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Abstract

In resting state functional magnetic resonance imaging (rs-fMRI) a common strategy to reduce
the impact of physiological noise and other artifacts on the data is to regress out the global
signal using global signal regression (GSR). Yet, GSR is one of the most controversial
preprocessing techniques for rs-fMRI. It effectively removes non-neuronal artifacts, but at the
same time it alters correlational patterns in unpredicted ways. Furthermore the global signal
includes neural BOLD signal by construction, and is consequently related to neural and
behavioral function. Performing GSR taking into account the underlying physiology (mainly
the blood arrival time) has been proved to be beneficial. From these observations we aimed
to: 1) characterize the effect of GSR on network-level functional connectivity in a large dataset;
2) assess the complementary role of global signal and vessels; and 3) use the framework of
partial information decomposition to further look into the joint dynamics of the global signal
and vessels, and their respective influence on the dynamics of cortical areas. We observe that
GSR affects intrinsic connectivity networks in the connectome in a non-uniform way.
Furthermore, by estimating the predictive information of blood flow and the global signal
using partial information decomposition, we observe that both signals are present in different
amounts across intrinsic connectivity networks. Simulations showed that differences in blood
arrival time can largely explain this phenomenon. With these results we confirm network-
specific effects of GSR and the importance of taking blood flow into account for improve de-
noising methods. Using GSR but not correcting for blood flow might selectively introduce
physiological artifacts across intrinsic connectivity networks that distort the functional

connectivity estimates.
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Introduction

In recent years there has been increasing interest in the use of resting state functional magnetic
resonance imaging (rs-fMRI) in neuroimaging research. A popular approach in rs-fMRI is to
map the functional architecture of the human brain using patterns in resting-state or intrinsic
correlations (Michael D. Fox & Raichle, 2007). The correlations of low frequency oscillations
present in the blood oxygenation level dependent (BOLD) signal reflect the functional
connectivity between different brain regions. Regions that then show a high mutual correlation
are referred to as a resting-state network (RSN) or intrinsic connectivity network (ICN). In
rs-fMRI studies a common pre-processing step before estimating functional connectivity is
global signal regression (GSR), where a global time course is regressed out of the data. The
global signal (GS) is obtained by averaging the resting-state time courses over the entire brain
(Desjardins, Kiehl, & Liddle, 2001). The GS is often thought of as a mixture of processes that
confound the BOLD fMRI signals (artifacts). Based on the assumption that processes that are
globally spread across the brain cannot be linked to neuronal activation, it could be beneficial
to remove them to denoise the data. Indeed, fluctuations in the GS have been linked to
physiological fluctuations, mainly respiratory effects, head motion, hardware scanner related

effects and vascular effects (Murphy & Fox, 2017; Power, Plitt, Laumann, & Martin, 2017).

However, in addition to these non-neuronal confounds, GSR has also been related to neuronal
fluctuations. Scholvinck and colleagues showed that the fMRI BOLD signal calculated over
the entire cerebral cortex in monkeys showed positive correlations with the spontaneous

fluctuations in the local field potentials in a single cortical site (Scholvinck, Maier, Ye, Duyn,
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& Leopold, 2010). Others have shown a relationship between the global signal and EEG
measures of vigilance and broadband electrical activity using simultaneous EEG and fMRI
(Wen & Liu, 2016; Wong, Olafsson, Tal, & Liu, 2013). These issues are well summarized in
(T. T. Liu, Nalci, & Falahpour, 2017) which set to disambiguate the nuisance and the
information component of the GS by looking at its origin and associations with other
neuroimaging measures. More recent studies have demonstrated that the activity of the basal
forebrain is intimately linked to cortical arousal (X. Liu et al., 2018) and GS (Turchi et al.,
2018), showing that inactivation of the basal forebrain leads to increased global spontaneous
fluctuations. The GS has been explicitly connected to these fluctuations, either by predicting
the nature of the quasiperiodic patterns of large-scale brain activity (Yousefi, Shin,
Schumacher, & Keilholz, 2018), or by encoding the transitions between them (Gutierrez-
Barragan, Basson, Panzeri, & Gozzi, 2018). Using calcium based imaging in mice Matsui and
colleagues identified global propagating waves of activity in the neocortex of mice, which points
to the existence of global neuronal signals (Matsui, Murakami, & Ohki, 2016). In sum, evidence
demonstrates that the GS is a mixture of neuronal and non-neuronal components, but it's
unclear how much each component contributes to the GS (Uddin, 2017). As a result, GSR
may remove fluctuations of neuronal origin, which could induce errors in functional
connectivity estimates (Chen et al., 2012). After all, the whole brain can be thought as the
roughest parcellation in terms of ROIs or Intrinsic Connectivity Networks, and in this sense it

contains all neural /behavioral correlates, as well as all the nuisance.
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The practice of GSR has been debated since Murphy and colleagues disputed the finding of
anti-correlations between the default-mode network (DMN) and the task positive network
(TPN) reported by Fox and colleagues (M. D. Fox et al., 2005; Murphy, Birn, Handwerker,
Jones, & Bandettini, 2009). By using a mathematical argument Murphy and colleagues showed
that the anti-correlations found were an artifact introduced by GSR, and in the absence of
this preprocessing step the DMN and TPN were positively correlated. Mathematically GSR
shifts the distribution of functional connectivity estimates to be centered around zero, thereby
inducing the existence of both positive and negative correlations (Murphy et al., 2009).
Similarly, other studies also observed anti-correlations only when GSR was applied (Ibinson
et al., 2015; Weissenbacher et al., 2009), while others have found anti-correlations without
applying GSR, but after ingestion of caffeine (Wen & Liu, 2016; Wong et al., 2013),
physiological noise correction (Chang & Glover, 2009) or component-based noise reduction
(Chai, Castaiién, Ongiir, & Whitfield-Gabrieli, 2012), suggesting that anti-correlations might
not be an artifact induced by GSR and have some neuronal origin. The nature of the anti-
correlations as a true reflection of functional connectivity versus an artifact of the GSR
technique is not clear nor agreed upon. But most evidence seems to point to a reduction in
positive correlations and an increase in spurious anti-correlations. Moreover, using a modeling
approach it has been shown that GSR does more than “just” inducing anti-correlations, also
altering the underlying correlation structure in unpredictable ways. Saad and colleagues
showed in a group comparison study that applying GSR alters short-and long-range
correlations within a group, leading to spurious group differences in regions that were not

modeled to show true functional connectivity differences (Saad et al., 2012).
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Despite the critiques a consensus on the use of GSR has not been reached, and it remains a
popular denoising method in rs-fMRI studies (Murphy & Fox, 2017; Power, Plitt, et al., 2017).
A recent wave of studies further proves its usefulness in reducing the impact of artifacts,
particularly those resulting from participant head motion. Studies comparing the effectiveness
of different denoising approaches show that only combinations of preprocessing pipelines that
include GSR can minimize the effects of motion (Ciric et al., 2017; Lydon-Staley, Ciric,
Satterthwaite, & Bassett, 2018; Parkes, Fulcher, Yiicel, & Fornito, 2018; Satterthwaite et al.,
2017), temporally lagged artifacts (Byrge & Kennedy, 2018) and respiration (Power, Laumann,

Plitt, Martin, & Petersen, 2017).

