scores requires summary GWAS results from an independent sample, the 

GWAS of general cognitive ability44 was re-run removing ELSA participants. SNPs with a minor 

allele frequency of < 0.01 were removed and clumping was used to obtain SNPs in LD (r2 < 0.25 

within a 250 kb window) prior to the creation of the polygenic scores. Five scores were created for 

each phenotype based on the p-value thresholds detailed above. For Alzheimer’s disease, we created a 

second set of scores with a 500 kb region around the APOE locus removed (hereafter called 

‘Alzheimer’s disease (500 kb)’) to create a polygenic risk score of Alzheimer’s disease with and 

without the APOE locus. 

These polygenic scores were converted to z-scores. Logistic regression was used to investigate 

whether polygenic profiles for cognitive and health-related traits were associated with having 

adequate, compared to limited, health literacy in ELSA participants. All models were adjusted for age 

at wave 2, sex, and the 15 genetic principal components to control for population stratification. For 

each phenotype, five logistic regression models were run using the five polygenic scores created 

based on the p-value thresholds; thus, a total of (5×21) 105 models were run. To control for multiple 

testing, the reported p-values are false discovery rate-corrected. This method controls for the number 

of false positive results in those that reach significance.68 A multivariate logistic regression model was 

run including all of the significant polygenic scores, controlling for age, sex, and 15 genetic principal 

components, to test whether these polygenic scores independently contributed to health literacy.  

Results 
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Of the 7,358 participants who remained following genotyping quality control procedures, 5,783 

(3,160 female; 54.6%) had completed the health literacy test at wave 2 and form the analytic sample 

(mean age = 65.49, SD = 9.55). A total of 4,012 (69.4%) participants had adequate health literacy, 

whereas 1,771 (30.6%) participants had limited health literacy. Participants with limited health 

literacy were older (mean age = 67.76, SD = 10.00) than participants with adequate health literacy 

(mean age = 64.72, SD = 9.19; t (3140.90) = 10.91, p < .001). 

Genome-wide association study. A genome-wide association analysis of health literacy found no 

genome-wide significant (p < 5×10-8) SNP associations. There were 131 suggestive SNP associations 

(p < 1×10−5). The SNP-based Manhattan plot is shown in Figure 1 (the SNP-based QQ plot is shown 

in Supplementary Figure 1; Suggestive SNPs are reported in Supplementary Data 1). Genomic risk 

loci characterization performed using FUMA with the genome-wide suggestive significance threshold 

(p < 1×10−5) identified 39 ‘independent’ significant SNPs distributed within 36 loci; see Methods 

section for description of independent SNP selection criteria. For consistency, we use the term 

‘independent suggestively significant SNP’ here according to the definition that is used in the relevant 

analysis package and the significance threshold described above. Details of functional annotation of 

these independent suggestively significant SNPs and tagged SNPs within the 36 loci can be found in 

Supplementary Data 2. 

Comparison with previous findings. Of the 39 independent suggestively significant and 253 tagged 

SNPs (those in LD with the independent suggestively significant SNPs), none had been reported as 

reaching genome-wide (p < 5×10-8) or suggestive (p < 1×10-5) significance in previous GWAS of 

general cognitive ability or years of education. 

Gene-based analyses. No genome-wide significant findings were found from the gene-based 

association analysis; the gene-based association results are shown in Supplementary Data 3 (the gene-

based Manhattan plot is shown in Figure 1; the QQ plot is shown in Supplementary Figure 1). The 

gene-set and gene-property analyses also did not identify any significant results (Supplementary Data 

4 and 5). 
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SNP-based heritability. We estimated the proportion of variance explained by all common SNPs to be 

0.085 (SE = 0.072). We note that, with the large standard error, this does not rule out zero SNP-based 

heritability. 

We did not calculate genetic correlations between health literacy and those phenotypes included in the 

polygenic profile analyses as we did not have adequate power in this sample to utilise either the LD 

score regression method or, for those phenotypes also available in ELSA, bivariate GCTA-GREML. 

The mean chi2 value for the health literacy phenotype was 1.009 which is below the LD score 

regression recommended threshold of 1.02.46 This indicates that there is too small a polygenic signal 

for these methods to work with.  

Health literacy polygenic profile scores predicting health literacy, cognitive function, and educational 

attainment in LBC1936. Polygenic profile score for health literacy did not significantly predict 

performance on the Newest Vital Sign, cognitive ability, or years of schooling in LBC1936 

(Supplementary Table 2).  

