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Abstract 13 

 14 

We use randomness as a measure to assess the impact of evoked pain on brain networks. 15 

Randomness is defined here as the intrinsic correlations that exist between different brain regions 16 

when the brain is in a task-free state.  We use fMRI data of three brain states in a set of back pain 17 

patients monitored over a period of 6 months. We find that randomness in the task-free state closely 18 

follows the predictions of Gaussian orthogonal ensemble of random matrices. However, the 19 

randomness decreases when the brain is engaged in attending to painful inputs in patients suffering 20 

with early stages of back pain. A persistence of this pattern is observed in the patients that develop 21 

chronic back pain, while the patients who recover from pain after 6 months, the randomness reverts 22 

back to a normal level.    23 
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 24 

Author Summary 25 

 26 

Back-pain is a salient percept known to affect brain regions. We studied random correlations in 27 

brain networks using random matrix theory. The brain networks were generated by fMRI scans 28 

obtained from a longitudinal back-pain study. Without modelling the neuronal interactions, we 29 

studied universal and subject-independent properties of brain networks in resting state and two 30 

distinct task states. Specifically, we hypothesized that relative to the resting state, random 31 

correlations would decrease when the brain is engaged in a task and found that the random 32 

correlations showed a maximum decrease when the brain is engaged in detecting back pain than 33 

performing a visual task.       34 

 35 

Introduction 36 

 37 

Chronic pain represents a major clinical, social, and economic problem for societies worldwide. 38 

The principal complaint is of unremitting physical pain that does not abate with standard 39 

analgesics(1–3). The experience of pain is quite different across the population and persists for 40 

different durations between individuals. Pain is in essence a threat signal that we localize to a part 41 

of the body in the form of an unpleasant sensation. This sensation accompanies a strong negative 42 

emotion that works as an aversive signal which is necessary for learning proper avoidance 43 

behaviors. In some people, this signal becomes accentuated and tends to persist for long periods 44 

of times extending over months to years. These individuals very often show no signs of tissue 45 

damage or underlying pathology in the site where they are feeling pain. Brain imaging studies 46 
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suggest that chronic pain alters the nervous system so that the brain perceives persistent pain due 47 

to maladaptive processes in the brain. An expedient approach for understanding these maladaptive 48 

processes is to observe how back pain transitions to a chronic form.  49 

 50 

Thus, we know that in some patients, persistent back pain is acute and persists for a few weeks to 51 

be classified as subacute back pain (or SBP). This early stage of persistent back pain remits in 52 

some individuals, while for others, it persists for months to years and this enduring back pain is 53 

classified as chronic (Chronic Back Pain or CBP). The reasons and neural mechanisms due to 54 

which back pain transitions from subacute to chronic is still ambiguous, and the pursuit to find 55 

neurological reasons for this transition is central to contemporary pain research. In recent years, 56 

there have been successful attempts in relating CBP to specific brain activity(4) whereby 57 

neuroimaging method of functional Magnetic Resonance Imaging (fMRI) is used to study the 58 

correlations between CBP and brain activity. More recently, it has also been shown that 59 

chronification of back pain shifts the brain activity from nociceptive to emotional circuits, thereby 60 

impacting patients with physiological disorders such as depression and impacting their overall 61 

quality of everyday life(3). 62 

 63 

fMRI makes use of the fact that neuronal activity is partly coupled with increases in blood flow in 64 

the observed parts of the brain and it images these changes as a haemodynamic response to brain 65 

activity. This particular form of fMRI is also referred to as blood-oxygenation-level-dependent 66 

(BOLD) fMRI and it offers high spatial resolution. A useful adaptation of this approach is to 67 

measure how slow temporal fluctuations (0.01-0.15 HZ) are between different brain regions and 68 

this statistical dependency is referred to, more generally, as functional connectivity. The network 69 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/596163doi: bioRxiv preprint 

https://doi.org/10.1101/596163
http://creativecommons.org/licenses/by/4.0/


 4 

properties that emerge from large-scale correlations has been shown to be altered in 70 

neuropsychiatric and chronic conditions such as CBP(4–9). It is still a challenge to understand the 71 

dynamic transition of brain between different states as a result of back-pain. It is because brain is 72 

a fairly complex system whereby neurons are constantly interacting with each other often resulting 73 

in higher brain functions(10,11) and in the formation of functional networks, even in the absence 74 

of any stimuli. Though large-scale functional connectivity is often studied using clustering 75 