Recent work by Erdogan and colleagues proposed an improvement to the standard GSR
method called dynamic GSR (dGSR) which improves the sensitivity of functional connectivity
estimates (Erdogan, Tong, Hocke, Lindsey, & deB Frederick, 2016). dGSR effectively deals
with systemic low frequency oscillations (sLFO’s) that are non-neuronal of origin and oscillate
at frequencies of interest in rs-fMRI (~0.01-0.1 Hz). Here we refer to sLFO as fluctuations of
clear non-neuronal origin (as defined in the cited studies), as opposed to quasiperiodic patterns
(QPPs) which reflect neural activity. These intrinsic signals appear to have a vascular origin
that travel with the blood through the body (Tong & Frederick, 2012; Tong et al., 2013) and
brain (Tong & Frederick, 2010). The sLFO’s appear in the arteries before propagating through
the brain with the cerebral blood flow from large arteries to large veins (Tong, Yao, Jean

Chen, & deB Frederick, 2018). The spatial-temporal pattern of the arrival time of these SLFO’s
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are consistent with blood flow circulation patterns obtained with dynamic susceptibility
contrast (DSC) bolus track imaging (Tong et al., 2017). The method is based on taking the
temporal information of blood arrival time into account. For each voxel an optimally delayed
version of the global signal is regressed out, which effectively removes the systemic noise of
these sLFO’s. As a result, the strength and specificity of functional connectivity estimates is
improved compared with standard GSR. In addition, in further research they show that BOLD
signal from major arteries (internal carotid artery) and prominent veins (superior sagittal
sinus, SSS and internal jugular vein, great vein of Galen) are highly correlated with the GS
(T. T. Liu et al., 2017; Tong, Yao, Jean Chen, et al., 2018), supporting the importance of a
vascular component in the GS. From this group of studies, it’s evident that a large portion of
the GS has a macro-vascular origin, and that considering the temporal blood flow information
improves de-noising methods. Indeed, taking information from the vessels in de-noising
approaches is important, as recent work has shown that the dynamic effects of vessel
information has complex consequences on BOLD responses (Kay et al., 2019).

Some recent efforts have been made to merge perfusion and BOLD to take blood into account
in functional connectivity studies (Tak, Polimeni, Wang, Yan, & Chen, 2015; Cohen, Nencka,
Lebel, & Wang, 2017).

In a recent correspondence, three directions forward are suggested to further evaluate the use
of GSR (Power, Laumann, et al., 2017; Power, Plitt, et al., 2017; Uddin, 2017). One of these
directions raises the concern that the field lacks empirical studies that focus on the effect of
GSR in high dimensional fMRI data. In this study, we attempt to address this issue by

applying GSR to high dimensional empirical fMRI data, using an information theory and
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correlation approach to investigate how functional connectivity estimates are affected by its
use. We are interested in a more detailed evaluation of which brain regions and intrinsic
connectivity networks in the connectome are affected by GSR. In line with the work from

(Gotts et al., 2013; Saad et al., 2012), we expect that the large scale brain connectivity pattern

will be altered by GSR in a regional and network-specific way.

Furthermore, from the work of (He, Shin, & Liu, 2010; T. T. Liu et al., 2017; Tong, Yao,
Chen, & Frederick, 2018) we know that the GS and vessel BOLD signals are highly related,
and affect the statistical dependencies in the connectome (Erdogan et al., 2016). We set out
to investigate their unique and joint informative role in the connectome, beyond this high
correlation. By applying multiscale partial decomposition of predictive information (Faes,
Marinazzo, & Stramaglia, 2017) we were able to disambiguate the reduction of uncertainty
due to the GS and vessel BOLD signal across intrinsic connectivity networks and multiple
time scales. For the first time, we apply an information theoretical approach to the debate of
GS that goes beyond a correlational framework. This could further help us clarify the effects

of GSR, and the information we get out of the BOLD signal at different spatiotemporal scales.

In short, the main goals of this study are: 1) characterizing the effect of GSR on network-level
functional connectivity estimates in a large dataset; 2) assess the complementary role of global
signal and vessels BOLD signal in this modulation; 3) use the framework of (predictive)
information decomposition to further examine these joint dynamics. We use a large public

dataset of rs-fMRI data, simulations and simultaneous calcium and hemodynamic recordings
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from mouse data. We would like to emphasize that to the goal is to complement the existing

literature without explicitly advocating for or against the use of GSR.
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Materials and Methods

HCP rs-fMRI data
We used the publicly available 900 Subject release data of the Human Connectome Project
(HCP; Van Essen et al., 2012). The full 900 Subject release contains MRI data from 899
healthy participants. The rs-fMRI data from 34 subjects were excluded during the GSR
analyses, and another 99 subjects during calculation of the partial information decomposition
(PID) due to technical problems during processing on our high-performance cluster. Therefor
rs-fMRI data from 865 subjects were used for the GSR. analyses, and data from 766 subject
for the Partial Information Decomposition. See (Smith et al., 2013; Van Essen et al., 2012) for

details of the acquisition procedures.

Data preprocessing. Three preprocessing pipelines were applied to rs-fMRI data: HCP-PID,
HCP-NO GSR and HCP-GSR. All three pipelines underwent the following steps: The minimal
HCP preprocessing steps which include gradient distortion correction, head motion correction,
image distortion correction, spatial transformation to Montreal Neurological Institute (MNT)
space and intensity normalization (Glasser et al., 2013). In addition to the minimal
preprocessing, several additional preprocessing steps were performed, including spatial
smoothing using a Gaussian filter kernel with 4mm full width at half maximum (FWHM),
removing linear trends and nuisance regression step. In the nuisance regression step, a linear
regression of multiple nuisance regressors was applied. In the HCP-PID and HCP-NO GSR
nuisance regressors consisted of : 1) The physiological noise from the white matter signal; 2)

cerebrospinal fluid; and 3) the motion parameters. In the HCP-GSR pipeline nuisance
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regressors consisted of: 1) The physiological noise from the white matter signal; 2)
cerebrospinal fluid; 3) the motion parameters and; 4) the global signal (GS) calculated as the
average BOLD signal across all voxels in the brain. The difference between the HCP-PID and

HCP-NO GSR/HCP-GSR pipelines is that no additional bandpass-filtering (0.008 Hz - 0.1 Hz)

was done on the HCP-PID data and the (PID) was calculated from these data.