Cognitive and health-related polygenic scores predicting health literacy in ELSA. Table 1 shows the 

results for the association between cognitive and health-related polygenic scores and health literacy in 

ELSA participants, using the most predictive threshold. Supplementary Table 3 reports the full results 

for all thresholds.  

Increased odds of having adequate, compared to limited, health literacy were associated with a one 

SD higher polygenic profile score for general cognitive ability (OR = 1.34, 95% CI 1.26-1.42), 

verbal-numerical reasoning (OR = 1.30, 95% CI 1.23-1.39), and years of schooling (OR = 1.29, 95% 

CI 1.21-1.36). Reaction time and childhood IQ polygenic scores did not predict health literacy. 

Decreased odds of having adequate health literacy were associated with a one SD higher polygenic 

profile score for poorer self-rated health (OR = 0.92, 95% CI 0.87-0.98) and schizophrenia (OR = 

0.91, 95% CI 0.85-0.96). No other polygenic scores predicted health literacy.  

To examine whether each polygenic profile score improved the prediction of health literacy, the 

Nagelkerke pseudo R2 value for a model with only the covariates (age, sex, and 15 genetic principal 
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components) was subtracted from the Nagelkerke pseudo R2 for the model with both covariates and 

the polygenic score (Table 1). Polygenic profile scores for general cognitive ability, verbal-numerical 

reasoning, and years of schooling accounted for 2.2%, 1.8% and 1.7%, respectively, of the variance in 

health literacy. The variance in health literacy accounted for by the self-reported health and 

schizophrenia polygenic scores was small, at 0.2% and 0.3%, respectively.  

Table 2 shows the results of the multivariate logistic regression in which polygenic scores for general 

cognitive ability, verbal-numerical reasoning, years of schooling, self-rated health, and schizophrenia 

were all entered simultaneously. The ORs for all polygenic scores were attenuated in this model. 

Increased odds of having adequate, compared to limited, health literacy were significantly associated 

with the following: higher polygenic scores for general cognitive ability (OR = 1.18, 95% CI 1.06-

1.32), and years of schooling (OR = 1.19, 95% CI 1.11-1.27); and lower polygenic risk for 

schizophrenia (OR = 0.93, 95% CI 0.88-0.99). Together, these polygenic profile scores accounted for 

3.0% of the variance in health literacy. In this multivariate model, the association between the verbal-

numerical reasoning polygenic profile score and health literacy was attenuated and non-significant. 

This is not surprising as the general cognitive ability polygenic score is derived from a meta-analysis, 

which includes the verbal-numerical reasoning test.44 The self-rated health polygenic score was also 

attenuated and non-significant in this model.  

Discussion 

Using a sample of 5,783 middle-aged and older adults living in England, no SNPs were found to be 

significantly associated with health literacy; however, we report 131 suggestive SNP associations 

within 36 independent genomic loci. Using polygenic profile scoring, this study found that genetic 

variants previously associated with higher general cognitive ability, verbal-numerical reasoning, and 

more years of schooling were associated with having adequate health literacy, whereas genetic 

variants previously found to be associated with poorer self-rated health and a diagnosis schizophrenia 

were associated with having limited health literacy. These results suggest that the phenotypic 

associations frequently reported between health literacy and cognitive function, and health literacy 

and health might be partly due to shared genetic aetiology. In a multivariate model, in which all the 
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significant polygenic scores were entered simultaneously, higher polygenic scores for general 

cognitive ability, years of schooling, and schizophrenia remained significant, suggesting these 

polygenic scores independently contribute to performance on a health literacy test.  

A number of studies have reported phenotypic associations between performance on tests of health 

literacy and cognitive function.31-34 Due to the strength of these reported associations, some 

researchers33, 34 have proposed that health literacy and cognitive function are not separate constructs, 

and are instead, assessing to a substantial extent the same underlying ability. To investigate this 

overlap, Reeve and Basalik34 entered three health literacy tests and six cognitive tests into an 

exploratory factor analysis. No unique health literacy factor emerged, and in fact, the three health 

literacy tests each loaded on different factors.34 The authors concluded that there is very little evidence 

that health literacy is unique from cognitive function.34 The current study found that the genetic 

variants associated with cognitive function make significant contributions to performance on tests of 

health literacy, providing additional evidence that health literacy and cognitive function are 

intrinsically related and that they might, in part, be associated with the same underlying construct.  