techniques or principles of graph theory(12), there is a need to apply the concepts and 76 

methodologies developed in the context of the theory of random matrices for observing systematic 77 

transitions in brain states.  78 

 79 

Random Matrix Theory (RMT) was originally developed in the nuclear physics applications, 80 

where nuclei can have many possible states and energy levels and, and their interactions are too 81 

complex to be described accurately. In such a scenario, one settles for a model that captures the 82 

statistical properties of the energy spectrum. RMT finds extensive applications in the statistical 83 

studies of various complex systems such as quantum chaotic systems, complex nuclei, atoms, 84 

molecules, disordered mesoscopic systems(13–21), atmosphere(22), financial applications(23), 85 

network forming systems(24,25), amorphous clusters(26–29), biological networks(30,31), etc. In 86 

recent years, RMT has also been applied towards brain network studies in studying universal 87 

behavior of brain functional connectivity and has been effective in detecting the differences in 88 

resting state and visual stimulation state(32,33).  Recently, attempts using RMT have also been 89 

made in brain functional network studies on attention deficit hyperactivity disorder (ADHD)(34).  90 

 91 
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RMT makes use of the fact that true information of the system is contained in the eigenvalues of 92 

a correlation matrix. Specifically, for brain networks, the eigenvalues represent the level of 93 

functional connectivity between different regions of interest (ROIs) in brain, and larger 94 

eigenvalues contain information about significant correlations (or strong connectivity), and 95 

therefore, about processes in brain. Recent studies have shown that ROIs in brain are correlated. 96 

Furthermore, these correlations closely follow the predictions of Gaussian Orthogonal Ensemble 97 

(GOE) of random matrices when the brain is in a state of rest (fully-conscious). The clearest 98 

indication so far has come from EEG data(32), which further attributes the observed deviation 99 

from GOE predictions to visual stimulation; that is, true information. Other recent studies(33,34) 100 

also point to similar information, however, the overall findings are unclear. We hereby propose a 101 

hypothesis where, we refer to these observed correlations as random correlations, or in general, 102 

randomness, that exists at any given instant in brain network. When the brain is engaged in a task, 103 

this randomness would be expected to decrease, as brain regions would be connected in a coherent 104 

fashion relative to a task-free or resting state. These random correlations reach their normal levels 105 

at resting state. Thus, RMT may offer a principled approach for measuring systematic changes in 106 

randomness that occur in brain networks during perception and cognition.  107 

 108 

Here we investigate whether the brain demonstrates a greater deviation from GOE predictions 109 

when it is engaged in detecting threats or experiencing discomfort from pain relative to perception 110 

of innocuous stimuli. Since the ability to properly detect and perceive pain is fundamental for 111 

survival, attending to pain can be expected to add systematic changes in brain connectivity and 112 

thus reduce random correlations in brain networks. On the other hand, maladaptive processing of 113 

pain inputs during a chronic stage of back pain may show a different behavior, relative to the SBP 114 
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state. The ability to distinguish these two states using an integrative approach such as RMT could 115 

be useful for improving chronic pain diagnosis and prognosis and also for understanding the 116 

abnormalities in brain properties that contribute to CBP. 117 

 118 

Materials and methods 119 

 120 

Dataset and Tasks 121 

 122 

We use fMRI data available on the open access data sharing platform for brain imaging studies of 123 

human pain (www.openpain.org). The complete dataset is a part of 5-year longitudinal study of 124 

transition to chronic back pain in which 120 patients were recruited initially. All the participants 125 

were trained to perform two tasks using finger-span device with which they provided continuous 126 

pain ratings(3,4). This device consisted of a potentiometer in which voltage was digitized. During 127 

the brain imaging sessions, the device was synchronized and time-stamped with fMRI image 128 

acquisition and connected to a computer providing visual feedback of the pain ratings(35). We use 129 

data acquired from three different states, a) A state of rest in which the participants are not thinking 130 

about any one thing in particular (RS); b) A state of focusing and rating spontaneous changes in 131 

back pain (SP); and, c) A control state in which they are rating changes in length of a visual bar 132 

(SV). 133 

 134 

MRI data acquisition  135 

 136 
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The data for all participants and visits was collected by a 3T Siemens scanner. At first, MPRAGE 137 

type T1 anatomical brain images were acquired followed by fMRI scans on the same day with the 138 

following parameter details given in Hashmi et al(3):  139 

 140 

EPI sequence: voxel size 1 X 1 x1 MM, Repetition time=2500MS; Echo Time=3.36MS; Flip angle 141 