As a next step, the average vessel BOLD signal was calculated. The average vessel BOLD
signal was calculated by averaging the extracted BOLD signal from the vessels. The mask for
vessel BOLD signal was created by carefully thresholding the preprocessed T1w/T2w ratio
images. Finally, the signals from each pipeline were averaged in 278 regions of interest (ROIs)
using the Shen parcellation (Shen, Tokoglu, Papademetris, & Constable, 2013). We chose the
Shen parcellation for the following reasons : 1) It is a widely used parcellation of the brain; 2)
the nodes are of comparable size, avoiding differential contributions to the GS due to parcel
size; 3) It has enough nodes to have complexity at a global and within network level, but also
not too many which could cause too much variability across subjects and lose interpretability;
4) it has a clear mapping to the higher order Yeo ICN parcellation. To further localize the
results in intrinsic connectivity networks, each of the ROIs was assigned to one of the 9
networks (7 cortical networks, plus subcortical and cerebellum regions) as classified by Yeo

(Yeo et al., 2011).

Connectivity. Functional connectivity was calculated using a correlational and mutual

information approach. In both approaches the time series of the 278 ROIs obtained from both
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pipelines in the previous step: (1) HCP-NO GSR and (2) HCP-GSR data were used to calculate
functional connectivity. The individual connectivity matrices were not thresholded or
binarized, and ordered (columns and rows) according to the 9 networks (7 cortical networks,
plus subcortical and cerebellum regions) as proposed by Yeo (Yeo et al., 2011). In a final step,
the connectivity matrices were averaged over subjects.
In the correlational approach, Pearson correlation coefficients (MATLAB command corr) were
used to evaluate functional connectivity (FC). With the HCP-NO GSR data, FC was
calculated between all pairs of ROI time series to obtain a symmetric 278 x 278 connectivity
matrix for every subject. A similar procedure was followed to obtain the 278 x 278 connectivity
matrix for every subject with the HCP-GSR data. Additionally, the Pearson correlation
coefficients between the ROI time series and the GS were calculated. To investigate the
contribution of wvessel BOLD signal to this relationship, partial correlation coefficients

(MATLAB command partialcorr) were calculated between the ROI and GS time series

conditioned on the vessel BOLD time series.

In the mutual information (MI) approach, MI and conditioned mutual information (CMI) were
calculated using a bin-less rank based approach based on copulas to evaluate connectivity
(Ince et al., 2017). With the HCP-GSR data, MI was calculated between all pairs of ROI time
series to obtain a symmetric 278 x 278 connectivity matrix for every subject. A similar
procedure was followed to obtain the 278 x 278 connectivity matrix for every subject with the
HCP-GSR data. Additionally, the MI between the ROI time series and the GS were calculated.

To investigate the contribution of vessel BOLD signal to this relationship, CMI was calculated

12


https://doi.org/10.1101/596247
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/596247; this version posted April 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

between the ROI and GS time series conditioned on the vessel BOLD time series. The MI

measures used here are non-normalized, resulting from the subtraction of two entropy terms.

Calcium and Hemodynamic mouse recordings

Data from the work of Matsui and colleagues were used, provided by the authors upon request
(Matsui, Murakami, & Ohki, 2016, 2018b). We used data from one mouse which contained
simultaneous recordings of calcium and hemodynamics. This dataset has the advantage of: 1)
having a high resolution of the brain and vasculature structures and 2) is less affected by
movement due to the mouse being tightly head restraint and induced with a light anesthesia.
However, at the same time anesthesia has the possible disadvantage of affecting the
neurovascular coupling of the neuronal and hemodynamic activity (Matsui, Murakami, &
Ohki, 2018a). As a result, the dynamics of the functional connectivity might be different
compared to recordings from mice who are awake. For a detailed overview of the animal
preparation and acquisition of the simultaneous calcium and hemodynamic recordings see
(Matsui et al., 2016, 2018b).

Data preprocessing. For a detailed overview of preprocessing steps see the data
preprocessing section in (Matsui et al., 2016, 2018b). Briefly, the following steps were
undertaken: all calcium and hemodynamic images were corrected for possible within-scan
motion. The images were then further co-registered, spatially down-sampled by a factor of two
and high pass filtered (> 0.01 Hz). After filtering, the time series were normalized by
subtracting the mean and dividing by the standard deviation. As a next step, the GS and

average vessel time series for hemodynamics and calcium were calculated. The GS was
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calculated by averaging the time series of all the pixels within the slice. To extract the time
series of the vessels a mask was created that only contained pixels of the vessels. The time
series were then put through 2 separated pipelines: one with no further preprocessing (no-GSR
data), and another with GSR as a further preprocessing step (GSR data; Matsui et al., 2016,

2018b). As a final step, 38 ROIs as described in (Matsui et al., 2016, 2018b), and a vessel mask

was used for averaging BOLD time series (Figure 1).

Figure 1. Masks for the Hemodynamic and Calcium mouse recordings. Mask for the 38 ROIs

according to Matsui et al., (2016, 2018b) in green, and the mask for the vessel BOLD signal in red.
Connectivity. For the correlation approach, FC was calculated between all pairs of ROI time
series to obtain a 38 x 38 connectivity matrix for the no GSR data and GSR data. A similar
procedure was followed for the mutual information approach, resulting in a 38 x 38 connectivity

matrix for the no-GSR and GSR data.
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Simulations

Data generation. For our simulations we used the publicly available simTB toolbox by
(Erhardt, Allen, Wei, Eichele, & Calhoun, 2012), which provides flexible generation of fMRI
data. In our case we wanted to simulate rs-fMRI BOLD time series that contain a “neuronal”
and “blood” contribution. In the simulation setting we considered a resting state design and
generated neuronal components with spontaneously generated events over T=1200 time points
and TR=0.72 seconds (in line with the HCP data). In total 10 components were generated, 9
neuronal components and one sLFO-carrying blood component. Spontaneously generated event
time series from the components were linearly convolved with the canonical hemodynamic
response function (HRF; difference of two gamma functions).

Finally, in order to simulate different blood arrival times in each component, we added an
linearly increasing delay to the blood component and mixed every neuronal component with a
different delayed version of the blood component. In this way, we were able to simulate varying
blood arrival time to interacting components. In total, we simulated data for 100 subjects.
After simulating the data, GSR was performed on the data resulting in a no-GSR and GSR

dataset.

Connectivity. For the correlation approach, FC was calculated between all pairs of simulated
component time series to obtain a 9 x 9 connectivity matrix for the no-GSR and GSR data. A
similar procedure was followed for the mutual information approach, resulting in a 9 x 9

connectivity matrix for the no-GSR and GSR data.
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Partial Information Decomposition
In multivariate systems it makes sense to investigate the joint effect of several driver
variables over one (or more) target(s). Partial Information Decomposition (PID) permits
calculation of these effects, in particular the unique and joint contributions of two or more
driver variables on a target variable. The most relevant measures in this context are the
unique information from each of the drivers to the target, and the redundant and synergistic
contributions of the two drivers to the target (Figure 2). It is worth noting that Interaction
Information, defined as the difference between the mutual information between two
variables, and the same quantity conditioned to a third one, also allows definition of
redundancy (when it is negative) or synergy (when it is positive). The framework of PID
used here provides: 1) distinct non-negative measures of redundancy and synergy, thereby
accounting for the possibility that redundancy and synergy may coexist as separate elements

of information modification; 2) the disambiguation between drivers and targets.