Some researchers have suggested that educational attainment can be used as a proxy for cognitive 

ability in genetic studies57, 69 because, a) there are large phenotypic and genetic correlations between 

cognitive function and educational attainment,45 and b) it is much easier to collect information on 

educational attainment than it is to administer cognitive assessments in large studies. In the current 

study, when all significant polygenic scores were entered simultaneously, the general cognitive ability 

polygenic score and the years of schooling polygenic score both had independent associations with 

health literacy. Thus, at least when measuring health literacy, it might not be appropriate to consider 

cognitive function and educational attainment polygenic scores as proxies for the same underlying 

ability. On the other hand, it is possible that educational attainment was indexing some aspects of 

cognitive function not tapped by the phenotypes that went into the cognitive GWAS, which tended to 

be more fluid in characterisation. 

The results of the current study provide some evidence that the frequently reported associations 

between health literacy and health4 might be partly due to shared genetic influences. We found that 
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genetic variants associated with poorer self-reported health, and having a diagnosis of schizophrenia 

were associated with having poorer health literacy. Many studies have reported phenotypic 

associations between health literacy and self-reported health status.3-5 There has been relatively little 

research investigating health literacy and schizophrenia; however, health literacy has been found to be 

negatively associated with other mental health outcomes including mental health status5 and 

depressive symptoms.6 The ELSA sample used here consisted of relatively healthy community-

dwelling adults. In this sample of participants without schizophrenia, having a higher polygenic risk 

of schizophrenia was associated with poorer health literacy. This mimics the results seen for 

schizophrenia and cognitive function. Individuals with higher polygenic risk of schizophrenia tend to 

perform more poorly on tests of cognitive function.45, 70 In this study, whereas the association between 

polygenic risk of schizophrenia and poorer health literacy was attenuated when also controlling for 

cognitive polygenic scores, polygenic risk of schizophrenia remained a significant predictor of health 

literacy, suggesting the associations reported here are not simply because of any overlap between 

cognitive function and schizophrenia.  

A strength of the current study is that we use GWAS summary results from a large number of 

cognitive and health-related traits which enabled a comprehensive investigation of the shared genetic 

influences between health literacy, cognitive function and health. Whereas phenotypic associations 

between health literacy and health-related traits such as type 2 diabetes5 and Alzheimer’s disease7, 8 

have been identified, we did not find that genetic variants previously associated with these health-

related traits were associated with health literacy in this study. One limitation of the current study is 

that the quality of the polygenic profile scores created depend on the quality of the original GWAS. 

Many of the GWAS are meta-analyses which introduces heterogeneity in both the genetic methods 

used and in measuring the phenotype. Some of the GWAS have relatively small sample sizes. It is 

possible that we did not find an association between some of the health and cognitive polygenic 

scores with health literacy because the original GWAS were underpowered to identify genetic 

associations with the phenotype.  
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Unlike recent GWAS of cognitive function,43, 44 which found many genetic variants associated with 

cognitive function, we found no SNPs significantly associated with health literacy. It is now well 

known that, for polygenic traits, the effect of individual genetic variants on a trait are likely to be very 

small and, therefore, larger sample sizes than the one used here are required to identify such 

associations.42 Identification of many genetic variants associated with cognitive function are only now 

possible because of the ever-increasing sample sizes. The most recent GWAS of cognitive function 

uses data from over 300,000 individuals.44 The GWAS reported here is therefore underpowered. 

There are few large studies that measure health literacy. This is the first investigation of the genetic 

contributions to health literacy. We encourage other groups with both health literacy and genetic data 

to explore the genetic associations of health literacy. In an effort to increase power, future studies 

should look to conduct a meta-analysis of GWAS of health literacy.  

One strength of this study is that health literacy was measured consistently in all participants.  One 

limitation is that the health literacy measure used in ELSA is a brief, four-item test that has a ceiling 

effect. That is, 70% of participants scored full marks (4/4) on this test. Despite the brief nature of the 

ELSA health literacy test, and despite the ceiling effect, this measure has been found to be associated 

with various health outcomes, including mortality.10 In the current study, this health literacy test was 

sensitive enough to identify associations with polygenic scores for cognitive and health-related traits. 