= 9degrees; In-Plane matrix resolution 256 X 256;  slices 160, filed of view, 256mm. Functional 142 

MRI scans were acquired on the same day as the T1 scan and MPQVAS measures: multi-slice 143 

T2*-weighted EPI images with repetition time=2.5s, echo time=30ms, flip angle =90 degree, 144 

number of volumes =244, slice thickness =3mm, in-plane resolution =64 x 64. 145 

 146 

Pre-processing of fMRI data 147 

 148 

We use Freesurfer, FMRIB Software Library (FSL) v5.0, and Analysis of Functional Neuro-149 

Images (AFNI) software to preprocess the data similar to procedures adapted for the 1000 150 

Functional Connectomes project(36). Data were slice time corrected, motion corrected, temporally 151 

band-pass filtered, and then further filtered to remove linear and quadratic trends using AFNI. 152 

Complete details of the preprocessing procedure are given in(37). The registration was performed 153 

using FMRIB's Linear and non LINEAR Image Registration Tools for transformations from native 154 

functional and structural space to the Montreal Neurological Institute MNI152 template with 2 x 155 

2 x 2 resolution, with further details given in(37). 156 

 157 

Anatomical parcellation and construction of correlation matrix 158 

 159 
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The brain is anatomically parcellated by an optimization of the Harvard/Oxford parcellation 160 

scheme (OHOPS)(38). In this scheme, the anatomical partitioning of cingulate, medial and lateral 161 

prefrontal cortices of Harvard Oxford Atlas was increased and in addition, anatomical partitioning 162 

of insular label was also performed, and the single Region of Interest (ROI) spanning the entire 163 

insula in Harvard Oxford Atlas was further subdivided based on a previous scheme(39). The 164 

complete OHOPS consisted of a total of 131 regions(38). Each ROI was designated as a node and 165 

the BOLD time series were extracted from each node and averaged to generate 131 time series for 166 

each subject. Following this, the whole brain networks were constructed, and network measures 167 

were assessed using the Brain Connectivity Toolbox, with formulae used for calculating network 168 

measures described in(40). The brain networks are usually assortative in nature(41,42).   169 

For each patient, the BOLD time series in each region was correlated with every other region to 170 

create a 131 x 131 symmetric correlation matrix based on Pearson's correlation coefficients given 171 

by:  172 

 173 

𝑐𝑜𝑟𝑟(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋, 𝑌)
𝜎,𝜎-

 174 

or, which can be re-written as: 175 

 176 

𝑐𝑜𝑟𝑟(𝑋, 𝑌) =
∑ (𝑥0 − 𝑥2
034 )(𝑦0 − 𝑦)

(𝑛 − 1)8
∑ 𝑥9: − 𝑛𝑥2
934
𝑛 − 1

8∑ 𝑦9: − 𝑛𝑦2
934
𝑛 − 1

 177 

 178 

Such correlation matrices are not only symmetric, but they are also positive semi-definite(43), with 179 

all eigenvalues being non-negative. This correlation matrix is then diagonalized and eigenvalues 180 
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(l) are obtained. In the present case, few eigenvalues are zeros, and remaining have positive 181 

values. It must be remembered that not all ROIs are a part of active brain network at a given time 182 

and hence, very small eigenvalues are usually ignored, and the related correlations are unimportant 183 

from functional connectivity perspective.   184 

 185 

Unfolding of data 186 

 187 

Fluctuations around the eigenvalue spectra are studied using standard methods of RMT. The first 188 

step is to unfold the data, meaning, the eigenvalues are arranged in an increasing (cumulative) 189 

order and are then mapped using an analytical function in such a way that the average spacing 190 

between two successive eigenvalues is unity. This ensures all the eigenvalues are on same-footing. 191 

The analytical fitting function used for unfolding need not be unique and, is generally different for 192 

different systems(25–29). For this study, the eigenvalue spectra of all the correlation matrices 193 

generated is approximated extremely well by a function of the form  194 

 195 

(𝑎 − 𝑏 ∗ 𝑒?@A
B
CD ) 196 

 197 

where a, b, c, and d, are best-fit parameters and l is the eigenvalue. Figure 1 shows a plot of the 198 

cumulative eigenvalue density along with the analytical fitting function. We leave out a small 199 

portion of eigenvalues at both ends in order to achieve the best fit, something which has been a 200 

standard practice in other works(25–29). We deal with unfolded eigenvalues from this point 201 

onwards. 202 

 203 
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 204 

Fig. 1: Eigenvalue number vs eigenvalue (l) for a typical spectrum. Filled circles (black): Data. 205 
Continuous line (red): The best-fit using the functional form described in text. 206 
 207 