Tik—j

Figure 2. Venn diagram Partial information decomposition (PID). Given two drivers ¢ and k, and a
target 7, the joint information (T) transferred from the drivers to the target can be decomposed in synergistic

(S), redundant (R) and unique (U) contributions.
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This framework is valid for several estimators of the joint distributions of the variables. These
include the classical information theory measures, in which the distributions are evaluated
non-parametrically by binning or other embeddings, and in which information transfer is
defined in terms of reduction of uncertainty or surprise, but also simpler estimators in which
the distributions are calculated from the joint covariance matrix, and the information transfer
has to be interpreted in terms of reduction of joint variance.
Here we use this latter estimator (exact for Gaussian variables, but still robust in the
approximate case, and allowing a straightforward extension to the multiscale approach).
PID was performed over multiple temporal scales as described in (Faes et al., 2017).
For the present study, the two drivers are the GS and the BOLD signal extracted from the
vessels, and the targets are the timeseries of the individual ROIs. The temporal scale across
which we computed PID stretched to about 20 seconds, equivalent to 30-time bins for the

human HCP data and the simulated data, 200-time bins for the mouse calcium imaging data,

and 100-time bins for the mouse hemodynamics data.

Data and code availability
The toolbox for the partial information decomposition method is freely available and can be

found here: https://github.com/danielemarinazzo/multiscale PID. The toolbox for Gaussian-

Copula mutual information is freely available and can be found here:

https://github.com /robince/gcmi. The simTB toolbox we used for simulations can be found

here: http://mialab.mrn.org/software/simtb/, and the Matlab script for the simulations and
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analyses reported in this work can be found here: https://github.com/compneuro-
da/GSR_PID.

The HCP dataset we used is publicly available and can be found at

https://www.humanconnectome.org/. Some of the figures were made using the Gramm

package from Pierre Morel, which can be found at https://github.com/piermorel /gramm and

is described in (Morel, 2018).

Results

HCP rs-fMRI
GSR. A shows the functional connectivity computed using correlations among the 278 ROIs
averaged across subjects without (bottom triangle) and with GSR (top triangle) in the HCP
dataset. Figure 3B, shows the functional connectivity computed using mutual information for
the same dataset with and without GSR. In the correlational approach, GSR reduces functional
connectivity across ROI pairs (Figure 3C). We observe that anti-correlations are introduced
in the connectome in a non-uniform way across regions and networks (Figure 4). The same
observations are made in the mutual information approach, where GSR also reduces the
functional connectivity across ROI pairs (Figure 3D), and network-specific effects are found
(Figure 5). Two remarks are in order at this point: Mutual information is an unsigned
quantities, so the difference cannot be expressed in terms of “negative” correlation induced;
there is a nonlinear relation between MI and correlation (see also figure 3 in (Ince et al., 2017),

resulting in an enhanced contrast of strong effects with respect to background values.
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Taken together, GSR reduces the functional connectivity across ROI pairs, and the intrinsic
connectivity networks are affected in non-uniform ways. Our findings align with previous work
in the literature (Gotts et al., 2013; Saad et al., 2012). Recent work by Li and colleagues who

also studied the effect of GSR in a large sample found similar specific regional and network-

related effects introduced by GSR (Li, Kong, Liégeois, et al., 2019).
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Figure 3. Effect of GSR on functional connectivity in the HCP dataset. (A) estimated functional

connectivity using correlations before (bottom triangle) and after GSR (top triangle). (B) estimated functional

connectivity using mutual information before (bottom triangle) and after GSR. (top triangle). (C) paired t-test

using permutations between the correlational functional connectivity before and after GSR for every ROI pair.

(D) paired t-test using permutations between the mutual information functional connectivity before and after

GSR for every ROI pair. For visualization the 278 ROIs are ordered according to the 9 intrinsic connectivity

networks of Yeo et al., 2011. The intrinsic connectivity networks are: VIS=visual network; SM=Somatomotor;

DA=Dorsal Attention; VA=Ventral Attention; L=Limbic; FP=Frontoparietal; DMN=Default Mode Network;

SBC=Subcortical; CB=Cerebellum.
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Figure 4. Network-specific effects of GSR on correlational functional connectivity. The top triangle
presents the difference histograms between the correlational functional connectivity without and with GSR for
each of the ICN pairs. The bottom right histogram shows the scale of correlational differences and is the same
for each histogram. The bottom triangle presents the density scatterplots of the mutual information functional
connectivity without GSR (x-axis) and with GSR (y-axis) for each of the ICN pairs. The colormap presents the

density from low density (purple) to high density (yellow)
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Figure 5. Network-specific effects of GSR on mutual information functional connectivity. The top

triangle presents the difference histograms between the mutual information functional connectivity without and

with GSR for each of the ICN pairs. The bottom right histogram shows the scale of mutual information

differences and is the same for each histogram. The bottom triangle presents the density scatterplots of the

mutual information functional connectivity without GSR (x-axis) and with GSR (y-axis) for each of the ICN

pairs. The colormap presents the density from low density (purple) to high density (yellow).
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Relationship of the Global-, vessel BOLD signal and intrinsic connectivity
networks
Figure 6 shows the time series of the GS and vessel BOLD signal from an example subject
which are highly related to each other. On average, the GS and vessel BOLD signal are strongly
and positively correlated (mean correlation coefficient = 0.91, this is significantly different

from 0 (t(864) =153, p<0.001). The statistical test was performed after Fisher-z transforming

the correlation coefficients.
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Figure 6. Relationship between the global- and vessel BOLD signal. Example of time series from a
subject of the Global signal (green) and vessel BOLD signal (blue) which are highly related to each other. The
difference between the global- and vessel BOLD signal is plotted in red.
In Figure 7, the relationship between the GS and the ICN before and after conditioning on the
vessel BOLD signal are shown. The GS has an average correlation coefficient of 0.64 and MI
of 0.44 with the ICN before controlling for the contribution of vessel BOLD signal. After

conditioning on the vessel BOLD signal there is a reduction of the relationship to an average

correlation of 0.32 and MI of 0.14. A paired t-test shows that this reduction in correlation
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(t(864) = 109, p<0.001) and MI (t(864) = 71, p<0.001) is significant with large effect sizes

for the correlation (Cohen’s d = 3.72) and MI (Cohen’s d = 2.41).
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Figure 7. Conditioning role of the vessel BOLD signal. Contribution of the vessel BOLD signal to the

relationship between the GS and intrinsic connectivity networks in rs-fMRI data. Top panel: violin plots of the

mutual information between the GS and connectome before and after conditioning on the vessel BOLD signal.

Bottom panel: violin plots of the correlations between the GS and connectome before and after conditioning on

the veazel ROT.D qional

These results indicate that the GS and vessel BOLD signal are highly related to each other.