Health literacy—the skills and ability required to manage ones health—have been consistently 

associated with cognitive function and health. This study investigated the genetic contributions to 

health literacy, and tested whether genetic contributions to cognitive function and health are 

associated with health literacy. No SNPs had genome-wide significant associations with health 

literacy. Polygenic scores for cognitive function, years of schooling, self-reported health and 

schizophrenia were associated with performance on a brief test of health literacy. These results 

indicate that the phenotypic associations between health literacy and cognitive function, and health 

literacy and health may be partly due to shared genetic aetiology between these traits. Larger studies 

are needed to better understand the genetic associations between health literacy, cognitive ability and 

health.   
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Figure 1 SNP-based (a) and gene-based (b) association results for health literacy. The red line 

indicates the threshold for genome-wide significance: p<5×10−8 for (a), p<2.75×10−6 for (b); the blue 

line in (a) indicates the threshold for suggestive significance: p<1×10−5 
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Table 1 Association between polygenic profiles of cognitive, socioeconomic, health and personality 

traits with having adequate health literacy, controlling for age, sex, and 15 genetic principal 

components 

95% CI  

Threshold OR Lower Upper R2* p-value† 

Cognitive traits and proxies       

General cognitive ability 1 1.339 1.261 1.422 0.0219 3.67×10-15 

Verbal-numerical reasoning 0.5 1.304 1.228 1.385 0.0179 3.67×10-15 

Reaction time 0.5 0.954 0.902 1.010 0.0006 0.2504 

Childhood IQ 1 1.061 1.001 1.123 0.0010 0.1281 

Years of schooling 0.1 1.285 1.212 1.362 0.0171 3.67×10-15 

       

Socioeconomic measures       

Social deprivation 0.01 0.970 0.916 1.028 0.0003 0.4530 

       

General health measures       

Self-rated health 0.1 0.923 0.871 0.977 0.0018 0.0359 

FEV1 1 0.932 0.879 0.988 0.0013 0.0880 

Longevity 0.05 0.970 0.915 1.029 0.0002 0.4530 

Gait speed 1 1.003 0.946 1.064 0.0000 0.9720 

BMI 0.5 0.942 0.889 0.998 0.0010 0.1281 

Waist-to-hip ratio 0.5 0.968 0.913 1.025 0.0003 0.4417 

       

Chronic diseases       

Type 2 diabetes 0.05 1.043 0.984 1.105 0.0005 0.3217 

High blood pressure 0.1 1.056 0.997 1.118 0.0008 0.1648 
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Health behaviours       

Smoking status 0.5 0.941 0.888 0.996 0.0011 0.1200 

Alcohol consumption 0.5 0.940 0.880 1.004 0.0008 0.1648 

       

Neuro-psychiatric disorders       

Alzheimer's disease 0.1 1.044 0.986 1.105 0.0005 0.3080 

Alzheimer's disease (500 kb) 0.1 1.043 0.985 1.104 0.0005 0.3217 

Major depressive disorder 0.05 0.936 0.884 0.992 0.0012 0.1104 

Schizophrenia  1 0.905 0.853 0.960 0.0026 0.0062 

       

Personality traits       

Neuroticism  0.1 0.927 0.875 0.983 0.0015 0.0602 

Conscientiousness 0.05 1.038 0.980 1.099 0.0004 0.3945 

FEV1, forced expiratory volume in 1 second; BMI, body mass index. The associations between the 

polygenic profile with the largest effect size (threshold) and the health literacy phenotype are 

reported. 

*Nagelkerke Pseudo R2. R2 is calculated by subtracting the value of a model containing only the 

covariates (age, sex, and 15 genetic principal components) from the model including the polygenic 

profile score and covariates. 

†p-values reported have been FDR-adjusted. FDR-adjusted significant p-values are shown in bold. 
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Table 2 Multivariate models of the association between polygenic profiles of cognitive and health 

traits with having adequate health literacy, controlling for age, sex, and 15 genetic principal 

components 

95% CI 

OR Lower Upper p-value* 

General cognitive ability 1.182 1.058 1.320 0.0076 

Verbal-numerical reasoning 1.062 0.953 1.184 0.3489 

Years of schooling 1.186 1.112 1.265 9.50×10-7 

Self-rated health  0.987 0.930 1.048 0.6691 

Schizophrenia 0.929 0.875 0.987 0.0287 

ORs and 95% CIs are from a model in which all five polygenic scores are entered simultaneously, 

controlling for age, sex, and 15 genetic principal components. 

*p-values reported have been FDR-adjusted (after a false discovery rate correction across 5 tests). 

FDR-adjusted significant p-values are shown in bold. 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/595967doi: bioRxiv preprint 

https://doi.org/10.1101/595967


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/595967doi: bioRxiv preprint 

https://doi.org/10.1101/595967