 208 

Results 209 

 210 

We report the spectral statistics fluctuation properties of the eigenvalue spectra in the three brain 211 

states in individuals who were suffering with SBP (back pain for < 3 months). We also track what 212 

these properties looked like after 6 months in the group of individuals with SBP with persisting 213 

back pain(3,4,7,44). Patients had all been pain free for one year prior to their subacute pain episode 214 

and had no history of any mental illness including depression. The individual details of patients 215 

are also available online on the data sharing platform. It must also be stated that none of the data 216 

from available subjects was excluded from the analysis. 217 
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 218 

Visit 1 219 

 220 

For visit 1, 68 SP and SV scans are available. In addition, there are 27 RS scans available for visit 221 

1. Analysis of randomly picked individual eigenvalue spectra indicate that brain-states have 222 

fluctuation properties associated with the Gaussian orthogonal ensemble (GOE) of random 223 

matrices. To improve statistics, we combine information from all unfolded data.  Figure 2a shows 224 

the normalized nearest-neighbor spacing distribution (NNSD) [p(s)] for RS, SP, and SV scans for 225 

visit 1. Here, s is the eigenvalue spacing. Superimposed is the GOE result, which is also 226 

approximated by Wigner's surmise as: 227 

 228 

𝑝(𝑠) = G
𝜋𝑠
2 J ∗ 𝑒

?KLM/O 229 

 230 

For all the cases, we find a good agreement with GOE. A single-valued indicator that follows the 231 

p(s) function is the variance of nearest-neighbor spacing. We find this number between 0.297 and 232 

0.320 for all the cases, which is quite close to 0.286, the number for GOE(26–28). This agreement 233 

could be explained due to the fact that NNSD captures the correlations that exists between 234 

successive eigenvalues and does not have information about the long-range correlations. Short-235 

ranged correlations, especially between the nearest-neighbors are quite strong, and hence not 236 

altered substantially by both, visual (SV) and pain-rating (SP) tasks. This result is also consistent 237 

to other brain-network studies(32–34,42) and hence, further strengthens the belief that there exists 238 

strong, stimuli-resistant random correlations between nearest-neighbors in the brain network.  239 

  240 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/596163doi: bioRxiv preprint 

https://doi.org/10.1101/596163
http://creativecommons.org/licenses/by/4.0/


 12 

 241 

Fig. 2: (a) Normalized neighbor spacing (s) vs probability density p(s) for resting state (red 242 
circles), spontaneous pain (green squares), and standard visual (blue diamonds) scans for Visit 1. 243 
Solid line is the GOE prediction.; (b) Variance of the number of levels in intervals of length r 244 
shown as a function of r for resting state (red circles), spontaneous pain (green squares), and 245 
standard visual (blue diamonds) for Visit 1. Black line represents GOE prediction and magenta 246 
line represents Poisson distribution. 247 
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Next, we take a look at the long-range (or higher order) random correlations. For this, we measure 249 

S2(r), the variance of the number of levels n(r) within an interval of length r. The theoretical result 250 

for GOE is: 251 

 252 

Σ:(𝑟) = 	
2
𝜋: R𝑙𝑛

(2𝜋𝑟) + 1.5772 −
𝜋:

8 Y 253 

 254 

The number variance is quite sensitive to changes, and is extremely sensitive to small systematic 255 

errors in the approximation to the analytical function used during unfolding(26,27). Contribution 256 

of any such error to S2(r) grows as r2, whereas the GOE prediction for S2(r) grows as ln(r)(29). In 257 

Figure 2b, we plot S2(r) for RS, SP, and SV scans along with GOE and Poisson [S2(r) = r] 258 

distributions for visit 1.  We observe that RS agrees with the GOE prediction over greatest domain, 259 

whereas we see deviations for SV and SP scans with SP scans showing maximum deviation. This 260 

deviation is attributed to the relative tasks the subjects are performing in each case, with the pain-261 

rating task showing maximum deviation.  262 

 263 

Visit 4 264 

 265 

At visit 4, which was approximately 6 months after visit 1, some patients recovered from persistent 266 

back-pain as a result of spontaneous remission of the condition (recovering group), others 267 

experienced a persistence in their back-pain, and represent the group who have developed CBP 268 