Additionally, we show that the vessel BOLD signal is an important contributing factor to the

relationship between the GS and ICN, but does not fully eliminate the relationship. Other

groups have found similar results showing that the BOLD signal extracted from arteries and

veins are highly correlated with the GS (He et al., 2010; Tong, Yao, Chen, et al., 2018). The

sLFO’s that travel with the blood flow through the brain are present in the GS and the vessel
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BOLD signal, explaining why they are highly correlated. Despite being highly correlated, our
conditioning results on the vessel BOLD signal indicate that both signals have differential and
joint effects on the ICNs. However, another framework is needed to further disambiguate the
effects of the GS and vessel BOLD signal on the connectome. By applying the PID framework

we were able to disambiguate in space and time the differential and joint predictive information

for both signals on the different ROIs comprising each ICN.

Partial information decomposition. In Figure 8, we depict the terms of the PID, applied
from the two drivers (GS and vessel BOLD signal) towards the individual ROIs ordered into
the ICNs as a function of timescale. Kruskal-Wallis tests were conducted to examine network-
specific effects of information transfer towards the different ICN for each element of the PID.
For each element (unique information two sources, synergistic and redundant transfer) the
time scale for which the maximum transfer value was attained, and was used to test for
differences between the ICNs. For the unique transfer of the GS (Chi square = 2342.7, p <
0.001, df=8), unique transfer of the vessel BOLD signal (Chi square = 2080.36, p < 0.001, df
= 8), redundant transfer (Chi square = 455.52, p < 0.001, df = 8) and synergistic transfer
(Chi square = 74.03, p < 0.001, df = &), significant differences were found among the nine
ICNs (VIS, SM, DA, VA, L, FP, DMN, SBC, CB). These tests show that for each of the PID
terms, the information transfer towards the ICNs are different at the time scale of maximum

information transfer, confirming network-specific effects.
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Figure 8. Partial information decomposition (PID) in the HCP rs-fMRI data. Partial information
decomposition (PID) of the information transfer from the GS and vessel BOLD signal to the individual ROIs.
(A): the unique information from the GS to the individual ROIs; (B): the unique information from the vessel
BOLD signal to the individual ROIs. (C): the redundant transfer from the GS and vessel BOLD signal to the

individual ROIs. (D): the synergistic transfer from the GS and vessel BOLD signal to the individual ROIs.
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Furthermore, as depicted in Figure 9, the significant differences between the unique
information from the GS and vessel BOLD signal is different towards the ICNs across
timescales, assessed with a permutation based paired t-test. Interestingly, the BOLD signal
from the vessels provide more unique information to the cortical ROIs at a time scale
corresponding to the one of the hemodynamic response function, peaking on average around
6-7 seconds. The unique GS information has high levels of transfer towards the CB and SBC
(Figure 8A). The unique vessel BOLD signal information has high levels of transfer towards
the VIS, SM, DA, VA, FP and DMN (Figure 8B). It’s clear from the PID that both synergistic

and redundant transfer occur at the same time across ICNs and multiple time scales (Figure

8C, D).
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Figure 9. Statistical significance between Unique GS and unique vessel BOLD signal. paired t¢-test
using permutations between the unique GS and unique vessel BOLD signal for each ROI at each timescale.
Warm colors (positive values) indicate that the GS provides more unique information to the cortical ROIs than
vessel BOLD signal, while cold colors (negative values) indicate a greater unique contribution of vessel BOLD

signal.
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We observe by applying PID that the information terms are modulated across two different
domains. 1) Spatial modulation: both the GS and vessel BOLD signal despite being highly
related, affect the ICNs in different ways as evidenced by the difference in information transfer
of the unique information transfer’s. At the same time, the joint information (dynamics) of
both signals is also important as they modulate the ICNs in terms of synergistic and redundant
transfer. This spatial modulation of information transfer is confirmed by the Kruskal-Wallis
tests; 2) Temporal modulation: as evidenced by all terms, transfer happens at multiple
timescales and patterns of transfer towards ICNs can change depending on the timescale. Even
more, the importance of decomposing information at multiple scales is testified by the fact

that terms (e.g. unique GS, unique vessel blood, synergy and redundancy ...) attain maximum

transfer values at time scales > 1.

Simulations
In the simulations we attempt to explain the spatial and temporal modulations of the
information decomposition. We hypothesized that blood arrival time might be driving the
observed spatiotemporal modulations. In the simulations a common ‘blood component’
carrying physiological information (sLFO’s) was mixed with interacting neuronal components

and arrived with varying times at the components.

GSR. The results of applying GSR on the simulated interacting rs-fMRI components are
depicted in Figure 10. Figure 10A shows the functional connectivity using correlations among

the 9 simulated components, averaged across 100 simulations without (bottom triangle) and
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with GSR (top triangle). Figure 10B shows the functional connectivity using mutual
information for the same dataset with and without GSR. In the correlational approach, GSR
reduces functional connectivity and introduces anti-correlations across component pairs. The
same observations are made in the mutual information approach, where GSR reduces the

functional connectivity across component pairs. In both cases, we observe that the reduction

in functional connectivity follows a gradient across component pairs from component 1 to 9.

Correlation after GSR Mutual Information after GSR

1
12
0.5 . 1
0.8
06
04
0.5
0.2
1 0

Figure 10. Effect of GSR on functional connectivity in the simulated dataset. (A) estimated

Correlation
o
Mutual Information

functional connectivity using correlations before (bottom triangle) and after GSR (top triangle). (B) estimated
functional connectivity using mutual information before (bottom triangle) and after GSR (top triangle).
Interacting rs-fMRI components were simulated (1 to 9). Blood arrival time (BAT) was linearly increased from

component 1 to 9. In component 1 BAT is earlier compared to late BAT in component 9.

This gradient can be explained by the difference in blood arrival time (BAT) between
components, that was linearly increased during the simulations. Similar as in our empirical rs-
fMRI HCP results, where GSR has network-specific effects across regions and ICNs, we observe

similar results in our simulations.
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Partial Information Decomposition. In Figure 11, we depict the terms of the PID, applied
from the two drivers (GS and vessel BOLD signal) towards the simulated components ordered
according to BAT as a function of timescale. For each of the PID terms depicted in Figure
11A (unique information GS), Figure 11B (unique information vessel BOLD signal), Figure
11C (redundancy) and Figure 11D (synergy), we observe a gradient in the information transfer
patterns that can be explained by the BAT. Figure 11A, shows the unique information from
the GS towards the components. In this case, maximum transfer is attained in components
with an early BAT. Components with an early BAT show high information transfer across low
timescales, while at higher timescales the transfer reduces gradually. Components with late

BAT show almost no transfer across low timescales and some transfer at higher timescales.
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Figure 11. Partial information decomposition (PID) in simulated rs-fMRI data. Partial information
decomposition (PID) in simulated rs-fMRI data of the information transfer from the GS and vessel BOLD signal
towards the individual ROIs. (A) the unique information from the GS to the individual ROIs. (B) the unique
information from the vessel BOLD signal to the individual ROIs. (C) the redundant transfer from the GS and
vessel BOLD signal to the individual ROIs. (D) the synergistic transfer from the GS and vessel BOLD signal to
the individual ROIs.