(persistent group).  To define SBP persistent group, we separate participants with pain persisting 269 

for 6 months from those that recovered (SBP recovering) based on self-report of pain ratings 270 

observed using McGill Pain Questionnaire Visual Analogue Scale (MPQVAS). We compare the 271 
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MPQVAS value at visit 1 with visit 4. If the pain rating value of a particular subject decreases by 272 

30% or more, the subject is classified as ``Recovering'', else, it is classified as ``Persistent''.  Based 273 

on this classification, we have 18 RS, 17 SP, and 23 SV scans for Persistent group and 18 RS, 19 274 

SP, and 28 SV scans for Recovering group.  275 

 276 

Figure 3 shows NNSD for Persistent and Recovering groups. Both the plots show agreement with 277 

GOE predictions; an indicator of strong nearest-neighbor random correlations. Figure 4 shows 278 

plots of S2(r) for Persistent and Recovering groups. In both the cases, we find RS scans staying 279 

close to GOE predictions. However, we find a striking difference between SP and SV scans in the 280 

two cases. For the Persistent group, both SP and SV scans show deviations from the theory, with 281 

SP scans showing greater deviations than SV scans. For the Recovering group, both SP and SV 282 

scans match GOE predictions over a larger domain, and undistinguishable from RS scans.  283 

 284 
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 285 

 286 
Fig.3: Normalized neighbor spacing (s) vs probability density p(s) for resting state (red circles), 287 
spontaneous pain (green squares), and standard visual (blue diamonds) scans for (a) Persistent, 288 
and (b) Recovering groups in visit 4. Solid line is the GOE prediction. 289 
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 291 

Fig. 4: Variance of the number of levels in intervals of length r shown as a function of r for 292 
resting state (red circles), spontaneous pain (green squares), and standard visual (blue diamonds) 293 
for (a) Persistent, and (b) Recovering groups in visit 4. For both visits, black line represents GOE 294 
prediction and magenta line represents Poisson distribution. 295 
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Discussion 296 

 297 

The present study demonstrates that RMT is able to differentiate between two different tasks 298 

within the same subject. We find a pattern consistent with our hypothesis, with randomness 299 

decreasing when the brain is focused on attending to pain triggered in the back of their body. Here, 300 

GOE line represents maximum randomness and Poisson represents no randomness. However, due 301 

to the complexity of the experimental design, there could be many possible conjectures (including 302 

their combinations) explaining these observations.  303 

 304 

First, as the patients are performing a pain-rating task, whereby they are focusing on the back and 305 

reporting the ratings, the observed SP deviations could be attributed to back-pain. As it known 306 

from earlier studies that salient percepts such as pain are known to require more brain areas to be 307 

engaged than visual stimulation, we see an increased deviation for SP scans relative to SV scans 308 

in all the cases(45–47). As more brain regions are engaged in attending to pain, hence relative 309 

randomness between them decreases. At Visit 1, all patients report back-pain, whereas at Visit 4, 310 

only a subset of them report back-pain, and because their MPQVAS ratings demonstrate 311 

chronification of pain, the Persistent group continues to experience back-pain over many months. 312 

Hence, this continued deviation of SP scans at Visit 4 in the persisting CBP group is a reflection 313 

of chronified pain that continues to affect the GOE pattern. Second possible conjecture is the 314 

saliency between the tasks themselves. While visual tasks are relatively easy to perform, pain-315 

rating tasks could be much difficult as back-pain events are generally random. Hence, more 316 

attention is needed to perform these tasks, and thereby, we observe a decrease in randomness 317 

between the brain regions involved in these tasks.  318 
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 319 

The present study also provides some useful insights on the connectivity states of resting state of 320 

brain. Previous spectral studies using random matrix theory on quenched (local minima on 321 

potential energy landscape) normal modes of network-forming liquids (Water)(25) and amorphous 322 

systems (clusters and periodic systems both two-and three dimensions)(26–29) have demonstrated 323 

that the fluctuations around the mean spectral densities follow GOE. For normal modes that are 324 

not necessarily quenched, this agreement is not perfect, but gets better with increasing density(24).  325 

While it is beyond the present work to prove, and further research is needed along these lines, we 326 

propose an ansatz that resting state corresponds to local energy minima whereby the intrinsic 327 

correlations obey GOE and conditions like back-pain can be viewed as a perturbation in system 328 

dynamics resulting in a shift away from stable local minimum. It also remains an open question 329 

whether this a unique minimum or there are several quasi-stable states. 330 
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