Figure 11B shows the unique information from the wvessel BOLD signal towards the
components. With a linearly increasing BAT, information transfer is observed at lower

timescales. Here it is clear from the patterns of information transfer observed in Figure 11A
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and Figure 11B that both drivers (GS and vessel BOLD) effect the simulated components in
a differential way. However, at the same time both signals show joint dynamics of information
transfer towards the simulated components. This is clear from Figure 11C and 11D, which
show the redundant and synergistic transfer, respectively. In Figure 11C, the maximum
redundant transfer is attained in components with an early BAT. Components with an early
BAT show high information transfer at lower timescales, and this transfer decreases with
increasing timescales. On the other hand, components with a late BAT show an increase in
transfer from lower to higher timescales. Figure 11D shows the synergistic transfer of
information. Components with an early BAT show high transfer of information across low
timescales and this decreases with increasing timescales. Components with a late BAT show
lower transfer across all timescales.
The results from the PID observed from the simulations are similar to the PID results from
the empirical HCP rs-fMRI dataset (Figure 8). With the simulations the goal was to explain
the spatiotemporal modulations observed in Figure 8 by varying the BAT in interacting
components. Indeed, in Figure 11, we observe that with our simulations we observe similar
spatiotemporal modulations of the PID terms. The difference between both modalities is that
in the simulations we were able to order our components according to BAT (Figure 11), while

the rs-fMRI HCP data is ordered in ICNs and not according to BAT (Figure 8).
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Simultaneous calcium and hemodynamic recordings
GSR. Figure 12A shows the functional connectivity using correlations among the 38 ROIs
without (bottom triangle) and with GSR (top triangle) in the single mouse hemodynamic
recordings. Figure 12B shows the functional connectivity using mutual information for the
same dataset with and without GSR. In the correlational approach, GSR reduces functional
connectivity across almost all ROI pairs. Anti-correlations are introduced across ROIs in a
non-uniform way across the connectome. The same observations are made in the mutual
information approach, where GSR reduces the functional connectivity across ROI pairs. These
findings are similar to the results we found with the HCP rs-fMRI and simulated rs-fMRI

dataset (Figure 3, 10). Namely, GSR has regional and network-specific effects in reducing

functional connectivity.

35

25

Figure 12. Effect of GSR on functional connectivity in hemodynamic mouse recordings. (4 ) estimated
functional connectivity using correlations before (bottom triangle) and after GSR (top triangle). (B) estimated
functional connectivity using mutual information before (bottom triangle) and after GSR (top triangle). The same 38

ROIs were used as described in (Matsui et al., 2016, 2018b).

Partial Information Decomposition. In Figure 13 A-D, we depict the results of the PID

applied to the hemodynamic recordings. The terms of the PID, applied from the two drivers
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(hemodynamic GS, hemodynamic vessel BOLD signal) towards the individual hemodynamic
ROI signals as a function of timescale are shown. For each of the PID components, we observe
a spatial and temporal modulation of information transfer towards the individual ROI signals
of the mouse. From the unique information from the GS and vessel BOLD signal (Figure 13A,
B) we observe transfer that is different towards the individual ROIs and timescales.

Furthermore, both signals show joint transfer of redundant and synergistic information (Figure

13C, D) which is different for the ROIs across lower and higher timescales.

In Figure 13 E-H, we depict the results of the PID applied to the calcium recordings. The
terms of the PID, applied from the two drivers (calcium GS, calcium vessel signal) towards
the individual calcium ROI signals as a function of timescale are shown. In this case, only a
spatial and temporal modulation of transfer is observed in the unique information from the
GS (Figure 13E) and redundant information (Figure 13Error! Reference source not
found.G). The transfer of unique information from the vessel BOLD signal observed in the
hemodynamic recordings (Figure 13B) disappears in calcium recordings (Figure 13E), as well
as most of its synergy with GS, except from short time scales (Figure 13H). This result should
be expected as calcium recordings reflect more prominently neuronal activity in contrast to
hemodynamic recordings, therefore the calcium vessel signal is expected not to contain
physiological information. As a result: 1) there is no unique information from calcium vessel
signal (Figure 13E) and synergistic transfer compared (Figure 13H) with the hemodynamic

recordings (Figure 13B, D), where the hemodynamic vessel BOLD signal does contain
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physiological information; 2) The pattern of redundant transfer (Figure 13G) can then most
likely be explained by noise in the calcium vessel signal, which shares some component with
the neuronal GS and predicts the information towards the individual ROIs. One possible source
of noise could be from the optical imaging method. Some fluctuations could be induced in the
signals by the intensity of excitation light which could affect the entire field of view if it exists.

The pattern of redundant transfer in the hemodynamic recordings (Figure 13C) is due to the

sharing of physiological information in the GS and vessel BOLD signal.

35


https://doi.org/10.1101/596247
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/596247; this version posted April 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A B C D
Unique GS_Hemo—ROI_Hemo Unique Vessels_Hemo—ROI_Hemo Redundancy (GS_Hemo,Vessels_Hemo) -ROI_Hemo Synergy (GS_Hemo,Vessels_Hemo) —ROI_Hemo
012 012 0.16
o1 ot 014 k 01
I 0.12
0.08
1 0.08 0.08
r : v
- 006 006 0.08 I 008
| —
F [}
0.04 0.04 - 004
0.04
' 002 0.02 002
0.02
0 0 B
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
time scale (s) time scale (s) time scale (s) time scale (s)
E F G H
Unique GS_Ca—»ROI_Ca Unique Vessels_Ca—ROI_Ca Redundancy (GS_Ca,Vessels_Ca) +ROI_Ca Synergy (GS_Ca,Vessels_Ca) -ROI_Ca o3
0.09 *
009 0.09 m—
m 0.08 1
008 0.08 mmm
— 0.07 I 12
= 007 0.07
_— 0.0 i
006 0.06
005 o0s [ 005 I 8
004 o4 | g el s
003 003 0.03
= k ‘
002 002 0.02 I
001 0.01 0.01 2
0 0 L
5 10 15 20 5 190 15 20 5 10 15 20 5 10 15 20
time scale (s) time scale (s) time scale (s) time scale (s)
1 J K L
Unique GS_Ca—ROI_Ca Unique Vessels_Hemo—ROI_Ca Redundancy (GS_Ca,Vessels_Hemo) —+ ROI_Ca Synergy (GS_Ca,Vessels_Hemo) —+ROI_Ca
044 0.4 0.04
x m o
012 012 0.035
0.025 E
04 04 003
= 002
0.025
0.08 0.08
0.015 j— 0.02
0.06 0.06 — s
T 001 i ;
0.04 0.04
0.01
002 w | 0005 0005
0 0
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
time scale (s) time scale (s) time scale (s) time scale (s)
N
M
Mouse hemodynamic recordings Mouse calcium recordings
3
B T2
@ L
32 ]
? g1
\2 s Color \"‘; Color
] = Global Signal Zz ° = Global Signal
g 0 = vessel BOLD signal E 4 = vessel signal
N E
5 22
@ 7]
2 3
0 500 1000 1500 o 500 1000 1500 2000 2500 3000
Timepoints Timepoints

36


https://doi.org/10.1101/596247
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/596247; this version posted April 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 13. Partial Information Decomposition (PID) in hemodynamic and calcium mouse
recordings. PID in hemodynamic mouse recordings of the information transfer from the GS and vessel BOLD
signal towards the individual ROIs. (A) the unique information from the hemodynamic GS to the individual
hemodynamic ROT signals (B) the unique information from the hemodynamic vessel BOLD signal to the
individual hemodynamic ROI signals. (C) the redundant transfer from the hemodynamic GS and vessel BOLD
signal to the individual hemodynamic ROI signals. (D) the synergistic transfer from the hemodynamic GS and
vessel BOLD signal to the individual hemodynamic ROT signals. (E) the unique information from the calcium
GS to the individual calcium ROI signals. (F) the unique information from the calcium vessel signal to the
individual calcium ROI signals. (G) the redundant transfer from the calcium GS and vessel signal to the
individual calcium ROI signals. (H) the synergistic transfer from the calcium GS and vessel signal to the
individual calcium ROI signals. (I) the unique information from the calcium GS to the individual calcium ROI
signals (J) the unique information from the hemodynamic vessel BOLD signal to the individual calcium ROI
signals. (K) the redundant transfer from the calcium GS and hemodynamic vessel BOLD signal to the
individual calcium ROI signals. (L) the synergistic transfer from the calcium GS and hemodynamic vessel
BOLD signal to the individual calcium ROI signals. (M) time series of the GS (red) and vessel BOLD signal
(blue) in hemodynamic recordings, which are highly correlated (0.99). (N) time series of the GS (red) and

vessel signal (blue) in calcium recordings which are also highly correlated (0.89).

In Figure 13 I-L, we depict the results of the PID applied to a combination of the hemodynamic
and calcium recordings, after downsampling the latter by a factor 2 to match the former. The
terms of the PID, applied from the two drivers (calcium GS, hemodynamic vessel BOLD
signal) towards the individual calcium ROT signals as a function of timescale are shown.

In this case, we observe a spatial and temporal modulation of transfer in the unique information
from the GS (Figure 13I) and redundant and synergistic information (Figure 13Error!
Reference source not found.K, L). Here the effect of unique information from the
hemodynamic vessel BOLD signal disappears (Figure 13J). This shows us that there is no

transfer of information of hemodynamic vessel BOLD signal towards calcium ROI signals. This
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gives us evidence that neuronal functional activity is unaffected by the fluctuations of

hemodynamic vessel BOLD signal.

Discussion

In this paper we learnt that, together with their very high correlation, the global signal and
the BOLD signals in the vessels provide both unique and shared contributions to the reduction
in uncertainty on the dynamics of cortical areas. These differential actions contribute to
explaining the effect of GSR on brain-wide intrinsic functional connectivity. Additionally, the
presence of unique information from both signals could indicate that it is possible, at least
theoretically, to separate the two types of signals, hopefully keeping the neural and cognitive
correlates, while discarding the physiological nuisance.

Our observations after applying GSR to a large rs-fMRI dataset are consistent with the
literature. Using a correlational and mutual information framework, we observed that GSR
reduces the functional connectivity between ROI pairs (Figure 3A, B). This is in line with
previous work (M. D. Fox, Zhang, Snyder, & Raichle, 2009; Murphy et al., 2009;
Weissenbacher et al., 2009). Moreover, we observed network-specific effects. The reduction in
functional connectivity was not uniform across regions and networks (Figure 4, 5). This is
consistent with previous findings from (Gotts et al., 2013; Saad et al., 2012), and recent work
by (Li, Kong, Liégeois, et al., 2019) who also studied the effect of GSR in large human rs-
fMRI datasets. These findings were verified in the simulations (Figure 10) and cross-species
mouse recordings (Figure 12).

In a next step, we investigated the role of the global signal and vessel BOLD signal in this

modulation and further mapped their presence across intrinsic connectivity networks and time
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using PID. First, we found that the GS and vessel BOLD signal are highly related (Figure 6),
as reported in previous work (Tong, Yao, Jean Chen, et al., 2018). According to Tong and
colleagues this finding can be explained by the fact that slow low frequency oscillations
(sLFO’s) are widespread across the brain travelling with the cerebral blood flow. During the
calculation of the GS, neuronal activation which is more local is smoothed/cancelled out
leaving the sLFO’s as the dominant signal in both the GS and vessel BOLD signal. We further
found that the vessel BOLD signal is an important contributor between the relationship of the
GS and the intrinsic connectivity networks, but does not fully explain the relationship (Figure
7). So, despite being highly related they both seem to have some unique relatedness to the
intrinsic connectivity networks. By applying PID, we were able to disambiguate the unique

and joint dynamics of the GS and vessel BOLD signal by quantifying their presence across

networks and time.

We observed in empirical rs-fMRI data, simulations, and hemodynamic mouse recordings that
the predictive information from the GS and vessel BOLD signal is present in different amounts
across time and space (Figure 8, 11, 13). The information of the GS and vessel BOLD signal
are present across the connectome in unique (Figure 8A, B; 11A, B; 13A, B) and joint (Figure
8C, D; 11C, D; 13C, D) ways. Furthermore, we confirmed that: 1) the spatiotemporal
modulation of the predictive information in human rs-fMRI (Figure 8) can be explained in
terms of blood arrival time in the simulations (Figure 11); and 2) the spatiotemporal
modulation is due to the presence of physiological information (SLFO’s) in hemodynamic

signals in the vessel BOLD signal (Figure 8B, 13B). As a result, the predictive information of
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the vessel BOLD signal disappears in calcium recordings due to the lack of physiological
information in neuronal signals (Error! Reference source not found.F).
Taken together, without applying GSR both signals are present in different amounts and with
different timing across regions/ networks and one should be aware of this when interpreting
functional connectivity estimates. We know that the GS is related to physiology (vascular
component), and this is due to non-neuronal sLFO’s travelling with the blood flow (Tong,
Yao, Chen, et al., 2018). For denoising strategies that aim to remove non-neuronal artifacts

such as motion or-, respiration, it could be beneficial to control for the sLFO’s by correcting

for blood arrival time.

The classic GSR. approach has been shown to be effective in accounting for global motion and
respiratory artifacts compared with other de-noising approaches (Ciric et al., 2017; Lydon-
Staley et al., 2018; Parkes et al., 2018; Power, Plitt, et al., 2017; Satterthwaite et al., 2017).
However, it does not consider the dynamic passage of global systemic effects (sLFO’s)
throughout the brain. The dynamic GSR method by (Erdogan et al., 2016) can effectively deal
with the sLFO’s by correcting for blood arrival time and reduces the impact of physiological
noise. As a result, the functional connectivity estimates provide enhanced specificity and reflect
more the underlying biology rather than spurious noise. However, it is not known if the
dynamic GSR method removes all physiological artifacts. It controls for the vascular effect of
the sLFQ’s, but other physiological effect such as Mayer waves that are related to the
sympathetic nervous system oscillations, might be another potential source of confounding

global signal oscillations (Julien, 2006).
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From the work of Saad and colleagues we know that GSR alters the underlying correlational
structure in unpredictable ways depending on the contribution of regions/networks to the GS
(Saad et al., 2012). From our observations we have shown that physiology is related to the GS
and present in different amounts across networks. Following this view, regressing out the GS
might selectively introduce new-mixed physiological artifacts in the functional connectivity
estimates across networks if not controlled for. As a result, these new mixed physiological
artifacts could confound the interpretations made from functional connectivity estimates.
Being aware of this is important as a wave of recent studies have shown great interest in the
relationship between behavior and the architecture of the brain uncovered by functional
connectivity (Dubois & Adolphs, 2016; Finn et al., 2015; Kong et al., 2018; Li, Kong, Liégeois,
et al., 2019; Rosenberg et al., 2015). Recent work by Li and colleagues shows that GSR
strengthens the association between functional connectivity and behavioral measures. One
could argue that the reliable association between functional connectivity could be partly
explained by the introduced physiological artifacts after GSR. Future work that focuses on the
relationship between behavior and connectivity could investigate if controlling for the
physiology (sLFO’s) by blood arrival time improves the association between behavior and

functional connectivity even more.

While global fluctuations have been linked to artifacts such as participant motion, respiration
and sLFQO’s, other studies have linked global fluctuations to neuronal origins. Fluctuations of

the rs-fMRI GS have been linked to vigilance (Wong et al., 2013), glucose metabolism
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(Thompson et al., 2016) and arousal mediated by ascending nuclei (X. Liu et al., 2018; Turchi
et al., 2018). More recently Gutierrez-Barragan and colleagues have shown that each cycle
phase of the GS is the sum of differently overlapping recurring brain states that have a
neuronal origin (Gutierrez-Barragan, Basson, Panzeri, & Gozzi, 2018). These brain states that
govern the spontaneous brain activity can be captured by CAP-based approaches (Gutierrez-
Barragan et al., 2018; Karahanoglu & Van De Ville, 2015; X. Liu, Chang, & Duyn, 2013; X.
Liu & Duyn, 2013; Matsui et al., 2016). In addition, work examining global signal topography
demonstrates structured information in the GS that can explain individual differences in trait-
level cognition and behavior, further suggesting that the signal contains strong cognitive
influences (Bolt, Li , Bzdok, Nomi, Yeo, Spreng, Uddin, under review). Aside from the
introduction of mixed physiological artifacts, we do not know the additional effects of GSR on

recurring brain states with a neuronal origin and how this is reflected in functional connectivity

estimates.

To conclude, the current study is not meant to suggest a particular stance regarding the use
of GSR in studies of rs-fMRI functional connectivity. Rather, the goal is to highlight the
finding that the GS and physiology are related and present in different amounts across
networks. If one wants to apply de-noising strategies such as GSR, one should be aware of the
physiological confound in functional connectivity estimates. An alternative de-noising strategy
that could be considered is dynamic GSR, which effectively reduces the impact of physiological
artifacts in functional connectivity patterns (Erdogan et al., 2016). On the other hand, we

know that GSR also impacts task-relevant neuronal information, further complicating the
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interpretation of functional connectivity findings. Alternative de-noising approaches that

retain neuronal information and remove global artifacts based on temporal ICA might be

promising alternatives to GSR (Glasser et al., 2018, but see also the comment by Power, 2019).

Limitations. To extract the vessel BOLD signal from the human rs-fMRI data, we created
masks that contained vessel information after thresholding the Tlw/T2w ratio images.
However, we realize that due to the low spatial resolution of fMRI our masks can contain
voxels that could be classified as grey matter voxels. As a result, the BOLD signal of our vessel
BOLD signal mask might be a mixture of grey matter- and vessel BOLD signal effects. Despite
the possibility of mixing effects in the vessel BOLD signal that could bias our results, we

believe the findings using PID to be robust (Figure 8, 13):

1) Using mouse data, we found a spatiotemporal modulation of the predictive information
just as in human rs-fMRI data (Figure 8, 13). Compared with human rs-fMRI data,
the mouse data has the advantage of having high spatial resolution, and reduced
movement since the animal is constrained in a rig. Due to the higher resolution we
were able to create a mask that only contains vessel information. The extracted vessel
BOLD signal in this case is not a mixture of neuronal and vessel information. As the
findings are similar as in human data (including a very high correlation of
hemodynamic signals in the vessels and global signal, Figure 13M, N), we are confident

that a possible mixing of the vessel BOLD signal is not confounding the current results.

43


https://doi.org/10.1101/596247
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/596247; this version posted April 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the aUthOZI/L;?Igaéwugod:ra: Cg(r:a_lgtt\?cjl %i?rliﬁ;/ngtliigﬁgls,l?cteong‘iesjplay the preprint in perpetuity. It Is made
Further, we found that the unique predictive information of the vessel BOLD signal is
absent in calcium recordings (Figure 13E) and was only found with hemodynamic
recordings in mouse data (Figure 13B). This is because calcium vessel signal does not
contain physiological (sLFO’s) information.

2) In PID, the measures explicitly look for contributions above and beyond what is
contained in the target, meaning that the simple co-existence of two phenomena in a
time series does not count in the PID.

3) In the human rs-fMRI we used a large sample, averaging the results over hundred of
subjects. We could expect that the location of grey matter voxels and neuronal
information that might contribute to the vessel BOLD signal mask is inconsistent
across subjects. Therefore, the expected neuronal mixing effect might be averaged out
in the large group analysis we performed. On the other hand, it is still possible that a

neuronal contribution to the vessel BOLD signal is present across subjects and

potentially biases the results even in a large sample size.

To summarize, even though what we call vessel BOLD signal in this work (human rs-fMRI)
might be a mixture of neuronal and vessel information, we are quite confident that the observed
spatiotemporal modulation of the PID in human rs-fMRI is due to the physiological
information (sLFO’s) that is present in the vessel BOLD signal. Work that aims to validate

the results in human rs-fMRI, excluding any neuronal contamination effects, might consider
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extracting the mask for the vessel BOLD signal from subjects that have angiography data

available.
Conclusion

We confirmed that GSR reduces functional connectivity estimates between regions and
networks in a large empirical fMRI dataset. Furthermore, using PID we show that the GS and
sLFO’s (physiological artifact) are present in different amounts across different timings,
regions and networks. Using simulations we were able to explain the spatiotemporal
modulation of the PID in terms of blood arrival time. Thus, correcting for the sLFO’s by
taking blood arrival time into account might reduce the introduction of physiological artifacts

in functional connectivity.
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